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Abstract

In this paper we consider cryptographic applications of the arithmetic on the hyperoctahedral
group. On an appropriate subgroup of the latter, we particularly propose to construct public key
cryptosystems based on the discrete logarithm. The fact that the group of signed permutations
has rich properties provides fast and easy implementation and makes these systems resistant
to attacks like the Pohlig-Hellman algorithm. The only negative point is that storing and
transmitting permutations need large memory. Using together the hyperoctahedral enumeration
system and what is called subexceedant functions, we define a one-to-one correspondence between
natural numbers and signed permutations with which we label the message units.
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1 Introduction

1.1 Basic notion

Cryptography: Cryptography has, as its etymology, kryptos from the Greek, meaning hidden,
and graphein, meaning to write. By definition, cryptography is the study of methods for sending
messages in secret (namely, in enciphered or disguised form) so that only the intended recipient
can remove the disguise and read the message (or decipher it). The original message is called the
plaintext, and the disguised message is called the ciphertext.

Messages and transformations: The plaintext and ciphertext are written in some alpha-
bet (usually, but not always, they are written in the same alphabet) consisting of a set of a certain
number of letters. The term ”letter” (or ”character”) can refer not only to the familiar A-Z, but
also to numerals, blanks, punctuation marks, or any other symbols that we choose to use when
sending messages.

The plaintext and ciphertext are broken up into message units. A message unit might be a single
letter, a pair of letters (digraph), a triple of letters (trigraph), or a block of n ∈ N letters.

The process of transforming plaintext into ciphertext is called encryption or enciphering. The
reverse process of turning ciphertext into plaintext, which is accomplished by the recipient who has
the knowledge to remove the disguise, is called decryption or deciphering.

Cryptosystem: A cryptosystem is composed of a set consisting of enciphering transformations
and the corresponding set of deciphering transformations.

The first step in inventing a cryptosystem is to ”label” all possible plaintext message units and all
possible ciphertext message units by means of mathematical objects from which functions can be
easily constructed.

Purpose of encryption: The purpose of encryption is to change data in such a way that
only an authorized recipient is able to reconstruct the plaintext. This allows us to transmit data
without worrying about it getting into unauthorized hands. Authorized recipients possess a piece of
secret information (called the key) which allows them to decrypt the data while it remains hidden
from everyone else.

1.2 Background

Before the 1970’s, to cipher or decipher a message, two users of cryptographic system must safely
exchange private key. New keys could be periodically distributed so as to keep the enemy guessing.
In 1976, W. Diffie and M. Hellman [1] discovered an entirely different type of cryptosystem for
which all of the necessary information to send an enciphered message is publicly available without
enabling anyone to read the secret message. With this kind of system called public key, it is possible
for two parties to initiate secret communications without exchanging any preliminary information
or ever having had any prior contact.

Public key cryptography is typically used for generating secret keys for symmetric cryptographic
sessions and for digital signatures. The security of public key cryptosystems is based on the hardness
of some mathematical problems [2, Chapter 5]. As a public key cryptosystem consists of a private
key (the deciphering key) that is kept secret and a public key (the enciphering key) which is
accessible to the public, then the straightforward way to break the system is to draw the private

24



Raharinirina; JAMCS, 35(1): 23-38, 2020; Article no.JAMCS.50040

key from the public key. Therefore, the required computation cost is equivalent to solving these
difficult mathematical problems.

Until recently, public key cryptography in the industry was almost exclusively dominated by RSA
[3]. Over the past few years, curve based cryptography [4, 5] has gained enormous popularity. Its
security depends on the intractability of the discrete logarithm problem. The Diffie-Hellman [1]
key-exchange protocol contained the basic original ideas for public-key cryptosystem based on this
mathematical problem. In a paper [6], Taher ElGamal observes that by varying the Diffie-Hellman
key agreement protocol slightly, one can obtain an other encryption based on the discrete logarithm.

In this paper, we present a new idea on how it is possible to perform ElGamal encryptions as well
on the signed permutations group. The first objective of this subject will be to understand the
hyperoctahedral group arithmetic for cryptographic purposes. The second objective would be to
address theoretical implementation aspects of hyperoctahedral group cryptography.

2 Discrete Logarithm in Signed Permutations Group

Let us denote by:

• [n] the set {1, · · · , n},
• [±n] the set {−n, · · · ,−1, 1, · · · , n},
• Sn the symmetric group of degree n.

2.1 Signed permutations group

Definition 2.1. A bijection π : [±n] −→ [±n] satisfying π(−i) = −π(i) for all i ∈ [±n] is called
”signed permutation”.

We can also write a signed permutation π in the form

π =

(
1 2 . . . n

ε1σ1 ε2σ2 . . . εnσn

)
with σ ∈ Sn and εi ∈ {±1} .

