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Abstract: The problem of the terminal impact angle control guidance law, considering the target
observability for passive guidance with bearing-only measurement, is investigated in this paper.
Modified line-of-sight (LOS) angle error dynamics and their closed-loop analytical solution are
developed to enhance the target observability, and then their characteristics are studied, which makes
the LOS angular rate oscillate in the early stage. The terminal impact angle control guidance law with
the global sliding mode is designed to eliminate the approaching stage of sliding mode control, which
makes the system robust throughout the entire process of control. Finally, numerical simulations are
presented to demonstrate the performance of the proposed guidance law under various conditions,
which achieves the desired results.

Keywords: terminal impact angle control; target observability; line-of-sight angle error dynamics;
global sliding mode

1. Introduction

Without the consideration of target maneuvers and the time delay between guidance
and control systems, the well-known proportional navigation guidance (PNG) law, which
can be regarded as an optimal guidance law when the navigation ratio is set as 3, has been
used in various engineering practices successfully [1]. In some applications, in addition
to hitting the target, it may also be desirable to shape the missile trajectory near impact.
For example, it is expected to hit the weak part of the target to enhance the missile’s attack
effect, such as the anti-tank missile attacking the target with a large terminal impact angle to
complete the high-efficiency damage [2,3]. Reference [4] introduced the Cauchy–Schwarz
inequality to analyze the guidance problem and proposed an impact angle constrained
optimal guidance law called the trajectory shaping guidance (TSG) law to achieve a better
performance. Reference [5] proposed a new homing guidance law that can attack the target
with a desired impact angle. Essentially, it is a variation of the PNG law, which includes
a supplementary time-varying bias. Reference [6] studied the bias guidance law without
the remaining flight time and added an angle constraint bias term based on the PNG law
to control the terminal impact angle by changing the guidance command. Reference [7]
proposed an optimal-control-based guidance law considering the field-of-view constraint
for the practical implementation of impact angle control guidance. Reference [8] designed
an optimal guidance law with a constraint on the impact angle and acceleration limit.

Owing to the time-varying aerodynamical coefficients, target maneuvers and external
disturbances, the dynamical characteristics of missile guidance and control system are
full of nonlinearities and uncertainties. To handle this problem, in the literature [9–12],
many works design nonlinear guidance laws based on nonlinear control theories that hold
the properties of a high precision, disturbance resistance and strong robustness. Among
nonlinear control theories, the sliding mode control (SMC) theory has been widely used
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in guidance law design works. Reference [13] used the adaptive sliding mode method
to design the guidance law, and the convergence speed of the sliding surface increases
with the decrease in the relative distance between the missile and target. Reference [14]
proposed a linear sliding mode guidance law that satisfied the stationary target and met
the terminal impact angle constraint. Reference [15] designed the guidance law by the
SMC method, which satisfied the terminal impact angle constraint and could improve the
observability of a stationary or slow moving target. Although the above guidance laws can
achieve an accurate interception, the target observability, one of the important factors for
the passive seeker that can only measure the relative bearing or line-of-sight (LOS) angle, is
not considered and discussed.

The target observability first proposed by Lingren and Gong [16] is determined by
the relative target-missile geometry and motion relationships [17–19]. Specifically, for a
passive bearing-only missile, the missile could maneuver under the guidance command
to prevent the system state from being unobservable. It is known that the guidance law
design, enhancing the target observability, can yield significant benefits for interceptors
equipped with passive seekers [20]. A weaving guidance law was proposed in [21] for
target observability improvement by introducing new virtual system states to be controlled.
According to the principle of observability, because of its guidance principle, the target ob-
servability gradually decreases for passive seekers as the target approaches. Reference [22]
proposed a biased PNG law to enhance the target observability for passive homing missile
systems against a nonmaneuvering target. The target observability of the biased PNG law
is related to the selection of the bias term. In order to adapt to the ballistic trajectory in
order to control the terminal impact angle under the bias term, the biased PNG law has
a certain target observability. However, the biased PNG law will become the PNG law
when the LOS angular rate of the missile gradually converges to zero, and it will gradually
decrease the target observability. Reference [23] developed a new optimal guidance law by
maximizing the observability metric while minimizing the terminal miss distance, as well
as the energy consumption. By intentionally utilizing the low damping ratio during the
initial flight period, target observability improvement guidance for impact angle control
can be found in [24]. Reference [25] suggested a linear quadratic guidance law that pro-
vides an oscillating trajectory to enhance the target observability, but it is formulated in a
complicated guidance command and, thus, it is difficult to analyze its physical properties
theoretically. Reference [26] proposed a new optimal guidance law for the passive guidance
problem based on the relative bearing or LOS angle by the passive seeker, which considered
the terminal miss distance, control energy and target observability, and took the integral of
the LOS angular rate as the observability index of the target.

