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Abstract

In an attempt to create an iterative method that may converge even if the first derivative disappears during
the recursive process. This paper sets out to develop a class of optimal fourth-order methods based on Wu's
modified Newton scheme for solving nonlinear equations without constraints on the first derivative. Numerous
numerical examples were given to demonstrate how effectively the proposed methods perform. In addition, the
basins of attraction confirm the efficiency and performance of the suggested fourth-order method compared
with some other fourth-order schemes.
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1 Introduction

The most common and early issue in innumerable scientific and engineering fields involves solving a nonlinear
system of equations, see [1], and its references. Throughout this paper, we will discuss the solution of nonlinear
equations. While traditional approaches are unable to solve problems of this kind, a diversity of iterative
approaches have been developed to reach a simple zero of the function f(z) = 0 where, f : I C R — R for an
open interval I. A well-known approach for solving nonlinear equations and the most widely used to f(z) = 0 is
Newton's method (NM), see [2-18] and their references. The conventional Newton's scheme can be written as:

f(zs)

Tot1 = Pz’ 0=0,1,2,3,.... (1.1)
The efficiency index (EI) can be described by {/p where, p represents the order of the method and 7 is the total
number of times the functions and their derivatives have been evaluated [19]. A second-order rate of convergence
is achieved by Newton's method [3], with an efficiency index of v/2 ~ 1.4142. According to the Kung-Traub
conjecture [21] which is given by 277!, wherein an iterative process (NM) is an optimal method. Various
modifications have been made to Newton's scheme to increase its convergence rate [2-13, 17-25]. However, the
majority of these methods overlooked the fact that during the iterative process, the first derivative disappears.
The preceding alteration to the traditional Newton's technique was presented by Wu [18].

S 0= sign(f () (a5). (12)
Therefore, the denominator is never zero regardless of whether the first derivative disappears or not. Recently a
sixteenth-order recursive scheme has been developed by Khattri et al (KAM) [12] based on Wu's method. The
efficiency index for (KAM) is v/16 ~ 1.5874.

Ts+1 =

o f(zs)
YOI prs) + 0f (ws)
L f(ys)
=Y i) + 0 as) )
f(zs)
Tsi1 = 25 — f(zs) _ K f'(35)+3.f(36))<~(x6)’ (1.3)

J'(zs) + Bf(zs)  f'(zs) + Bf(zs)

where the functions ®(zs5) and ((zs) are given as:

Wﬁ;ﬁzfi)) +0f(xs) z
B(ws) = 1+2— )f(xa) - af’(wé;[i(;)f(x5)
T 5(W )2 + (0 ) ))2
F(xs) I'(xs) +0f(xs)
o Lear T eal) 4 f(ws) o)
Fs) J/(es) +05(zs) "
LearJEo) 4 B (25) z
Clas) = 1+2—L )f(zg) - ﬁf’(%{ifﬁ)f(%)
Y o PR () B
f(zs) J'(zs) + Bf(zs)
B 55(% + Bf(2s) f(z5) )- (1.4)

f(zs) f'(z5) + Bf(zs)

Where, 6 = sign(f(zs)f'(zs)), and 8 = sign(f(zs)f'(2s)), so that none of the denominators of method (1.3)
is zero. While the proposed method is quite effective, however, it is not optimal. As it does not satisfy the
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Kung-Traub conjecture. To elaborate, in order to achieve optimality the rate thirty second must be converged
to by (KAM) with its current total number of function evaluations.

2 The Method

This paper aims to improve KAM (1.3) by constructing a class of optimal fourth-order iterative algorithms. The
proposed method converges regardless of whether the first derivative disappears during the iteration process or
not, by combining two methods and employing a weight function.

Theorem 2.1 ([24]). Let wi(x),w2(x),...,ws(x) be the iterative algorithms with the convergence rate A\1,Az,...,\s
consecutively, as a result, the iterative algorithms are composed to be wi(wa(...(ws(x)))) which defines the
convergence rate to be the product of their orders AAz...\s.

Applying theorem 2.1, followed by Wu's scheme as a second step we obtain the following algorithm:

f(xs)
f(@s) +0f(x5)
. f(ys) ,
To+1 = Y5 F(ys) + 01 (5s) (2.1)

Upon satisfying the Kung-Traub conjecture, four functions need to be evaluated. Hence, it is necessary to
approximate f’(ys) using Chun et al approximation [7] in order for the preceding algorithm to be optimal.

oo ws)f(ws)?
TW) ™ Gas) + Fa))? @32

Minimizing the number of function evaluations from 7 = 4 to 7 = 3. Additionally, adding a real-valued weight
function H(v) to ¢'(ys), where v = f(xs). Aiming to reach a class of optimal four, with an EI of /4 ~ 1.5874.