Under the ordinary composition of mappings, all signed permutations of the elements of [n] form a
group Bn called hyperoctahedral group of rank n. We write πk = π ◦ · · · ◦ π︸ ︷︷ ︸

k-times

for an integer k and

π ∈ Bn and when we multiply permutations, the leftmost permutation acts first. For example,(
1 2 3 4
1 −3 4 2

)
◦
(

1 2 3 4
3 −2 4 1

)
=

(
1 2 3 4
3 −4 1 −2

)
.

As stated in the work of Victor Reiner [7], a signed permutation decomposes uniquely into a product
of commuting cycles just as permutations do.

Example 2.1. The disjoint cycle form of θ =

(
1 2 3 4 5 6 7
3 6 −2 7 −5 −1 4

)
is

θ =

(
1 3 2 6
3 −2 6 −1

)
︸ ︷︷ ︸

θ1

(
4 7
7 4

)
︸ ︷︷ ︸

θ2

(
5
−5

)
︸ ︷︷ ︸

θ3

.

Definition 2.2. The order of a signed permutation π is the smallest positive integer m such that
πm = ι where ι denotes the identity permutation.
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The proof of the following theorem can be found in [8].

Theorem 2.2. The order of a permutation written in disjoint cycle form is the least common
multiple of the orders of the disjoint cycles.

Theorem 2.3. Let C =

(
i0 i1 . . . iℓ−2 iℓ−1

ε0i1 ε1i2 . . . εℓ−2iℓ−1 εℓ−1i0

)
where εi ∈ {±1}, an ℓ-cycle in

the signed permutations group. The order of C is:

|C| =

{
ℓ if ε0ε1 . . . εℓ−1 = 1

2ℓ if ε0ε1 . . . εℓ−1 = −1
. (1)

Proof. In the symmetric group, the cycle σ =

(
i0 i1 . . . iℓ−2 iℓ−1

i1 i2 . . . iℓ−1 i0

)
of length ℓ has order

ℓ so the order of C is a multiple of ℓ. For j = 0, . . . , ℓ− 1 and m ∈ N r {0}, we have

Cm(ij) = ε(j) mod ℓ ε(j+1) mod ℓ . . . ε(j+m−1) mod ℓ i(j+m) mod ℓ .

For m = 1, C(ij) = εj i(j+1) mod ℓ

For m = 2, C2(ij) = εj C(i(j+1) mod ℓ)

C2(ij) = εj ε(j+1) mod ℓ i(j+2) mod ℓ

...

For m = ℓ, Cℓ(ij) = εj ε(j+1) mod ℓ . . . ε(j+ℓ−1) mod ℓ i(j+ℓ) mod ℓ .

Cℓ(ij) = ε0 ε2 . . . εℓ−1 ij

We have εj ε(j+1)mod ℓ . . . ε(j+ℓ−1)mod ℓ = ε0 ε2 . . . εℓ−1 because in the one hand, for all
integers k1, k2 such that 0 6 k1 6 k2 6 ℓ − 1 − j, we have j 6 k1 + j 6 k2 + j 6 ℓ − 1 and in the
other hand, for all integers k1, k2 such that ℓ− j 6 k1 6 k2 6 ℓ− 1, we have

ℓ 6 k1 + j 6 k2 + j 6 ℓ+ j − 1 6 ℓ+ ℓ− 2 < 2ℓ

0 ≡ ℓ mod ℓ 6 (k1 + j) mod ℓ 6 (k2 + j) mod ℓ 6 (ℓ− j − 1) mod ℓ ≡ j − 1.

If ε0ε1 . . . εℓ−1 = 1 then Cℓ(ij) = ij for all j ∈ {0, . . . , ℓ− 1}, that is C has order ℓ.

If ε0ε1 . . . εℓ−1 = −1 we take C2ℓ(ij) = ε0 ε2 . . . εℓ−1C
ℓ(ij) = (ε0 ε2 . . . εℓ−1)

2 ij = ij
for j ∈ {0, . . . , ℓ− 1}, so C has order 2ℓ.

2.2 Calculating the discrete logarithm

Definition 2.3. The discrete logarithm problem in the finite group G to the base g ∈ G is the
problem : given y ∈ G, of finding an integer x such that gx = y, provided that such an integer exists
(in other words, provided that y is in the subgroup generated by g).

If we really want our random element y of G to have a discrete logarithm, g must be a generator of
G.

Example 2.4. Let G =
(Z/19Z)∗ be the multiplicative group of integers modulo 19. The successive

powers of 2 reduced mod 19 are : 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1. Let g be the
generator 2, then the discrete logarithm of 9 to the base 2 is 8.

