Biosynthesis of ZnO Nanoparticles Using Spirulina platensis Based on Calcination Temperature Changes and Its Antioxidant Activity

Sari, Lusi Mustika and Rilda, Yetria and Armaini, . (2023) Biosynthesis of ZnO Nanoparticles Using Spirulina platensis Based on Calcination Temperature Changes and Its Antioxidant Activity. Chemical Science International Journal, 32 (4). pp. 1-8. ISSN 2456-706X

[thumbnail of Rilda3242023CSIJ102806.pdf] Text
Rilda3242023CSIJ102806.pdf - Published Version

Download (701kB)

Abstract

The effect of different calcination temperatures on molecular structure, morphology, and antioxidant activity was investigated for Zinc Oxide nanoparticles synthesized using the sol-gel method and the capping agent Spirulina platensis. The prepared nanoparticle ZnO was calcined at 160°C, 300°C, and 600°C according to the results of the DTA-TGA analysis. The effect of different calcination temperatures on the characterization of the prepared samples was studied using Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD), and Field Emission-Scanning Electron Microscope (FE-SEM). In addition, the potential antioxidant activity of ZnO nanoparticles was investigated using the DPPH method. The results showed that FT-IR and XRD confirmed the presence of ZnO nanoparticles with good purity and small crystal size found in calcified ZnO nanoparticles at 600°C. FE-SEM confirmed the morphology ZnO nanoparticle produced at 600°C calcination are spherics, cubes, and nanorods with different particle sizes with range 50 – 150 nm. ZnO nanoparticles calcined at 600°C also showed higher antioxidant activity when compared to other calcination temperatures.

Item Type: Article
Subjects: East India library > Chemical Science
Depositing User: Unnamed user with email support@eastindialibrary.com
Date Deposited: 06 Jul 2023 05:30
Last Modified: 22 Jun 2024 09:21
URI: http://info.paperdigitallibrary.com/id/eprint/1565

Actions (login required)

View Item
View Item