Considering the target observability, this paper proposes a new type of terminal impact
angle control guidance law for the passive guidance problem. First, the observability
criterion of the stationary target is given. Modified LOS angle error dynamics and their
closed-loop analytical solution are studied to make the LOS oscillate to enhance the target
observability. Next, the terminal impact angle control guidance law with the global sliding
mode, considering the target observability, is designed. When the design parameter
k2 > 2 is obtained by analyzing the closed-loop analytical solution of the LOS angle error
dynamics, the acceleration command of the guidance law can converge to zero at the
guidance terminal.

The rest of this paper is organized as follows. First, missile–target relative kinematics
are given in Section 2. Section 3 interprets the target observability and error dynamics, and
the new type of guidance law for observability improvement is designed in Section 4. Then,
some numerical simulation results are illustrated in Section 5. Finally, the conclusions of
the whole paper are offered in Section 6.

2. Missile–Target Relative Kinematics

This paper considers a two-dimensional planar homing engagement geometry that is
shown in Figure 1. As presented in the geometry, the inertial reference frame is denoted
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as (X, Y). Variables with subscripts of M and T denote those of the missile and target,
respectively. λ and r represent the LOS angle and the missile–target relative range, re-
spectively. θ represents the flight path angle of the missile defined in the inertial reference
frame. The velocity and lateral acceleration of the missile are represented by V and a,
respectively. Defining the target angle of view is the angle between the longitudinal axis of
the missile and the line of sight of the missile. When the angle of attack is negligible, it can
be expressed by the error angle σ of the velocity direction of the missile. θ f represents the
angle between the x-axis and the velocity direction of the missile when the missile hits the
target. For simplicity, assume that the missile is flying with a constant velocity and that the
target is fixed.

M

r

T

Y

X
O

Ma
MV



 

f

Figure 1. Planar engagement geometry.

The relative kinematics of the missile to target can be formulated as

ṙ = −VM cos σ (1)

rλ̇ = −VM sin σ (2)

σ = θ − λ (3)

The complementary equation defining the relationship between the flight path angle
and normal acceleration is

θ̇ =
aM
VM

(4)

For a stationary target, θ f = λ f . Therefore, the control of the terminal impact angle
can be equivalently converted into the control of the terminal LOS angle. The control goal
of the terminal impact angle constraint guidance law is to achieve λ̇→ 0, λ→ λd in a finite
time, where λd is the terminal LOS angle.

Then, differentiating Equation (2) with respect to time yields

rλ̈ = −2ṙλ̇− aM cos σ (5)

Defining e = λ− λd as the LOS angle error, we obtain

ė = λ̇ (6)

denoting the uncertainty of the guidance system, variable x1 and variable x2 as d, e and ė,
respectively. Among them, the uncertainty of the guidance system includes the model’s
model uncertainty and external disturbances. The LOS error dynamics equation, consider-
ing the uncertainty of the guidance system, can be expressed as
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ẋ1 = x2 (7)

ẋ2 =
−2ṙλ̇− aM cos σ + d

r
(8)

Lemma 1. Suppose that, in the region U ⊂ Rn, given a positive definite continuous function
V(x), if there are real numbers satisfying a > 0 and b ∈ (0, 1) such that V̇(x) + aVb(x) ≤ 0,
then there exists a certain region U0 ⊂ Rn such that V(x) converges to the origin in a finite time,
and the finite convergence time is

tr ≤
V1−b(x0)

a(1− b)
(9)

where V(x0) is the initial value of V(x).

Lemma 2. Suppose V(x) is a positive definite continuous function on U ⊂ Rn. If there are real
numbers satisfying a > 0, b ∈ (0, 1) and c > 0 such that V̇(x) + cV(x) + aVb(x) ≤ 0, then
there exists a certain region U0 ⊂ Rn such that V(x) converges to the origin in a finite time, and
the finite convergence time is

tr ≤
1

c(1− b)
ln

cV1−b(x0) + a
a

(10)

where V(x0) is the initial value of V(x).