The known algorithms for the discrete logarithm problem (DLP) can be categorized as follows:
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1. algorithms which work in arbitrary groups, e.g., exhaustive search [9], the baby-step giant-
step algorithm [10], Pollard’s rho algorithm [11],

2. algorithms which work in arbitrary groups but are especially efficient if the order of the group
has only small prime factors, e.g., Pohlig-Hellman algorithm [12], and

3. the index-calculus algorithms [11, 13] which are efficient only in certain groups.

Many improvements are made for solving the discrete logarithm problem [14, 15].

The index-calculus algorithm is the most powerful method known for computing discrete logarithms.
The technique employed does not apply to all groups, but when it does, it often gives a subexponential-
time algorithm. A description of this algorithm in the general setting of a cyclic group G follows.

The index-calculus algorithm requires the selection of a relatively small subset S of elements of G,
called the factor base, in such a way that a significant fraction of elements of G can be efficiently
expressed as products of elements from S. The described algorithm proceeds to precompute a
database containing the logarithms of all the elements in S, and then reuses this database each
time the logarithm of a particular group element is required.

The description of this algorithm is incomplete for two reasons. Firstly, a technique for selecting the
factor base S is not specified. Secondly, a method for efficiently generating relations of the form (2)
and (3) is not specified. The factor base S must be a subset of G that is small (so that the system
of equations to be solved in step 3 is not too large), but not too small (so that the expected number
of trials to generate a relation (2) or (3) is not too large). Suitable factor bases and techniques for
generating relations are known for some cyclic groups including the field Z∗

p, F∗
2m and, moreover,

the multiplicative group F∗
q of a general finite field Fq.

Index-calculus algorithm for discrete logarithms in cyclic groups

INPUT : a generator α of a cyclic group G of order n, and an element β ∈ G.
OUTPUT : the discrete logarithm y = logα β.

1. (Select a factor base S ) Choose a subset S = {p1, . . . , pt} of G such that a significant
proportion of all elements in G can be efficiently expressed as a product of elements from S.

2. (Collect linear relations involving logarithms of elements in S)

2.1 Select a random integer k, 0 ≤ k ≤ n− 1 and compute αk.

2.2 Try to write αk as a product of elements in S :

αk =
t∏

i=1

pcii , ci ≥ 0. (2)

If successful, take logarithms of both sides of equation (2) to obtain a linear relation

k =

t∑
i=1

ci logα pi( mod n). (3)

2.3 Repeat steps 2.1 and 2.2 until t+ c relations of the form (3) are obtained (c is a small
positive integer, e.g. c = 10, such that the system of equations given by the t + c
relations has a unique solution with high probability).

3. (Find the logarithms of elements in S) Working modulo n, solve the linear system of t + c
equations (in t unknowns) of the form (3) collected in step 2 to obtain the values of logα pi, 1 ≤
i ≤ t.
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4. (Compute y)

4.1 Select a random integer k, 0 ≤ k ≤ n− 1 and compute β.αk.

4.2 Try to write β.αk as a product of elements in S :

β.αk =

t∏
i=1

pdii , di ≥ 0. (4)

If the attempt is unsuccessful then repeat step 4.1. Otherwise, taking logarithms of
both sides of equation (4) yields logα β = (

∑t
i=1 di logα pi − k) mod n, thus, compute

y = (
∑t

i=1 di logα pi − k) mod n and return(y).

Definition 2.4. Let Bn be the hyperoctahedral group of rank n. The hyperoctahedral discrete
logarithm problem to the base β ∈ Bn is the problem, given π ∈ Bn, of finding an integer x such
that π = βx if such x exists.

Let < β >= {βi | i = 1, . . . , |β|} be the cyclic subgroup of Bn generated by β ∈ Bn.

If π /∈< β > then the equation π = βx has no solution.

Therefore, discussion is restricted to π ∈< β > and 1 6 x 6 |β|.

The signed permutation β can be selected in such a way that the least common multiple of the
lengths of the disjoint cycles of β be very large. For a large value of n, the order of < β > can be
very large so algorithms which work in arbitrary groups such as exhaustive search, the baby-step
giant-step algorithm, Pollard’s rho algorithm with running times of O(|β|), O(

√
|β|) and O(

√
|β|)

respectively, are inefficient to solve the equation π = βx.

If the order of the group < β > is B-smooth for a reasonably small B, that is, if |β| is a smooth
integer, then discrete logarithms in < β > can be efficiently computed by the method of Pohlig-
Hellman.

Definition 2.5. Let n be a positive real number. We say that n is smooth if all of the prime factors
of n are small.

Definition 2.6. Let B be a positive real number. An integer is said to be B-smooth if it is not
divisible by any prime greater than B.

The following theorem allows to generate the base β so that the order of the subgroup < β > of Bn

has arbitrary smoothness.