Ys = Ts —

vs = 25 — f(zs)
fr(ws) +0f(xs5)”
Ts+1 = Ys — S (ys) : (2.3)

[¢'(ys) + H(v)] + 0f(ys)

The following theorem 2.2 demonstrates the constraints of the weight function. Verifying the equation's
optimality toward the fourth convergence rate.

Theorem 2.2. Let o € I be the simple zero of an effectively differentiable function f: 1 C R — R. Under the
following conditions, if zo is fairly close to o, and H(0) =0, H'(0) =2, |H"(0)| < oo . Therefore, method (2.5)
yields toward optimal four.

The following results are obtained using Maple 2022 to verify the convergence rate of the proposed method
namely (KSM).

Proof. Let ¢ be a simple zero of the function, and let es = 25 — o to be the error at the 6" iteration. Using
Taylor expansion, the following is obtained: m

flxs) = f’(a) [e + coe? + cze® + caet + O(es)} , (2.4)

f'(xs) = f'(0) [14 2c2e + 3cze® 4 des€® + Sese + O(es)} , (2.5)
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@7
where C} :%, i=2,3,....

Adding (2.4) and (2.5), where 6 represents the sign to f(zs)f'(xs)
f'(xs) +0f(zs) = f'(0) [1+ (14 2c2)e+ ... + (ca+ 5¢5)e’ + 0(65)} . (2.6)
Furthermore, dividing (2.4) by (2.6) to get:
f(=s) 2 2 3
——————~ =e+ (—c2—1)e” + (2¢5 +2c2 — 2c3 + 1)e
Flas) + 07 () ¢ T (T2 T e+ (e 20 = 2es 41 @7)
+ (746% — 563 + Teacs — 3co +4e3 — 3eq — 1)64 + O(es)~
Substituting equation (2.7) into the first step of (2.3), to obtain:
ys =0 + (c2 + 1)62 + (—203 — 2¢o + 2¢3 — 1)63
+ (4¢3 4 5¢3 — Teacs 4 3ca — 4es + 3ca + 1)et + O(eP)- (2.8)
Expanding f(ys) about o using Taylor expansion to get:
flys) = f’(a) [(02)62 + (—203 — 2¢0 + 2¢3 — 1)63
+ (5c§ +7¢3 — Teacs + deo — ez + 3ca + 1)e + O(es)] . (2.9)
From (2.4), (2.5), and (2.9) the approximation can be easily calculated as follow:
qd'(ys) = f'(0) [l — 2e + ... — 103esc5 + 26cacs + 233¢5 + 124ca — ...
— (3¢5 + ... — 154ca + 2143 + 28)e* + O(e”)] - (2.10)

Using (2.9) and (2.10), to get the following:

q'(ys) +0f(ys) = f'(0) [1 —2e+ (5¢3 — c3 + 6+ 9ca)e” + (18cacs — ... — 38¢2)e”
+ (=103c3¢3 + 26c2c4 — ... + 27cs — 35 + 240¢3)e* + +0(€%)] - (2.11)

Hence, dividing (2.9) and (2.11) to obtain:

), o 3
q(ys) +0f(ys) f'(0) [(c2 +1)e* + (—2¢5 4 2c3 + 1)e
+ (—llcg — 6cacs — 11ca + ¢33+ 3¢a — 3)64 i 0(65)] . (212

Using Taylor's polynomial of the fourth order at v = 0 to expand H(v):

H(v) = H(0) + H(0)Mv + H(O)(”g + H(O)<3)§—T + H(0)<4>Z—?7 v = f(z)- (2.13)

Then, substituting (2.12) into the second step of (2.3), and adding (2.13) to the denominator using the conditions
in theorem 2.2. As a result, the following error expression is received:

" 1"

et (o)

3 et +0(e)-

) H
2541 =0 + (6 — c3 + 162 + 14ch + 4y — cacs + f'(0) 2

(2.14)

Accordingly, the class in (2.3) has an exact order of convergence of four and as a result, the proof is complete.