3. Target Observability and Error Dynamics

The observability of the fixed target can be determined by the Gammian matrix [27].
When t > t0, the Gammian matrix is represented as

D(t) =
∫ t

t0

MT(τ)M(τ)dτ (11)

where M(t) =
[
− sin λ(t) cos λ(t)

]
. The target is observable when the matrix D(t) is

positive. In order to judge the observability of the target more easily and intuitively, the
matrix A(t) is defined as follows:

A(t) =
[

M(t)
Ṁ(t)

]
=

[
− sin λ(t) cos λ(t)
−λ̇(t) cos λ(t) −λ̇(t) sin λ(t)

]
(12)

When the matrix A(t) is not full rank, the target is unobservable. To determine whether
the matrix A(t) is full rank, its determinant is

det(A(t)) = λ̇(t) (13)

Therefore, the condition where the fixed target is observable is that the LOS angle rate
is not zero. However, from the viewpoint of reducing the amount of the terminal miss
distance, it is desirable for the terminal λ̇(t) = 0. In order to satisfy both requirements at
the same time, the LOS angle is oscillated near the desired terminal impact angle in the
initial stage of guidance to ensure the observability of the target, and then the LOS angle
rate is gradually converged to zero as the distance of the projectile decreases. Therefore,
maximizing the value of

∫
|λ̇| is a practical way to increase the target observability. To

realize this objective, this paper proposes the error dynamics equation by introducing a
linear error term as

ë +
k1 + k2

tgo
ė +

(
(k1 + k2)k2

t2
go

+ k3

)
e = 0 (14)



Aerospace 2022, 9, 193 5 of 18

where tgo is the time to go until the intercept and k1, k2 and k3 are design parameters.
To interpret the physical meaning of the introduced error term, we rewrite (14) as an

instantaneous linear time-invariant system:

ë + 2ζωė + ω2e = 0 (15)

where

ζ =
k1 + k2

2
√
(k1 + 1)k2 + k3t2

go

, ω =

√
(k1 + 1)k2

t2
go

+ k3 (16)

The boundaries of ζ and ω are obtained from (16) as

k1 + k2

2
√
(k1 + 1)k2 + k3t2

f

≤ ζ ≤ k1 + k2

2
√
(k1 + 1)k2√

(k1 + 1)k2

t2
f

+ k3 ≤ ω ≤ ∞

(17)

where t f is the total flight time.
Analogous to the mass-spring-damper system, it follows from (16) that the initial

natural oscillatory frequency ω increases and the initial damping ratio ζ decreases with
the increase in k3. During the initial flight period, the large tgo enforces the term k3t2

go to
play a dominant role that affects the value of the damping ratio. During the entire homing
engagement, tgo gradually converges to zero and, consequently, the term (k1 + 1)k2 will
dominate over k3t2

go, which means that the modified error dynamics gradually converges
to the original dynamics. Therefore, the damping ratio gradually increases from a small
value to a large one as the interceptor approaches the target to generate the oscillatory LOS
motion by choosing the parameter k3 properly.

To provide better insights of the introduced biased term and analyze the convergence
of the LOS angle error, we seek to find the closed-form solution of (14) by using the
Frobenius method. Let β , k1 + 1− k2 > 0, Θ = {x|x = 2k + 1, k ∈ Z} as the set of all
odd numbers, Ω = {x|x = 2k, k ∈ Z} as the set of all even numbers; then, after some
algebraic manipulations (please refer to Appendix A for the detailed derivation), the
general closed-form solution of (14) can be readily obtained as

(a) If β is not an integer, then

e
(
tgo
)
= C1

∞

∑
i=0

ait
i+k1+1
go + C2

∞

∑
i=0

bit
i+k2
go (18)

where the coefficients ai and bi are determined by

ai =

 (−k3)
i/2

f (0,i) f (β,i) , i ∈ Ω&i ≥ 0

0, i ∈ Θ&i > 0

bi =

 (−k3)
i/2

f (0,i) f (−β,i) , i ∈ Ω&i ≥ 0

0, i ∈ Θ&i > 0

(19)

(b) If β is an integer, then
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e
(
tgo
)
=



C1 ∑∞
i=0 ait

i+k1+1
go + C2

[
ln tgo ∑∞

i=0 ait
i+k1+1
go

+β ∑−2
i=−β,i∈Ω

g(β,−2−i)g(0,−2−i)
(−k3)

−i/2 ti+k1+1
go

−∑∞
i=0,i∈Ω(ai+2 ∑i/2+1

m=1
2(m+2)+β

(m+2)(m+β+2)

)
ti+k1+3
go

]
, β ∈ Ω

C1 ∑∞
i=0 ait

i+k1+1
go + C2 ∑∞

i=0 bit
i+k2
go , β ∈ Θ

(20)

where the functions f (x, y) and g(x, y) are defined in (A10) and (A21), respectively, and C1,
C2 are two integration constants determined by the initial conditions.

Observing (18) and (20), it is seen that the closed-form solutions have two different
classes of LOS angle error trajectories depending on the difference in the root of the solution:
one is the time-to-go polynomial error dynamics, and the other one is the error dynamics,
which combine time-to-go polynomial with logarithmic functions. From these results, we
have the following proposition to quantify the convergence of the LOS angle error and its
rate.

Proposition 1. The LOS angle error converges to zero at the time impact along the error dynamics
in Equation (14) if k1 > 0, and the LOS angle rate error converges to zero at the time impact along
the error dynamics in (14) if k2 > 1.