Theorem 2.5. Let p be a prime. For a large integer n, a cyclic subgroup G of Bn which its order
is p-smooth and is not (p− 1)-smooth can be constructed.

Proof. Let n be a large integer and p ≤ n a prime. There exists a p-cycle γp ∈ Bn. Let
γp, C1, C2, . . . , Ck ∈ Bn be disjoint cycles of length respectively p, l1, l2, . . . , lk with

1 ≤ li ≤ p for i = 1, . . . , k and
k∑

i=1

li ≤ n− p .

Let us now consider the signed permutation π = γpC1C2 . . . Ck ∈ Bn of order

|π| = lcm(|γp|, |C1|, |C2|, . . . , |Ck|) .
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Let q be a prime such that q|lmc(|γp|, |C1|, |C2|, . . . , |Ck|). We show that q ≤ p. Let us suppose
that q > p. We obtain li < p < q which implies q - |π| so q ≤ p. We have just shown that every
prime q dividing the order of π is smaller than p, that is, |π| is p-smooth. The order | < π > | = |π|
of the cyclic subgroup < π > of Bn generated by π is p-smooth but it is not (p− 1)-smooth because
p | | < π > | and p > p− 1.

Theorem 2.5 provides high flexibility in selecting a subgroup of hyperoctahedral group Bn on which
algorithms such as the Pohlig-Hellman algorithm is computationally inefficient.

The index-calculus algorithm requires the selection of the factor base which is a relatively small
subset S of elements of < β > such that a significant fraction of elements of < β > can be efficiently
expressed as products of elements from S. Then, collect linear relations involving logarithms of
elements in S.

Assume β = C1 . . . Ck where C1, . . . , Ck are disjoint cycles. All the elements of < β > can be
expressed as products of C1, . . . , Ck.

Although the set {C1, . . . , Ck} is small, it is not a subset of < β >= {βi | i = 1, . . . , |β|} in general
because there may exists an i ∈ [k] such that Ci /∈< β >. For example, θ1 /∈< θ >, θ2 /∈< θ > and
θ3 /∈< θ > for the signed permutation θ in example 2.1. Moreover, even if the set {C1, . . . , Ck} is a
subset of < β >, one can only obtain a relation of the form (3) : let an integer 0 ≤ d ≤ |β| − 1,

βd =

k∏
i=1

Cd
i

d =

k∑
i=1

d logβ Ci( mod |β|)

1 =
k∑

i=1

logβ Ci( mod |β|).

It is clear that this relation does not cover the logarithms of C1, . . . , Ck so the set {C1, . . . , Ck} can
not be chosen as factor base whereas the factor base can be chosen as the set

S =

{
bi = C

(|∏j∈[k]\{i} Cj | mod |Ci|)
i , i = 1, . . . , k

}
.

It is obvious that the logarithm of bi to the base β is
∣∣∣∏j∈[k]\{i} Cj

∣∣∣. The same result is obtained by

collecting linear relations involving logarithms of elements in S as described in step 2 of the index-
calculus algorithm for discrete logarithms in cyclic groups given previously, and pursuing step 3 of
this algorithm.

An example which illustrates index-calculus algorithm in the cyclic subgroup of Bn, generated by
a signed permutation of Bn, on a problem with artificially small parameters follows.

Example 2.6. Let select α ∈ B23 as follows:

α =

(
1 2 3 4 5 6 7 8 9 10 11 12 13
−2 3 −4 5 −6 7 −8 9 −10 11 −12 13 −1

)
︸ ︷︷ ︸

α1(
14 15 16
15 −16 14

)
︸ ︷︷ ︸

α2

(
17 18 19 20 21 22 23
−18 19 −20 21 −22 23 −17

)
︸ ︷︷ ︸

α3

.
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α1, α2 and α3 are disjoint cycles.
From theorem 2.2 and theorem 2.3, we have |α| = lcm(26, 6, 7) = 546. Consider

τ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13
7 8 9 10 11 12 13 1 −2 3 −4 5 −6

)
(

14 15 16
−14 −15 −16

)(
17 18 19 20 21 22 23
−18 19 −20 21 −22 23 −17

)
.

Then, logα τ is computed as follows, using the index-calculus technique.

1. The factor base is chosen to be the set S = {α16
1 , α2

2, α3}.
2. The following four relations involving elements of the factor base are obtained (unsuccessful

attempts are not shown):

α2 = α2
1α

2
2α

2
3 = (α16

1 )5α2
2α

2
3 because 16(5) = 3(|α1|) + 2

α16 = α16
1 α16

2 α16
3 = α16

1 (α2
2)

2α2
3 because 16 ≡ 4 mod |α2| and 16 ≡ 2 mod |α3|

α4 = α4
1α

4
2α

4
3 = (α16

1 )10(α2
2)

2α4
3 because 16(10) = 6(|α1|) + 4

α26 = α26
1 α26

2 α26
3 = α2

2α
5
3 because |α1| = 26, 26 ≡ 2 mod |α2| and 26 ≡ 5 mod |α3|.