In particular, the following cases fall under the class of (2.3), where 6 = sign(f(xs)f'(zs)), and v = f(z).
For H = 2v a new fourth-order method is established, namely (KSM1):
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vs = 5 — f(2s)
f'(ws) +0f(ws)’
To+1 = Ys — S (ys) : (2.15)

¢/ (ys) + 20] + 6.f (y5)
For H = 25sin(v), a development of another fourth-order method is acquired under the name (KSM2):

)

f/(xé) + 9f(:175) ’

_ f(ys) _

[¢' (ys) + 2sin(v)] + 0 (ys) (2.16)

Repeating the above process, with the value of H = 3v% + 2v, also lead to another fourth-order method known
as (KSM3):
f(xs)

fl(zs) +0f(xs)’
f(ys)

Ts+1 = Ys — [0/ (ys) + 30° + 20 + 07 (s (2.17)

Ys = Ts —

Ts+1 = Ys

Ys = Ts —

3 Numerical Example

This part outlines several numerical tests along with the basins of attraction to indicate the efficiency and
performance of the new suggested technique (KSM) compared to other three optimal fourth-order methods,
such as:

King Method (KM) [20], where 8 = 3:

vs = 25 — f(zs)
['(xs)’
voys = ys — JW) _ F(@o) +BF(ys)
f(zs) f(xs) + (B —2)f(ys)

Furthermore Hafiz et al also developed the following optimal fourth-order method known as (HKM) [9], where
a=2, b=4 and, c=-5:

(3.1)

o 2f(ws)
Ys = Ts 3fl(336)7
— e f(zs)
T s + W )
_1 _ _ fl(ws)
where W(n) = 6 [a+bn+cn2—n)>1], n= ) (3.2)
In addition, Laila created the following scheme (LM) [2], where B = —2, and a = 2:
_ f(zs)
Ys = Ts — f,(m(s)v
e 4(ys — x5)f (ys)
LS ) [P + R + 2 o) — T
vy S (ws)f! (ws)? _ o flys)
where fl(y,s) ~ m, and H('U) = 1+U +B’U , V= f(:z:é) (33)

The test functions taken into consideration are listed in Table 1, to test the newly proposed class toward the
optimal fourth-order convergence rate along with their simple root o, and their preliminary assumptions x,.
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Table 1. Test functions, their roots, and their preliminary assumptions

Function Preliminary Assumption Root

f(x)1 =sin(z) — § Lo =2 o = 1.895494267033980
f(z)y = e F=+2 To = 2.5 o =20

f(x)s = e~ @ tt2 —cos(z+ 1)+ x> +1 zo=1.5 c=—-1.0
fl@)a=(@-1)*-1 2o =15 o =20

F(z)s = sin(2cos(x)) — 1 — (22) + ) g, =1.2 o = 1.306175201846827

With a 1000-digit floating point, all calculations were carried out in MATLAB (R2022a). Table 2 lists the
iterations number, the function's absolute value | f (zs)|, and the absolute error, |zs—o| along with the computational
order of convergence donated by COC, which can be calculated using the following formula [17]:

=
COC ~ — 282

In| == |

Furthermore, the criteria for stopping are as follows:
1. |zs — o] < 10739,
2. |f(zs)| 10739,

The basin of attraction is a visual representation technique of how an algorithm behaves based on different
starting points [24]. Besides the Kung-Traub conjecture and the efficiency index performance measures, the
basin of attraction technique is assumed to be another criterion for performance evaluation [23]. In an ideal
situation, the plane is divided into § basins if a function has ¢ unique zeroes. For instance, considering the
following polynomial 22 — 1 as an example, the roots are z = 1 and z = —1 [23]. The methods are compared
by using a square of R x R = [—2,2] x [—2, 2], based on 400 x 400 points, with a tolerance of T'ol = 0.001 and
a maximum of N = 20 iterations. Each point is colored according to the root it converged to, if the recursive
process did not converge in a given number of iterations N, then the point will be assigned a black hue. The
approach is preferable if there are fewer black spots as the black hue indicates that there has been no convergence
on any of the roots after 20 repetitions. The following part presents seven polynomials along with their roots
presented in Table 3 to demonstrate the effectiveness of the new proposed iterative schemes namely (KSM)
compared with the other three optimal methods which were resolved in the complex domain using Maple 2022.