Proof. Please refer to Appendix B for details.

Since e converges to zero when k2 > 0, the effect of the induced term k3e gradually
vanishes, and thus the error dynamics in (14) converge to the original one when the
interceptor approaches the targets. Proposition 1 also implies that it would be wise to
obey the condition k2 > 1 in the homing phase so as to make the terminal LOS angle rate
converge to zero, thus leading to a miss distance reduction.

4. Guidance Law Design

For surface/air-to-surface missile against non-maneuvering targets, it follows from (6);
then, (14) reduces to

λ̈ +
a

tgo
λ̇ +

(
b

t2
go

+ k3

)
e = 0 (21)

To force the system trajectory onto (21), we propose the following global sliding
surface, which includes the LOS angle error and the LOS angle rate as

s = λ̇ + z (22)

where

z =
∫ [ a

tgo
λ̇ +

(
b

t2
go

+ k3

)
e

]
dt, z(0) = −λ̇ (23)

where a = k1 + k2 and b = (k1 + 1)k2 are design parameters.
Differentiating (22) with respect to time yields

ṡ = −2ṙλ̇

r
− aM cos σ

r
+

a
tgo

λ̇ +

(
b

t2
go

+ k3

)
e (24)

The terminal angle control guidance law considering the target observability consists
of an equivalent control term and an additional control term, which can be expressed as
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aM = aeq
M + aadd

M (25)

aeq
M =

1
cos σ

[
−2ṙλ̇ +

a
tgo

λ̇r +

(
b

t2
go

+ k3

)
er

]
(26)

aadd
M =

rKsgn(s)|a|α

cos σ
(27)

where K > 0, 0 < α < 1 are design parameters of the guidance law. The term aeq
M is known

as the equivalent control part, which is derived by imposing ṡ = 0, while the add-on term
aadd

M is designed for discontinuous switching, which is used to guarantee the convergence
of the sliding dynamics and the robustness against unexpected disturbances.

Considering the system (21) and the sliding surface (22), the guidance law (25) is
ensured, under the condition of enhanced target observability, for a limited time. To analyze
the convergence of the LOS tracking angle error and the LOS angle rate of the missile in
finite time under the guidance law (25), consider V = 0.5s2 as a Lyapunov function
candidate. Taking the time derivative of the Lyapunov function and substituting (24) into
it yields

V̇ = s

(
−2ṙλ̇

r
− aM cos σ

r
+

a
tgo

λ̇ +

(
b

t2
go

+ k3

)
e

)
= −K|s|α+1

≤ 0

(28)

which satisfies the Lyapunov stability criteria.
Due to the fact that s(0) = 0, one can conclude that the global sliding manifold is

achieved, i.e., s = 0 holds during the entire homing engagement. This means that the
observability improvement during the initial flight stage is ensured and the LOS motion
can be easily predicted by using the obtained closed-form solution. This property is
different from previous observability improvement guidance laws [28,29], where only ad
hoc maneuvers perpendicular to the LOS are generated and the convergence pattern is not
easy to predict. Additionally, since there is no requirement of extra energy in the reaching
phase, one can safely predict that the proposed guidance law requires less of a control effort
than other sliding mode control guidance laws.

Proposition 2. The guidance command of the proposed guidance law converges to zero at the time
of impact, i.e., lim

t→t f
aM = 0, if k2 = 0.

Proof. Please refer to Appendix C for details.

Proposition 2 indicates that the limiting value of k2 with the bounded acceleration
command is 2. The lower gain will result in unbounded acceleration profiles, which will
inevitably lead to a nonzero miss distance. A higher gain prevents the divergence of the
guidance command near the interception of the target and, consequently, it reduces the
terminal miss distance. Note that a stabilized acceleration for surface/air-to-surface tactical
missiles is a crucial property to provide operational margins to cope with unexpected
disturbances, especially near the interception.

5. Numerical Simulation

In this section, the performance of the proposed guidance law is investigated through
numerical simulations under various conditions. To facilitate analysis, a point-mass missile
model with a lag-free autopilot dynamics is used.
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To verify the performance of the terminal angle control guidance law considering the
target observability under different conditions, the parameters of the sliding surface and
the guidance law changes. Table 1 provides the other related initial homing conditions that
are used for simulations.

Table 1. Initial conditions for homing engagement.