These relations yield the following four equations involving the logarithms of elements in the
factor base (for convenience of notation, let b1 = α16

1 , b2 = α2
2 and b3 = α3 ) :

2 ≡ 5 logα b1 + logα b2 + 2 logα b3 ( mod 546)

16 ≡ logα b1 + 2 logα b2 + 2 logα b3 ( mod 546)

4 ≡ 10 logα b1 + 2 logα b2 + 4 logα b3 ( mod 546)

26 ≡ logα b2 + 5 logα b3 ( mod 546).

3. Solving the linear system of four equations in three unknowns (the logarithms xi = logα bi)
yields the values logα b1 = 42, logα b2 = 182 and logα b3 = 78.

4. Suppose that the integer k = 3 is selected. Since

τ.α3 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13
10 −11 12 −13 1 −2 3 4 5 6 7 8 9

)
(

14 15 16
14 15 16

)(
17 18 19 20 21 22 23
21 22 23 17 −18 19 −20

)
= α22

1 α4
3

τ.α3 = (α16
1 )3α4

3 because 16(3) = |α1|+ 22 ,

it follows that logα τ = (3 logα b1 + 4 logα b3 − 3) mod 546 = 435 .

3 Method for Representing Integers by Signed Permuta-
tions

3.1 Converting natural number in hyperoctahedral system

Definition 3.1. Hyperoctahedral number system is a system that expresses all natural number n of
N in the form :

n =

k(n)∑
i=0

di.Bi , where k(n) ∈ N, di ∈ {0, 1, 2, · · · , 2i+ 1} and Bi = 2ii! . (5)
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This definition is motivated by the fact that Bi is the cardinal of the hyperoctahedral group Bi.

To denote the non-negative integer n of the equation (5) in the hyperoctahedral system, we use by
convention the (k + 1)-digits representation

dkdk−1 · · · d2d1d0 .

Theorem 3.1. Every positive integer has an unique representation in the hyperoctahedral system.

Before giving the proof of this theorem, these are some properties of the hyperoctahedral system.

Lemma 1. If n = dk · · · d1d0 is a number in hyperoctahedral system, then

0 6 n 6 Bk+1 − 1

Proof. Since 0 6 di 6 2i+ 1, we have

0 6
k∑

i=0

diBi 6
k∑

i=0

(2i+ 1)Bi .

Recall that Bi = 2ii! ,

(2i+ 1)Bi = (2(i+ 1− 1) + 1)Bi

= (2(i+ 1)− 1)Bi

= 2(i+ 1)Bi −Bi

= Bi+1 −Bi .

Therefore,
k∑

i=0

(2i+ 1)Bi =

k∑
i=0

(Bi+1 −Bi) = Bk+1 −B0 = Bk+1 − 1 .

Lemma 2. Let n = dk · · · d1d0 be a number in hyperoctahedral system, then

dkBk 6 n < (dk + 1)Bk .

Proof. Let m = dk−1 · · · d1d0. From lemma 1, 0 6 m < Bk. We also have n = dkBk +m, hence

dkBk 6 n < Bk + dkBk = (1 + dk)Bk .

Now, we can proceed to the demonstration of theorem 3.1 which states the one-to-oneness between
non negative integers and hyperoctahedral base numbers.

Proof. Let an · · · a1a0 with an ̸= 0 and bm · · · b1b0, bm ̸= 0 be two representations of a positive
integer N in hyperoctahedral system. First, bm ≥ 1 and an ≥ 1 imply

Bm ≤ bmBm ≤ bm · · · b1b0 and Bn ≤ an · · · a1a0.

The relation n = m is immediate because if n < m then

Bm ≥ Bn+1 > an · · · a1a0

by lemma 1 so
bm · · · b1b0 > an · · · a1a0 .

Similarly, if m < n then
an · · · a1a0 > bm · · · b1b0 .

We get a contradiction. Consequently n = m and ai = bi for all i ∈ {0, 1, . . . , n} by induction and
by the unicity of the expression N = anBn + rn with rn = an−1 · · · a1a0 < Bn.
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To express a positive integer n in the hyperoctahedral system, one proceeds with the following
manner. Start by dividing n by 2 and let d0 be the rest r0 of the expression

n = r0 + (2)q0 .

Divide q0 by 4, and let d1 be the rest r1 of the expression

q0 = r1 + (4)q1 .

