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Abstract

In [1], Gyamfi et al. described homological properties in relation to Nakayama Algebras with
projectives that satisfied condition ExtnΛ(M,N) = 0 for n ≫ 0 ⇐⇒ ExtnΛ(N,M) = 0 for n ≫ 0,
[1]. The purpose of this paper is to give a similar characterization of Nakayama algebras. In
particular, we present Ext-groups of the Nakayama algebras with projectives that do not satisfy
the condition ExtnΛ(M,N) = 0 for n ≫ 0 ⇐⇒ ExtnΛ(N,M) = 0 for n ≫ 0. To do this, we consider
the Ext-groups of Nakayama algebra with projectives of lengths 3n and 4n using combinations of
modules of different lengths.
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1 Introduction

In this section, we discuss some basic properties and some related examples of the Quivers, Path
algebra, Projective resolutions and Ext-groups. A quiver is an oriented graph. In our discussions
of quivers, we restrict ourselves to finite quivers. A quiver Γ is made up of a set of vertices, Γo, and
a set of arrows, Γ1 between these vertices. A quiver Γ = (Γo,Γ1).
Example: Let Γ = 1 −→ 2 −→ 3. Here there are three vertices 1, 2, and 3 which are joined by two
arrows. This is represented diagrammatically by;

.

Let k be a field and Γ = (Γ0,Γ1) be a quiver, then kΓ is a k−vector space with the paths of Γ as
the basis. This k−algebra kΓ, is called the path algebra of Γ over k. The elements in kΓ are of the
form a1p1 + a2p2 + · · · + anpn, ai ∈ k, and pi a path in Γ.

∑
i∈Γ0

ei is the identity element of kΓ

[2]. For example; let Γ = 1
α−→2, then a basis of this path algebra is e1, e2 and α. The elements in

kΓ are of the form; a1e1 + a2e2 + a3e3, ai ∈ k and e1, e2, α ∈ Γ. We have the following table;

x\y e1 e2 α

e1 e1 0 0

e2 0 e2 α

α α 0 0

This shows that , (e1 + e2)(a1e1 + a2e2 + a3α) = a1e1 + a2e2 + a3α. Hence e1 + e2 is the identity
in kΓ.

Another example could as well be, let Γ be Γ = 1
α−→2

β
−→3, k a field, then a basis of kΓ is

{e1, e2, e3, α, βα}. Then the dimension of kΓ is given as; dimkkΓ = 5. The identity in kΓ is,
e1 + e2 + e3 = 1kΓ.

Let M be a Λ-module. A projective resolution for M is an exact sequence · · · → P2 → P1 → P0 →
M → 0 with the Pi projective modules for i ≥ 0. A projective presentation · · · → P2 → P1 → P0 →
M → 0 for M is called a minimal projective presentation if f0 : P0 → M and fi : Pi → kerfi are
projective covers for i ≥ 1 [2].
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Example: Let Γ = with the relation γβα, αγβ, βαγ then the projectives
are;

P1 =

 S1

S2

S3

 P2 =

 S2

S3

S1

 P3 =

 S3

S1

S2


where Si is a simple module, i = 1, 2, 3. When we consider the projective P1 as a representation,
the module S1 is in vertex one, S2 is in vertex two and S3 is in vertex three.

Finally, we discuss Ext-groups. Let M,N be Λ-modules.

Let P · · · → P3
d3−→P2

d2−→P1
d1−→P0

d0−→M → 0 be the projective resolution for M . The following is the
truncation of the exact sequence;

P · · · → P3
d3−→P2

d2−→P1
d1−→P0. Applying Hom( , N), we have;

0
d×0−→ HomΛ(P0, N)

d×1−→ HomΛ(P1, N)
d×2−→ HomΛ(P2, N)

d×3−→ HomΛ(P3, N)

ExtiΛ(M,N) is defined as; ExtiΛ(M,N) = kerd×i /Imd×i−1. eg Ext2Λ(M,N) = kerd×2 /Imd×1 , [5].