Table 2. Comparison of several optimal fourth-order recursive schemes with (KSM) methods

Method Iteration  |f(zs)| |zs — o] COC
f(@)r = sin(z) —

WM (1.2) 9 4.6804e-423 5.71461e-423 2
KM (3.1) div div div div
HKM (3.2) 4 3.31913e-308  4.05255e-308 4
LM (3.3) div div div div
KSM1 (2.15) 5 5.53098e-626  6.75314e-626 4
KSM2 (2.16) 5 2.75967e-626, 3.36947e-626 4
KSM3 (2.17) 5 1.43604e-669  1.75336e-669 4
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Method Iteration |f(zs)] |zs — o] COC
fla)p =T 1

WM (1.2) 10 5.06655e-539  1.68885e-539 2
KM (3.1) div div div div
HKM (3.2) 6 1.13413e-628  3.78042e-629 4
LM (3.3) div div div div
KSM1 (2.15) 5 9.74846e-579  3.24949e-579 4
KSM2 (2.16) 5 1.1225e-540 3.74168e-541 4
KSM3 (2.17) 6 3.3864e-525 1.1288e-525 4
Fx)s = e ™2 _cos(z 4+ 1) + 2 + 1

WM (1.2) 13 6.31335¢-531  1.05223e-531 2
KM (3.1) 31 6.34122e-882  1.05687e-882 4
HKM (3.2) 8 8.67943e-355  1.44657e-355 4
LM (3.3) 34 5.73088e-934  9.55146e-935 4
KSM1 (2.15) 8 3.18149e-898  5.30248e-899 4
KSM2 (2.16) 7 5.85753e-401  9.76255e-402 4
KSM3 (2.17) 9 2.18866e-906  3.64777e-907 4
f@a=(@-1)"-1

WM (1.2) 11 6.64867c-517 1.66217e-517 2
KM (3.1) div div div div
HKM (3.2) 7 8.13383e-949  2.03346e-949 4
LM (3.3) 25 1.46473e-317  3.66182e-318 4
KSM1 (2.15) 6 4.00589¢-538  1.00147e-538 4
KSM2 (2.16) 6 9.12606e-536  2.28151e-536 4
KSM3 (2.17) 6 2.41513e-423  6.03782e-424 4
f(z)s = sin(2cos(x)) — 1 — (x?) + esin(=?)

WM (1.2) 10 3.09351e-566  2.76501e-567 2
KM (3.1) 9 7.41673¢-855  6.629156-856 4
HKM (3.2) 5 4.53229¢-419  4.05101e-420 4
LM (3.3) 6 4.655240-836  4.16090e-837 4
KSMI (2.15) 5 5.45918¢-379  4.87947¢-380 4
KSM2 (2.16) 5 3.04174e-373  2.71874e-374 4
KSM3 (2.17) 5 8.11148¢-583  7.25013e-584 4

Table 3. The polynomials and their roots in complex domain

Function Root
filz) = (z* = 1)? [+1]
fa(z) = 2° — 2 [+1,0]
fa(z) = (2° = 2)? [+£1,0]
falz) =2 =1 [#1, %4
fo(z) = 2" —1022 +9  [£3,+£1]
f6gz§ = ZZ —z [£1,0, £7]

[£1, £0.5, £0.866025]
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{a) KSM1. (b} KSMZ
{c) KEM3. (d) KM
=) HEM. {f) LAY

Fig. 1. fi(z) = (2> —1)?
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{a} KSK1. (b} KSM2

fch KN, fdy HM.

fe) HEM. {f} LM,

Fig. 2. fo(2) =2 — 2
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{a) KSM1. (b} KSM2
foh KShI. fd) KM.
e} HEM. {fi LA

Fig. 3. f3(2) = (2* — 2)?
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(&) KSh1. (b KSM2-

o) KSM3. id) KM,

e} HEM. {f) LM
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(a} KEM1. (b) KEMZ.

Fig. 5. fs(2) = 2* — 1022 +9

o) KSM3.

e} HEM.
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{2} KSM1. b} KSMZ.

{o) KSM3, id) KM

=) HEM. {f] LAY

Fig. 6. fo(z) = 2" — 2
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[KSM1.] [KSM2,]
[KSM3 ] [KM.]
[HKM.] [LM.]

Fig. 7.f7(z) = 2° — 1.

4 Conclusion

This work proposes an optimal class of fourth-order algorithms to find a simple zero for nonlinear equations
even if the first derivative disappears during the iteration procedure. This theorem was mainly aimed at
achieving optimality following the Kung-Traub conjecture, which was successfully sought with the use of Chun
approximation to the first derivative of f(ys) and a weight function to increase the order of convergence.
Ultimately, the success of the proposed algorithm was demonstrated by evaluating the iterative approaches
of equal order of convergence in numerous numerical examples listed in Table 2. In most cases, the new optimal
class (KSM) tended to provide better or similar results than the provided methods. Also by using the basin of
attraction as another criterion for performance evaluation the newly proposed method showed fewer black hues
compared to the other schemes, which is a sign of sufficient performance.
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