Parameters Values

Initial coordinates of the missile (143.3 m, 4596.3 m)
Coordinates of the target (4000 m, 0 m)

Missile velocity 300 m/s
Missile initial velocity angle −30◦

Maximum available overload 10 g

First, the feasibility of different target terminal impact angle constraints is studied.
The parameters of the sliding surface and the guidance law take k1 = 3, k2 = 2.5, α = 0.8,
K = 5. The expected terminal impact angles are −40◦, −50◦ and −60◦, respectively. The
simulation results are shown in Figure 2. In Figure 2, it can be seen that the terminal angle
control guidance law, considering the target observability, can achieve different expected
terminal attack angles. In order to enhance the observability of the target, the initial stage
of the guidance needs a large acceleration command to bend the trajectory, which causes
the LOS angle rate to oscillate. The LOS angle rate and acceleration command at the end
of the guidance converge to zero, which is beneficial to the improvement of the guidance
performance and robustness of the guidance law.

(a) (b)

(c) (d)

Figure 2. Simulation results under different expected terminal impact angles: (a) trajectory profiles;
(b) flight path angle; (c) LOS angular rate; (d) acceleration command.
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In order to further verify the validity of the proposed guidance law, the simulation
compares the performance among the terminal angle control guidance law considering
the target observability, trajectory shaping guidance (TSG) law [4] and the power function
weighting optimal guidance (PFWOG) law [30]. The PFWOG law is obtained as the
solution of a linear quadratic optimal control problem, with the energy cost weighted by a
power of the remaining flight time. It produces different trajectories and command profiles
depending on the choice of n. The acceleration command of the TSG and PFWOG law are
determined in an expression as follows:

aM =

4VMλ̇ + 2VM(λ−θd)
tgo

− (n+2)(n+3)y
t2
go

− 2(n+2)v
tgo

(29)

where the parameter n in the PFWOG law takes 1, the other parameters of the three
guidance laws are the same as Table 1 and the desired terminal impact angle is −60◦.

The comparative simulation results of the three guidance laws are depicted in Figure 3.
As can be seen from those figures, all guidance laws can achieve the desired terminal
impact angle, and the terminal’s acceleration commands are all zero. Compared with the
TSG and PFWOG law, the proposed guidance law can generate a larger LOS angular rate in
the initial stage. Figure 4 shows that the target observability under the proposed guidance
law is higher than that of the TSG and PFWOG law, but the disadvantage is that it needs a
higher acceleration in the initial stage and more control energy.

(a) (b)

(c) (d)

Figure 3. Comparative simulation results under different guidance laws: (a) trajectory profiles;
(b) flight path angle; (c) LOS angular rate; (d) acceleration command.
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Figure 4. Observability index under different guidance laws.

At the same time, to validate the observability enhancement property of the proposed
guidance law, UKF-embedded closed-loop simulations are performed to demonstrate the
advantage of observability improvement. The state variables of this model are the relative

position and the velocity in the inertial reference frame. Let xk =
[

xk, yk, vx,k, vy,k

]T
and

aMx ,k =
[

aMx ,k, aMy ,k

]
. The missile acceleration (i.e., aMx ,k and aMy ,k) is measured from

a body-fixed accelerometer, which contains noise. The state transition of this model is
determined as follows:

xk = Φxk−1 + GaM,k−1 + Gwk−1 (30)

with

Φ ,
[

I2×2 Ts I2×2
02×2 I2×2

]
, G ,

[
T2

s /2I2×2
I2×2

]
(31)

where Ts = 0.1 s represents the sampling time and wk denotes the system noise, which is
considered as Gaussian white noise with a zero mean and variance as Qk = diag

(
σ2

a , σ2
a
)

and
σa = 1 m/s2. To initialize EKF, the state estimates and covariance for the guidance filter are used:
x̂(0) = [143.3 m, 4596.3 m, 259.8 m/s, 150.0 m/s]T, P(0) = diag

([
10002, 10002, 2002, 2002]). In

this paper, it is assumed that the measured LOS angle is accompanied by a Gaussian white
noise with a zero mean and variance as σm = 0.4◦.

The estimation performance under the proposed guidance law, TSG and PFWOG
law of 100 Monte-Carlo simulations are shown in Table 2. It can be clearly seen that the
proposed guidance law can achieve a lower miss distance than the TSG and PFWOG law,
which benefits from the improvement of target observability.

Table 2. Comparison of miss distance statistics under different laws.

Guidance Law Average Variance

TSG 174.256 m 189.215 m2

PFWOG 163.194 m 178.531 m2

Proposed 1.544 m 12.467 m2

Finally, the performance of the terminal angle control guidance law considering the
target observability under different k2 and k3 values is studied. The desired terminal
impact angle is −60◦. The simulation results are shown in Figure 5. The simulation results
show that different k2 and k3 values cause different effects of ballistic oscillation. The
design parameters of k1 = 1.5, k3 = 0.1 remain unchanged, and k2 changes from 1, 2, 3
in Figure 5a,b. It can be found that, by comparing the simulation results, when k2 < 2,
the acceleration command of the guidance law cannot converge to zero at the guidance
terminal. In Figure 5c,d, the design parameters of k1 = 1.5, k2 = 3.0 remain unchanged
and k3 changes from 0.05, 0.10, 0.15, where the k3 value becomes increasingly larger. It is



Aerospace 2022, 9, 193 11 of 18

obvious that the larger the LOS angular rate, the higher the missile acceleration, the more
energy that is required and the higher the observability by comparing the simulation result.