Example: Let Γ = with relation δγβα, αδγβ, βαδγ and γβαδ then we have
the following projectives;

P1 =


S1

S2

S3

S4

 P2 =


S2

S3

S4

S1

 P3 =


S3

S4

S1

S2

 P4 =


S4

S1

S2

S3


In our previous paper on homological properties in relation to Nakayama algebras, we showed that
Ext-groups of all pairs (M,N) of modules over Nakayama algebras of type (n, n, n) satisfies the
condition ExtnΛ(M,N) = 0 for n ≫ 0 ⇐⇒ ExtnΛ(N,M) = 0 for n ≫ 0 using the projectives
of lengths 3n + 1 and 3n + 2, [1]. The algebra Λ is a Nakayama algebra if every projective
indecomposable and every injective indecomposable Λ-module is uniserial. In other words, these
modules have a unique composition series, (see Schrer [3]). Nakayama algebras are finite dimensional
and representation-finite algebras that have a nice representation theory in the sense that the finite-
dimensional indecomposable modules are easy to describe. The main contribution of this paper is
to investigate and prove that the Ext-groups of all pairs (M,N) of modules over Nakayama algebras
of type (n, n, n) do not satisfy the condition ExtnΛ(M,N) = 0 for n ≫ 0 ⇐⇒ ExtnΛ(N,M) = 0 for
n ≫ 0.
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2 Preliminary

This section will briefly discuss Nakayama algebras and some related propositions. An R−algebra
Γ is a ring together with ring morphism ϕ : R −→ Γ whose image is in the center of Γ. Γ is therefore
an Artin algebra if it is finitely generated R−module. We define Nakayama algebras in terms of
uniserial modules. Let Γ be an Artin algebra. A Γ-module A is called uniserial module if the set
of submodules is totally ordered by inclusion. We state the following propositions to verify the
properties of Nakayama algebras. All the information presented here can be found in deeper details
from [4],[5],[2].

Proposition 2.1. The following are equivalent for Λ−moduleA.

a. A is uniserial.

b. There is only one composition series for A.

c. The radical filtration of A is a composition series for A.

d. The socle filtration of A is a composition series for A.

e. l(A) = rl(A), where l(A) is the length of A and rl(A) is the radical length of A.

Proof. a ⇒ b.

A is uniserial implies there is only one composition series for A. Let the following be two composition
series for A;

A = A0 ⊃ A1 ⊃ A2 · · · · · · ⊃ An

A = B0 ⊃ B1 ⊃ B2 · · · · · · ⊃ Bn

Since A is uniserial, A1 ⊆ B1 or B1 ⊆ A1. Without loss of generality, we assume B1 ⊆ A1, then
we have the sequence; 0 −→ A1/B1 −→ A/B1 −→ A/A1 −→ 0 such that Ai/Ai+1 = 0 or simple
for i = 0, 1, · · · , n − 1. Assume that Ai/Ai+1 ̸= 0, then A/B1 is simple, A/A1 is simple, B0/B1 is
simple and B1/B2 is also simple. A/B1 is simple because A ⊇ B1 is the start of a composition
series hence A/A1 is also simple. Let the following map be a homomorphism;

A/B1 −→φ A/A1. IfA/B1 andA/A1 are simple modules, then the map is either zero or isomorphism.
The kerφ = A1/B1. If kerφ = 0, then A1 = B1. By induction on n, A2 = B2. Hence there is only
one composition series for A.

The rl(A) = l(A) and sl(A) = l(A), and therefore, rl(A) = sl(A). Hence, b ⇒ c ⇒ d ⇒ e is trivial.

Let the radical filtration of A be; A ⊃ rA ⊃ r2A ⊃ · · · · · · ⊃ rnA = 0 with rl(A) = n

Let the composition series of A be; A = A1 ⊃ A2 ⊃ · · · · · · ⊃ An = 0 which implies l(A) = n.