Continue the procedure by dividing qi−1 by 2(i+ 1) and taking di := ri of the expression

qi−1 = ri + 2(i+ 1)qi

until ql = 0 for some l ∈ N. In this way, we obtain n = dl : dl−1 : · · · : d1 : d0 and we also have

n = d0 + 2 (d1 + 4 · (d2 + 2(3) · (d3 + · · · ))) .

Example 3.2 (Conversion is made by programming in PARI/GP). In the hyperoctahedral system,
the integer m = 197662021640230088962448775150 is represented by hm = 41 : 40 : 33 : 24 : 33 : 6 :
33 : 24 : 1 : 13 : 14 : 7 : 16 : 15 : 13 : 4 : 4 : 11 : 1 : 7 : 3 : 3 : 0.

Now let n = dk−1 : dk−2 : · · · : d1 : d0 be a number in hyperoctahedral system. By definition 3.1,
one way to convert n to the usual decimal system is to calculate

dk−12
k−1(k − 1)! + · · ·+ d1.2 + d0 .

In practice, one can use this algorithm:

Input : An integer dk−1 : dk−2 : · · · : d1 : d0 in hyperoctahedral system.

Output : An integer d in decimal system.

1. initiate the value of d : d← dk−1

2. for i from k − 1 to 1 do : d← d.2.i+ di−1

3. return d

Example 3.3. To convert the number 7 : 0 : 2 : 3 : 1 to the decimal system, multiply 1, 3, 2, 0, 7
respectively by B0, B1, B2, B3, B4, after that, add the results:

7(384) + 0 + 2(8) + 3(2) + 1 = 2711 .

We obtain the same result with :

d4 = 7 ,

7(2)4 + d3 = 56 + 0 = 56 ,

56(2)3 + d2 = 336 + 2 = 338 ,

338(2)2 + d1 = 1352 + 3 = 1355 ,

1355(2)1 + d0 = 2710 + 1 = 2711 .

3.2 A bijection between the subexceedant functions and permuta-
tions

Definition 3.2. A subexceedant function f on [n] is a map f : [n] −→ [n] such that

1 6 f(i) 6 i for all i ∈ [n] .
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We will denote by Fn the set of all subexceedant functions on [n], and we will represent a subexceedant
function f over [n] by the word f(1)f(2) · · · f(n).

Example 3.4. These are the sets Fn for n = 1, 2, 3:

F1 = {1}
F2 = {11, 12}
F3 = {111, 112, 113, 121, 122, 123}.

It is easy to verify that card Fn = n!, since from each subexceedant f over [n− 1], one can obtain
n distinct subexceedant functions over [n] by adding any integer i ∈ [n] at the end of the word
representing f .

We will give a bijection between Sn and Fn. Let be the map

ϕ : Fn −→ Sn
f 7−→ σf = (1 f(1))(2 f(2)) · · · (n f(n))

.

Notice that there is an abuse of notation in the definition of σf . Indeed, if f(i) = i, then the cycle
(i f(i)) = (i) does not really denote a transposition but simply the identity permutation.

Lemma 3. The map ϕ is a bijection from Fn onto Sn.

Proof. Since Sn and Fn both have cardinality n!, it suffices to prove that f is injective. Let f and
g be two subexceedant functions on [n]. Assume that ϕ(f) = ϕ(g) i.e. σf = σg. So we have:

(1 f(1))(2 f(2)) · · · (n f(n)) = (1 g(1))(2 g(2)) · · · (n g(n)). (6)

Since σf = σg, then in particular σf (n) = σg(n). By definition σf (n) = f(n) and σg(n) = g(n),
so f(n) = g(n). Let us multiply both members of equation (6) on the right by the permutation
(n f(n)) = (n g(n)), we obtain:

(1 f(1))(2 f(2)) · · · (n− 1 f(n− 1)) = (1 g(1))(2 g(2)) · · · (n− 1 g(n− 1)).

Now, if we apply the same process to this equation, we obtain f(n − 1) = g(n − 1). By iterating,
we conclude that f(i) = g(i) for all integers i ∈ [n] and then f = g.

Let σ be a permutation of the symmetric group Sn and f be the inverse image of σ by ϕ. Then f
can be constructed as below:

1. Set f(n) = σ(n).

2. Multiply σ on the right by (n σ(n)) (this operation consists in exchanging the image of n
and the image of σ−1(n)), we obtain a new permutation σ1 having n as a fixed point. Thus
σ1 can be considered as a permutation of Sn−1. Then set f(n− 1) = σ1(n− 1).

3. In order to obtain f(n−2), apply now the same process to the permutation σ1 by multiplying
σ1 by (n− 1 σ1(n− 1)). Iteration determines f(i) for all integers i of [n].

3.3 Mapping hyperoctahedral base numbers to signed permutations

Let dn−1 dn−2 · · · d1 d0 be a n-digits number in hyperoctahedral system. That is di ∈ {0, 1, 2, · · · , 2i+
1} for i = 0, · · · , n− 1.