(a) (b)

(c) (d)

Figure 5. Comparative simulation results under different parameters: (a) LOS angular rate with
different k2; (b) acceleration command with different k2; (c) LOS angular rate with different k3;
(d) acceleration command with different k3.

6. Conclusions

In this paper, the terminal impact angle control guidance problem of the stationary
target, considering the target observability, is studied. Based on the sliding mode nonlinear
control theory, which is robust to system uncertainty and external disturbance, the target
observability is given under different constraints. Based on the criterion, new LOS angle
error dynamics are proposed and their closed-loop analytical solution is solved. The
terminal angle control guidance law with the global sliding model is designed by making
the LOS oscillate in order to enhance the target observability. By analyzing the closed-
loop analytical solution of the LOS angle error dynamics to obtain the design parameter
k2 > 2, the acceleration command of the guidance law can converge to zero at the guidance
terminal. The method outlined is also suitable for a three-dimensional scenario, which can
be analyzed in more detail in future research.
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Appendix A

The closed-form of the differential Equation (14), which can be analytically solved by
the Frobenius method, and the obtained solutions, are in the form of a power series. To
begin with, let the prime ′ denote the derivative with respect to tgo. Then, Equation (14)
can be reformulated as

t2
goe′′ + tgo(k1 + k2)e′ +

[
(k1 + 1)k2 + k3t2

go

]
e = 0 (A1)

Based on the concept of the Frobenius method, we seek a power series solution of the
form

e
(
tgo
)
=

∞

∑
i=0

aiti+r
go , a0 6= 0 (A2)

where r may be any arbitrary number. Taking the first and second-order derivative of (A2)
with respect to tgo and substituting them into (A1) gives

∞

∑
i=0

[(i + r)(i + r− 1)− (k1 + k2)(i + r) + (k1 + 1)k2]aiti+r
go + k3

∞

∑
i=0

aiti+r+2
go = 0 (A3)

The indicial polynomial, which is the coefficient of the lowest power term tr
go, is

[r(r− 1)− r(k1 + k2) + (k1 + 1)k2]a0 = 0 (A4)

It is easy to obtain the solution of (A4) as

r1 = k1 + 1, r2 = k2 (A5)

Since r1 > r2, we seek the first solution using r1. Substituting r = k1 + 1 into (A3) and
collecting the same power series results in

∞

∑
i=0

i(i + β)ait
i+k1+1
go + k3

∞

∑
i=0

ait
i+k1+3
go = 0 (A6)

Shifting the starting index from −2 gives

−1

∑
i=−2

(i + 2)(i + β + 2)ai+2ti+k1+3
go +

∞

∑
i=0

[(i + 2)(i + β + 2)ai+2 + k3ai]t
i+k1+3
go = 0 (A7)

For i = −1, the recurrence relation equation is (β + 1)a1 = 0, which gives a natural
selection of a1 = 0. Without a loss of generality, we choose a0 = 1.

For i ≥ 0, the recurrence relation equation is

(i + 2)(i + β + 2)ai+2 + k3ai = 0 (A8)

which leads to the following two natural cases:
Case (1): i ∈ Θ&i > 0. Under this condition, it follows from (A8) and a1 = 0 that

ai = 0.
Case (2): i ∈ Θ&i ≥ 0. Under this condition, Equation (A8) gives a few coefficients as
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a2 =
−k3

2 · (β + 2)
, a4 =

−k3
2

2 · 4(β + 2) · (β + 4)
,

a6 =
−k3

3

2 · 4 · 6(β + 2) · (β + 4) · (β + 6)
, · · ·

(A9)

Define f (x, n) with n = 0, and

f (x, n) = (x + 2) · (x + 4) · . . . · (x + n) (A10)

with n being positive even numbers.
Then, the coefficients for Case (2) can be rewritten as

ai =
(−k3)

i/2

f (0, i) · f (β, i)
(A11)

Therefore, the first solution can be obtained by combining Cases (1) and (2) as

e
(
tgo
)
=

∞

∑
i=0

ait
i+k1+1
go

ai =

 (−k3)
i/2

f (0,i) f (β,i) , i ∈ Ω&i ≥ 0

0, i ∈ Θ&i > 0

(A12)

To derive the second solution using the Frobenius method, the following two condi-
tions depending on the nature of the roots of (A4) are considered.