Assume 0 = rnA ⊂ rn−1A ⊂ · · · · · · ⊂ rA ⊂ A is not a composition series but rl(A) = n. Consider
the sequence; 0 −→ rA −→ A −→ A/rA which implies that l(A) = l(rA) + l(A/rA).

Similarly we have the sequence; 0 −→ r2A −→ rA −→ rA/r2A −→ 0, and hence l(A) =
l(A/rA) + l(r2A). We therefore have l(A) =

∑
l(riA/ri+1A) ≥ rl(A) which is a contradiction.

Hence, the l(A) = rl(A), e ⇒ a .

Proposition 2.2. The following are equivalent for an Artin algebra Λ.

a. Λ is a sum of uniserial modules .
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b. Λ/a is a sum of uniserial modules for all ideals a of Λ.

c. Λ/r2 is a sum of uniserial modules.

Proof. a =⇒ b and b =⇒ c are trivial. If Λ is the sum of uniserial modules, then Λ/a and Λ/r2

which are factors of Λ are also a sum of uniserial modules.

c =⇒ a

Let P be an indecomposable projective Λ−module. We show that P/rnP is uniserial by induction
on n when n ≥ 2. When n = 2, there is nothing to prove. Suppose n > 2. Let the radical
filtration of P be; P ⊃ rP ⊃ r2P ⊃ · · · · · · rn−1P ⊃ rnP = 0 such that riP/ri+1P is simple for
i = 0, 1, · · · , n− 1.

When n = 3, we have r3P ⊂ r2P ⊂ rP ⊂ P . Hence by induction hypothesis, P/rn−1P is uniserial.
Considering the exact sequence 0 −→ rP −→ P −→ P/rP −→ 0, which also implies that P/rP is
uniserial, hence P/rn−1P is also uniserial.

If rn−1P = 0, then P/rnP is clearly uniserial, so we have to assume that rn−1P ̸= 0. From
proposition 1, it follows that riP/ri+1P is simple for i = 0, 1, · · · , n − 2. To show that P/rnP is
uniserial, then it is sufficient by proposition 1 to prove that rn−1P/rnP is also simple.

Let Q −→ rn−2P be a projective cover. Since rn−2P/rn−1P is simple, Q must be indecomposable
and so Q/r2Q is uniserial. But we have an epimorphism rQ/r2Q −→ rn−1P/rnP which shows that
rn−1P/rnP is simple.

Proposition 2.3. Let φ be a D Tr-orbit of indΛ. Suppose there is a projective module P in φ.
Then we have the following;

1. φ of non-zero objects in {P, (DTr)
−1P, · · · , (DTr)

−iP, · · · }i∈N .

2. φ is finite if and only if (DTr)
−nP = (TrD)n is injective for some n in N . Moreover, if (TrD)nP

is injective, then φ = {P, (DTr)
−1P, · · · , (DTr)

−nP}.

Proof. The statement, DTrP = 0 if and only if P is projective is trivial. Since P is projective
module in φ, (DTr)iP = 0 for all i > 0. Hence the claim in 2(a). We claim that if (DTr)−iP ≃
(TDr)−(i+j)P ̸= 0 with j > 0 we have (DTr)i(DTr)−(i+j)P ≃ (DTr)(DTr)−iP which implies
that P ≃ (DTr)jP = (TrD)jP which is not possible since j > 0. φ can therefore be finite if
(DTr)−(n+1)P = 0 for some n ≥ 0.

Since (DTr)−nP = (TrD)nP, then P is injective in φ. We know therefore that if (DTr)−nP is
injective, then φ = {P, (DTr)−1P, · · · , (DTr)−nP}.

Proposition 2.4. Suppose φ contains as injective module I. Then we have the following;

i. φ consists of the nonzero modules in {I,DTrI, · · · , (DTr)iI, · · · }i∈N .

ii. φ is finite if and only if (DTr)nI is projective for some n ∈ N. Moreover, if (DTr)n is projective,
then φ = {I, (DTr)I, · · · , (DTr)nI}.