Writing di = 2qi + ri where ri ∈ {0, 1} and qi ∈ {0, . . . , i}, gives
• the subexceedant function f = f(1) · · · f(n) with f(i) = 1 + qi−1, i = 1, . . . , n
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• and the sequence (ε1, . . . , εn) with εi = (−1)ri−1 for i = 1, . . . , n.

So to each integer dn−1 dn−2 · · · d1 d0, we associate the signed permutation(
1 2 . . . n

ε1σ1 ε2σ2 . . . εnσn

)
where σ = σ1 · · ·σn is the permutation associated to the subexceedant function f by the map

ϕ : Fn −→ Sn
f 7−→ σf = (1f(1))(2f(2)) · · · (nf(n)) .

Example 3.5. Let the number of 23 digits hm = 41 : 40 : 33 : 24 : 33 : 6 : 33 : 24 : 1 : 13 : 14 : 7 :
16 : 15 : 13 : 4 : 4 : 11 : 1 : 7 : 3 : 3 : 0 in hyperoctahedral system. Writing each digit as di = 2qi + ri
gives

• the subexceedant function

f = 1 2 2 4 1 6 3 3 7 8 9 4 8 7 1 13 17 4 17 13 17 21 21

with f(i) = 1 + qi−1, i = 1, . . . , 23

• and the sequence

(ε1, . . . , ε23) = (1,−1,−1,−1,−1,−1, 1, 1,−1,−1, 1,−1, 1,−1,−1, 1,−1, 1, 1, 1,−1, 1,−1)

with εi = (−1)ri−1 for i = 1, . . . , 23.

The permutation associated to the subexceedant function f by the map ϕ is the product of cycles
(1 1)(2 2)(3 2)(4 4)(5 1)(6 6)(7 3)(8 3)(9 7)(10 8)(11 9)(12 4)(13 8)(14 7)(15 1)(16 13)(17 17)
(18 4)(19 17)(20 13)(21 17)(22 21)(23 21) from left to right. We associate the signed permutation

µ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13
5 −11 −2 −12 −15 −6 10 3 −14 −16 9 −18 8

14 15 16 17 18 19 20 21 22 23
−7 −1 20 −19 4 22 13 −17 23 −21

)
to the number 41 : 40 : 33 : 24 : 33 : 6 : 33 : 24 : 1 : 13 : 14 : 7 : 16 : 15 : 13 : 4 : 4 : 11 : 1 : 7 : 3 : 3 :
0.

Now, let π =

(
1 2 . . . n

ε1σ1 ε2σ2 . . . εnσn

)
be a signed permutation. As ϕ is a bijection, from π

we have

f = f(1) · · · f(n) = ϕ−1(σ) and ri−1 =

{
0 if εi = 1

1 if εi = −1
for i = 1, . . . , n.

The digits di = 2(f(i+1)−1)+ri, i = 0, . . . , n−1 form the hyperoctahedral number dn−1 dn−2 · · · d1 d0.
It is easy to verify that di ∈ {0, . . . , 2i+ 1}. We have

1 6 f(i) 6 i for i = 1, . . . , n

0 6 f(i+ 1) 6 i+ 1 for i = 0, . . . , n− 1

0 6 2(f(i+ 1)− 1) 6 2i for i = 0, . . . , n− 1

0 6 di 6 2i+ 1 because 0 6 ri 6 1.
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4 Cryptography on Hyperoctahedral Group

In many ways, the group of signed permutations is analogous to the multiplicative group of a
finite field. For this purpose, cryptosystems based on the latter can be translated to systems using
the hyperoctahedral group. To label the message units, mathematical objects such as integers,
points or vectors on some curves are often used in cryptography. This section addresses public key
cryptosystems based on the group of signed permutations so one uses message units with signed
permutations as equivalents (according to section 3).

4.1 Analog of the Diffie-Helman key exchange

The Diffie-Hellman key exchange [1] originally used the multiplicative group of a finite field. It can
be adapted for signed permutations group as follow.

Suppose that two users Alice and Bob want to agree upon a secret key, a random element of Bn,
which they will use to encrypt their subsequent messages to one another. They first choose a large
integer n for the hyperoctahedral group Bn and select a signed permutation β ∈ Bn to serve as
their ”base” and make them public. Alice selects a random integer 0 < a < Bn, which she keeps
secret, and computes βa ∈ Bn which she makes public. Bob does the same. He selects a random
integer 0 < b < Bn, and transmits βb to Alice over a public channel. Alice and Bob agree on the
secret key βab by computing (βb)a and (βa)b respectively.