Condition (1): Distinct roots not differing by an integer, i.e., β is not an integer. Under
this condition, the second solution can be obtained by substituting r = k2 into (A3).
Following the same lines as shown above, one can imply that

e
(
tgo
)
=

∞

∑
i=0

bit
i+k2
go

bi =

 (−k3)
i/2

f (0,i) f (−β,i) , i ∈ Ω&i ≥ 0

0, i ∈ Θ&i > 0

(A13)

Condition (2): Roots differing by an integer, i.e., β is an integer. Under this condition,
the second solution has the following form:

e2
(
tgo
)
= Ce1

(
tgo
)

ln tgo +
∞

∑
i=0

bit
i+k2
go (A14)

where C > 0 is a constant.
Taking the first and second-order derivative of (A14) and substituting them into (A1)

gives

C ln tgo

{
t2
goe′′1

(
tgo
)
+ tgo(k1 + k2)e′1

(
tgo
)
+[

(k1 + 1)k2 + k3t2
go

]
e1
(
tgo
)}

+ C
[
2tgoe′1

(
tgo
)
−

(k1 + k2 + 1)e1
(
tgo
)]

+
∞

∑
i=0

i(i− β)bit
i+k2
go + k3

∞

∑
i=0

bit
i+k2+2
go = 0

(A15)
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Since e1
(
tgo
)

is a basic solution of (A1), the term multiplied by the logarithmic function
equals zero. Shifting the starting index from −β− 2 for (A15) gives

C
[
2tgoe′1

(
tgo
)
− (k1 + k2 + 1)e1

(
tgo
)]
+

−β−1

∑
i=−β−2

(i + β + 2)(i + 2)bi+β+2ti+k1+3
go +

∞

∑
i=−β

[
(i + β + 2)(i + 2)bi+β+2 + k3bi+β

]
ti+k1+3
go = 0

(A16)

It is easy to verify that the lowest power series of the term
[
2t2

goe′1
(
tgo
)
− (k1 + k2 + 1)

e1
(
tgo
)]

is tk1+1
go . Moreover, the term

[
2t2

goe′1
(
tgo
)
− (k1 + k2 + 1)e1

(
tgo
)]

/tk1+1
go only has

even power series. Rewriting (A16) in power series as

∞

∑
i=−2

[Cai+2(2i + β + 4)]ti+k1+3
go +

−β−1

∑
i=−β−2

(i + β + 2)(i + 2)bi+β+2ti+k1+3
go +

∞

∑
i=−β

[
(i + β + 2)(i + 2)bi+β+2 + k3bi+β

]
ti+k1+3
go = 0

(A17)

Next, we consider the following two cases.
Case (1): β is a positive even number. For this case, it follows from (A17) that b0 6= 0,

b1 = 0, and, therefore, the coefficients satisfy

bj

{
6= 0, j ∈ Ω&j ≥ 0
= 0, j ∈ Θ&j > 0

(A18)

From (A17), the coefficient bβ−2 can be obtained by equating the coefficient of the

power series tk1+1
go from (A17) to zero as

Cβ + k3bβ−2 = 0⇒ bβ−2 = −Cβ

k3
(A19)

Then, for i ≤ −2, the coefficients can be calculated backward from bβ−2, whereas the
coefficients with i ≥ 0 can be obtained forward from bβ.

For i ≤ −2, the recurrence relation equation is

(i + β + 2)(i + 2)bi+β+2 + k3bi+β = 0 (A20)

Define g(x, n) with n = 0, and

g(x, n) = g(x− 2) · g(x− 4) · . . . · g(x− n) (A21)

with n being positive even numbers.
Then, combining (A18) and (A20) gives

bi+β =
Cβg(β,−2− i)g(0,−2− i)

(−k3)
−i/2 (A22)

For i ≥ 0, the recurrence relation equation is

Cai+2(2i + β + 4) + (i + β + 2)(i + 2)bi+β+2 + k3bi+β = 0 (A23)
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which gives the following coefficients

bi+β+2 = ai+2bβ − Cai+2

i/2+1

∑
m=1

2(m + 2) + β

(m + 2)(m + β + 2)
(A24)

Substituting (A22) and (A24) into (A14) yields

e2
(
tgo
)
= Ce1

(
tgo
)

ln tgo +
−2

∑
i=−β

bi+βti+k1+1
go + bβtk1+1

go

+
∞

∑
i=2

bi+βti+k1+1
go

= Ce1
(
tgo
)

ln tgo +
−2

∑
i=−β

bi+βti+k1+1
go + bβa0tk1+1

go

+
∞

∑
i=0

bi+β+2ti+k1+3
go

= bβ

∞

∑
i=0

ait
i+k1+1
go + C

[
e1
(
tgo
)

ln tgo

+ β
−2

∑
i=−β,i∈Ω

g(β,−2− i)g(0,−2− i)