Proof. We know that TrDP = 0 if and only if P is injective. So since I is an injective module in
φ, (TrD)iI = 0 for all i > 0. Hence, the claim in (b).

We claim that (DTr)
iI ≃ (DTr)(i+j)I ̸= 0 with j > 0. By this claim, we have (DTr)−i(DTr)iI ≃

(DT r)−i(DTr)(i+j)I which implies that I ≃ (DTr)jI for I injective. If (DTr)nI is projective,
then we claim φ = {I, (DTr)I, · · · , (DTr)nI}. φ can therefore be finite if (DTr)n+1I = 0 for some
n ≥ 0.
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3 Main Work

In this section we discuss examples of the Nakayam algebra with projectives of length 3n and 4n
which do not satisfy the condition: ExtnΛ(M,N) = 0 for n ≫ 0 ⇐⇒ ExtnΛ(N,M) = 0 for n ≫ 0.

We discuss the Ext-groups of Nakayama algebra with projectives of length 3n. Let Γ =
with relations γβα · · ·βα, αγβ · · · γβ and βαγ · · ·αγβ, where the length of each relation is 3n. Let
Λ = kΓ/⟨γβα · · ·βα, αγβ · · · γβ, βαγ · · ·αγβ⟩. The projectives of the above path algebra are as
follows;

P1 = (S1, S2, · · · , S3)
t, P2 = (S2, S3, · · · , S1)

t, P3 = (S3, S1, · · · , S2)
t.

The above projectives P1, P2 and P3 have length of 3n each. The minimal projective resolution of
the module S1 is given as;

· · · → Q4
d4−→ Q3

d3−→ Q2
d2−→ Q1

d1−→ Q0
d0−→ S1 → 0

where Q2i = Q2i+2 = P1 and Q2i+1 = Q2i+3 = P2 for i ≥ 0 and d2i+1 is a multiplication by α and
d2i+2 is a multiplication by γβ(αγβ)n−1. From the above resolution we have

· · · → Λe1
d3−→ Λe2

d2−→ Λe1
d1−→ S1

d0−→ 0.

The pdS1 = ∞ since the resolution is periodic, where pd is the projective dimension. The period is
2. The truncation of the above resolution is given as;

PS1 · · ·Λe1
d4−→ Λe2

d3−→ Λe1
d2−→ Λe2

d1−→ Λe1
d0−→ 0.

Applying HomΛ( ,M) where M is any module, we have

0
d×0−→ HomΛ(Λe1,M)

d×1−→ HomΛ(Λe2,M)
d×2−→ HomΛ(Λe1,M)

d×3−→ HomΛ(Λe2,M)
d×4−→ HomΛ(Λe1,M)

where HomΛ(Λe1,M) ≃ e1M and HomΛ(Λe2,M) ≃ e2M . By definition, we have ExtiΛ(S1,M) =
ker(d×i+1)/ℑ(d

×
i ). We calculate the Ext-groups.

Ext1Λ(S1,M) = ker

(
e2M

γβ(αγβ)n−1

−−−−−−−−−→ e1M

)
/ℑ (e1M

α−→ e2M)

=
{
e2m|γβ(αγβ)n−1e2m = 0

}
/α.

Let M = S2, we have

Ext1Λ(S1, S2) =
{
e2S2|γβ(αγβ)n−1e2S2 = 0

}
/αe1S1 = e2Ṡ2/αe1S2 = k/0 = k.