4.2 Generalized ElGamal public key encryption procedure in signed
permutations group

• Key generation. Each entity creates a private key and a corresponding public key as
follows :

1. Select a large integer n for the hyperoctahedral group Bn.

2. Generate a signed permutation β ∈ Bn such that |β| is divisible by a very large prime
p ≤ n.

3. Select a random integer 0 < u < |β| and computes βu.

4. Publish (β, βu) as public key and keep u as private key.

• Encryption. User ”A” encrypts a message M for user ”B” as follows :

1. Obtain B’s authentic public key (β, βb)

2. Represent the message M as an element µ of the signed permutations group Bn.

3. Select a random integer 0 < a < |β|.

4. Compute γ1 = βa and γ2 = µ.(βb)a

5. Send the pair of signed permutations γ = (γ1, γ2) to user ”B”.

• Decryption. To recover plaintext m from γ, user ”B” should do the following :

1. Use B’s private key b to compute (γb
1)

−1 = ((βa)b)−1.

2. Recover µ by multiplying γ2 on the right by γ−b
1 .

3. Recover M by computing the integer representation of µ.
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Example 4.1 (ElGamal encryption with artificially small parameters). Key generation. Entity
”B” selects to use the hyperoctahedral group B23 and its subgroup generated by the signed permutation
α of order 546 in example 2.6. ”B” chooses the private key b = 121 and computes α121. B’s public
key is (α, αb) with

αb =

(
1 2 3 4 5 6 7 8 9 10 11 12 13
−5 −6 −7 −8 −9 −10 −11 −12 −13 −1 2 −3 4

)
(

14 15 16
15 −16 14

)(
17 18 19 20 21 22 23
−19 −20 −21 −22 −23 −17 −18

)
.

Encryption. User ”A” requires to send the message ” ATTACK AT DAWN ” interpreted as the
integer m of example 3.2 to user ”B”. m is represented by the signed permutation µ of example 3.5.
”A” selects the integer a = 14 and computes

αa =

(
1 2 3 4 5 6 7 8 9 10 11 12 13
2 −3 4 −5 6 −7 8 −9 10 −11 12 −13 1

)(
14 15 16
−16 −14 15

)
and

µ.(αb)a =

(
1 2 3 4 5 6 7 8 9 10 11 12 13
9 2 −6 −3 14 −10 1 7 16 −15 13 −18 12

14 15 16 17 18 19 20 21 22 23
−11 −5 20 −19 8 22 −4 −17 23 −21

)
.

Then, ”A” sends the pair of signed permutations (αa, µ.(αb)a) to user ”B”.

Decryption. To decrypt, user ”B” computes

((αa)b)−1 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13

10 −11 12 −13 1 2 3 4 5 6 7 8 9

)(
14 15 16
−15 16 −14

)
and recovers µ by multiplying µ.(αb)a) on the right by ((αa)b)−1. ”B” recovers m by computing the
integer representation of µ.

4.3 Efficiency and security

It is easy to represent any data stream with a finite length by an unique signed permutation thanks
to the one to one correspondence between signed permutations and natural numbers. The group
operation in the signed permutation group, which is the ordinary composition of mappings, is easy
to apply. On the hyperoctahedral group Bn, it can be performed in time O(n). Optimized method
for exponentiation makes the proposed Diffie-Hellman key exchange and ElGamal cryptosystem
easy to implement. However, as we must work in a very large hyperoctahedral group, the need of
large memory from the point of view implementation requires improvements.

For the Diffie-Hellman’s key exchange above, a third party knows only the elements β , βa and βb

of Bn which are public knowledge. Obtaining βab knowing only βa and βb is as hard as taking the
discrete logarithm a from β and βa (or b knowing β and βb). Then an unauthorized third party
must solve the discrete logarithm problem to the base β ∈ Bn to determine the private key.

Breaking the generalized ElGamal cryptosystem above, that is, recovering µ knowing only β, βb, βa

and µ.(βb)a, amounts to finding βab and then multiplying µ.(βb)a on the right by (βab)−1. As
we have already seen previously, to determine βab, an unauthorized third party needs the solution
of the discrete logarithm problem in the cyclic subgroup < β > of Bn. However the fact that the
signed permutations group is non commutative strengthens the security of this generalized ElGamal
cryptosystem.
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5 Conclusions

The main idea for implementation of the hyperoctahedral group cryptography is to establish a
bijection between signed permutations and natural numbers. Multiplication and inversion in signed
permutations group are very fast. The only negative point of the implementation is the need of
large memory for storing and transmitting permutations. Subgroups of signed permutations group
on which the Pohlig-Hellman’s algorithm is unsuccessful to solve the discrete logarithm problem
can be selected with a very easy and low cost method. This fact makes the proposed Diffie-Hellman
key exchange and ElGamal cryptosystem in security while index-calculus algorithm treats without
difficulty the DLP on these subgroups.
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