(−k3)
−i/2 ti+k1+1

go

−
∞

∑
i=0,i∈Ω

(
ai+2

i/2+1

∑
m=1

2(m + 2) + β

(m + 2)(m + β + 2)

)
ti+k1+3
go

]

(A25)

Since C and bβ are two arbitrary constants, Equation (A25) is an incomplete equation.
However, observing that the term multiplied by bβ is the first basis solution, then, the
second linearly independent solution of (A1) is

e2
(
tgo
)
= e1

(
tgo
)

ln tgo+

β
−2

∑
i=−β,i∈Ω

g(β,−2− i)g(0,−2− i)

(−k3)
−i/2 ti+k1+1

go −

∞

∑
i=0,i∈Ω

(
ai+2

i/2+1

∑
m=1

2(m + 2) + β

(m + 2)(m + β + 2)

)
ti+k1+3
go

(A26)

Case (2): β is a positive odd number. In this case, consider the following two subcases.
Subcase (1): β = 1. Under this condition, equating the coefficient of the power series

tk1+1
go from (A17) to zero gives

Cβ + (1− β)b1 = 0⇒ C = 0 (A27)

Then, the basic solution e2
(
tgo
)

reduces to

e2
(
tgo
)
=

∞

∑
i=0

bit
i+k2
go (A28)

which is the same as Condition (1) and thus shares the same solution.
Subcase (2): β > 1. Under this condition, equating the coefficient of the power series

tk1+1
go from (A17) to zero gives

Cβ + k3bβ−2 = 0⇒ bβ−2 = −Cβ

k3
(A29)
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Since β > 1, it follows from (A17) that b0 6= 0, b1 = 0 and the recurrence relation
equation for i ≤ β− 2 is

(i + β + 2)(i + 2)bi+β+2 + k3bi+β = 0 (A30)

which means that

bβ−2 = bβ−4 = · · · = b3 = b1 = 0 (A31)

Combining (A29) and (A31) leads to C = 0. Then, the basic solution e2
(
tgo
)

reduces to

e2
(
tgo
)
=

∞

∑
i=0

bit
i+k2
go (A32)

which is the same as Condition (1) and thus shares the same solution.
Finally, by summarizing the above results, the closed-form solution of (A1) is
(a) If β is not an integer, then

e
(
tgo
)
= C1

∞

∑
i=0

ait
i+k1+1
go + C2

∞

∑
i=0

bit
i+k2
go (A33)

where

ai =

 (−k3)
i/2

f (0,i) f (β,i) , i ∈ Ω&i ≥ 0

0, i ∈ Θ&i > 0

bi =

 (−k3)
i/2

f (0,i) f (−β,i) , i ∈ Ω&i ≥ 0

0, i ∈ Θ&i > 0

(A34)

(b) If β is an integer, then

e
(
tgo
)
=



C1 ∑∞
i=0 ait

i+k1+1
go + C2

[
ln tgo ∑∞

i=0 ait
i+k1+1
go

+β ∑−2
i=−β,i∈Ω

g(β,−2−i)g(0,−2−i)
(−k3)

−i/2 ti+k1+1
go

−∑∞
i=0,i∈Ω(ai+2 ∑i/2+1

m=1
2(m+2)+β

(m+2)(m+β+2)

)
ti+k1+3
go

]
, β ∈ Ω

C1 ∑∞
i=0 ait

i+k1+1
go + C2 ∑∞

i=0 bit
i+k2
go , β ∈ Θ

(A35)

where C1, C2 are two integration constants determined by the initial conditions.

Appendix B

It is easy to verify that the lowest power terms of (18) are tk1+1
go , tk2

go, whereas the lowest

power terms of (20) are tk1+1
go , tk1+1

go ln tgo, tk2
go.

For any ε > 0, using L’Hospital’s rule, one can imply that

lim
x→0+

xε ln x = lim
x→0+

ln x
x−ε

= lim
x→0+

x−1

−εx−1−ε

= lim
x→0+

(
−1

ε
xε

)
= 0

(A36)

Then, the lowest order in tgo of e
(
tgo
)

is larger than zero if k1 > −1, k2 > 0, whereas
the lowest order in tgo of ė

(
tgo
)

is larger than zero if k1 > 0, k2 > 1. Next, in cooperation
with the condition k1 + 1 > k2, the proof is completed.
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Appendix C

It follows from (26) that the lowest power term of tgo in (26) is one order power less
than tgo of ė

(
tgo
)

or two power order than e
(
tgo
)
. Moreover, Proposition 1 reveals that it

converges to zero if k1 > 0, k2 > 1. Combining the property of the global sliding manifold,
i.e., s = 0, with k1 + 1 > k2 leads to the proof.
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