This implies that for ExtiΛ(S1, S2) not all values are zero for i ≫ 0. The minimal projective
resolution of the module S2 is as follows;

· · · → Q4
d4−→ Q3

d3−→ Q2
d2−→ Q1

d1−→ Q0
d0−→ S2 → 0
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where Q2i = Q2i+2 = P2 and Q2i+1 = Q2i+3 = P3 for i ≥ 0 and d2i+1 is a multiplication by β and
d2i+2 is a multiplication by αγ(βαγ)n−1. The projectives P2 and P3 all have length 3n each. From
the resolution we have the following;

· · · → Λe2
d4−→ Λe3

d3−→ Λe2
d2−→ Λe3

d1−→ Λe2
d0−→ S2 → 0.

The pdS2 = ∞ since the resolution is periodic. The period is 2. The truncation of the resolution is
given below,

PS2 · · ·Λe2
d4−→ Λe3

d3−→ Λe2
d2−→ Λe3

d1−→ Λe2
d0−→ 0.

Applying HomΛ( ,M) where M is any given module, we have

0
d×0−→ HomΛ(Λe2,M)

d×1−→ HomΛ(Λe3,M)
d×2−→ HomΛ(Λe2,M)

d×3−→ HomΛ(Λe3,M)
d×4−→ HomΛ(Λe2,M) → 0

where HomΛ(Λe2,M) ≃ e2M and HomΛ(Λe3,M) ≃ e3M .

We calculate the Ext-groups.

Ext1Λ(S2,M) = ker

(
e3M

αγ(βαγ)n−1

−−−−−−−−−→ e2M

)
/ℑ

(
e2M

β
−→ e3M

)
=

{
e3m|αγ(βαγ)n−1e3m = 0

}
/β.

Let M = S1, then we have

Ext1Λ(S2, S1) =
{
e3S1|αγ(βαγ)n−1e3S1 = 0

}
/βe2S1 = e3Ṡ1/βe2S1 = 0.

Ext2Λ(S2, S1) = ker
(
e2S1

β
−→ e3S1

)
/ℑ

(
e3S1

αγ(βαγ)n−1

−−−−−−−−−→ e2S1

)
= {e2S1|βe2S1 = 0}/αγ(βαγ)n−1 = e2S1/αγ(βαγ)

n−1e3S1 = 0.

The above Ext-groups imply that for ExtiΛ(S2, S1), all values are zero for i ≫ 0.

We conclude that the Ext-groups of the Nakayama algebra with projectives of length 3n do not
satisfy the condition ExtnΛ(M,N) = 0 for n ≫ 0 ⇐⇒ ExtnΛ(N,M) = 0 for n ≫ 0

Finally, we discuss an example of the Nakayama algebra with projectives of length 4n. Let Γ =

with relations δγβα · · · δγβα, αδγβ · · ·αδγβ, βαδγ · · ·βαδγ and γβαδ · · · γβαδ, where the length of
each relation is 4n, n is a positive integer. Let Λ = kΓ/⟨δγβα · · · δγβα, αδγβ · · ·αδγβ, βαδγ · · ·βαδγ, γβαδ · · · γβαδ⟩.
Let the projectives of the above path be;

P1 = (S1, S2, · · · , S3, S4)
t, P2 = (S2, S3, · · · , S4, S1)

t,

P3 = (S3, S4, · · · , S1, S2)
t, P4 = (S4, S1, · · · , S2, S3)

t.
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The above projectives P1, P2, P3 and P4 have length 4n each. The minimal projective resolution of
the module S1 is given as;

· · · → Q4
d4−→ Q3

d3−→ Q2
d2−→ Q1

d1−→ Q0
d0−→ S1 → 0

where Q2i = Q2i+2 = P1 and Q2i+1 = Q2i+3 = P2 for i ≥ 0 and d2i+1 is a multiplication by α and
d2i+2 is a multiplication by δγβ(αδγβ)n−1. From the above resolution we have;

· · · → Λe1
d4−→ Λe2

d3−→ Λe1
d2−→ Λe2

d1−→ Λe1
d0−→ S1 → 0.

The pdS1 = ∞ since the resolution is periodic. The period is 2. The truncation of the resolution is
given as;

PS1 · · · → Λe1
d4−→ Λe2

d3−→ Λe1
d2−→ Λe2

d1−→ Λe1
d0−→ 0.

Applying HomΛ( ,M), where M is any given module, we have

0
d×0−→ HomΛ(Λe1,M)

d×1−→ HomΛ(Λe2,M)
d×2−→ HomΛ(Λe1,M)

d×3−→ HomΛ(Λe2,M)
d×4−→ HomΛ(Λe1,M)

where HomΛ(Λe1,M) ≃ e1M and HomΛ(Λe2,M) ≃ e2M .

We calculate the Ext-groups.

Ext1Λ(S1,M) = ker

(
e2M

δγβ(αδγβ)n−1

−−−−−−−−−−−→ e1M

)
/ℑ (e1M

α−→ e2M)

=
{
e2m|δγβ(αδγβ)n−1e2m = 0

}
/αe1M.

Let M = S2, then we have

Ext1Λ(S1, S2) =
{
e2S2|δγβ(αδγβ)n−1e2S2 = 0

}
/αe1S2 = e2Ṡ2/αe1S2 = k.

This implies that for ExtiΛ(S1, S2), not all values are zero for i ≫ 0. The minimal projective
resolution of the module S2 is as follows;

· · · → Q4
d4−→ Q3

d3−→ Q2
d2−→ Q1

d1−→ Q0
d0−→ S2 → 0

where Q2i = Q2i+2 = P2 and Q2i+1 = Q2i+3 = P3 and d2i+1 is a multiplication by β and d2i+2 is a
multiplication by αδγ(βαδγ)n−1. From the resolution, we have

· · · → Λe2
d4−→ Λe3

d3−→ Λe2
d2−→ Λe1

d1−→ Λe2
d0−→ S2 → 0.

The pdS2 = ∞ since the resolution is periodic and the period is 2. The truncation of the resolution
is given below;

PS2 · · ·Λe2
d4−→ Λe3

d3−→ Λe2
d2−→ Λe3

d1−→ Λe2
d0−→ 0.

Applying HomΛ( ,M), we have

0
d×0−→ HomΛ(Λe2,M)

d×1−→ HomΛ(Λe3,M)
d×2−→ HomΛ(Λe2,M)

d×3−→ HomΛ(Λe3,M)
d×4−→ HomΛ(Λe2,M)

where HomΛ(Λe2,M) ≃ e2M and HomΛ(Λe3,M) ≃ e3M .

We calculate the Ext-groups.

Ext1Λ(S2,M) = ker

(
e3M

αδγ(βαδγ)n−1

−−−−−−−−−−−→ e2M

)
/ℑ

(
e2M

β
−→ e3M

)
=

{
e3m|αδγ(βαδγ)n−1e3m = 0

}
.
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Let M = S1, we have

Ext1Λ(S2, S1) =
{
e3S1|αδγ(βαδγ)n−1e3S1 = 0

}
/βe2S1 = e3S1/βe2S1 = 0.

Ext2Λ(S2, S1) = ker
(
e2M

β
−→ e3M

)
/ℑ

(
e3M

αδγ(βαδγ)n−1

−−−−−−−−−−−→ e2M

)
= {e2S1|βe2S1 = 0} /αδγ(βαδγ) = e2S1/αδγ(βαδγ)

n−1e3S1 = 0.

The above Ext-groups show that for ExtiΛ(S2, S1), all values are zero for i ≫ 0. We therefore
conclude that the condition ExtnΛ(M,N) = 0 for n ≫ 0 ⇐⇒ ExtnΛ(N,M) = 0 for n ≫ 0 does not
hold for Nakayama algebra with projectives of length 4n.

4 Conclusion

We conclude that the condition ExtnΛ(M,N) = 0 for n ≫ 0 ⇐⇒ ExtnΛ(N,M) = 0 for n ≫ 0 does
not hold for Ext-groups of Nakayama algebra with projectives of lengths 3n and 4n.
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