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Abstract

This paper is devoted to obtaining various explicit dynamic solutions of the Landau-Lifshitz
equation in 2-dimensional cylindrical symmetric system. By suitably establishing explicit
transformation, we here construct explicit dynamic solutions depending only on the angle θ and
time t for Landau-Lifshitz equation with anisotropy field or external magnetic field. Besides,
we introduce certain indeterminate solution form of the Landau-Lifshitz equation by solving
the indeterminate coefficients to derive explicit magnetic vortex or traveling wave solution.
In this paper, we provide some specific examples and attain their some explicit dynamic solutions.
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1 Introduction

The well-known Landau-Lifshitz equation [1] can be written as the form
∂m⃗
∂t

= λ1m⃗× H⃗e − λ2m⃗× (m⃗× H⃗e), Ω× (0, T ),

H⃗e := −H⃗(m⃗) +
3∑

i,j=1

∂
∂xj

(aij
∂m⃗
∂xi

) + H⃗, Ω× (0, T ),
(1.1)

in which m⃗(x, t) = (m1,m2,m3) : Ω × (0, T ) → S2 ⊂ R3 is a three-dimensional vector valued
unknown function with respect to space variables x = (x1, x2, ....., xn) and time t; λ1 and λ2(> 0)
are constants in physics; the effective magnetic field H⃗e is a conjugate of the anisotropy field H⃗(m⃗),

the external magnetic field H⃗ and the exchange field ∆m⃗ =
3∑

i,j=1

∂
∂xj

(aij
∂m⃗
∂xi

). Originally introduced

by Landau and Lifshitz in 1935, the above motion equation describes the evolution of spin chains
in continuum ferromagnets. The Eq. (1.1) plays an essential role in the studying of nonequilibrium
magnetism.

Many properties of two-dimensional and especially n-dimensional Landau-Lifshitz equation have
been much less studied. The complete form of cylindrical symmetric case for the Heisenberg system
[2] can be written as:

m⃗t = m⃗× m⃗rr +
n− 1

r
m⃗× m⃗r +

n− 1

r2
m⃗× m⃗θθ + m⃗× m⃗zz, n ≥ 2, (1.2)

where r =
√
x21 + x22 + · · · · · ·+ x2n. In 1990, M. Lakshmanan and K. Porsezian [3] initially proposed

the cylindrical symmetric form of the multidimensional Landau-Lifshitz equations:

m⃗t = m⃗× m⃗rr +
n− 1

r
m⃗× m⃗r, n ≥ 1, (1.3)

where r =
√
x21 + x22 + · · · · · ·+ x2n. Under the suitable transformation, the Eq. (1.3) is geometrically

equivalent to nonlinear Schrödinger map equation [4]. In 1999, Chang, Shatah and Uhlenbeck [5]
considered the 2-dimensional cylindrical symmetric Landau-Lifshitz equations:

m⃗t = m⃗× m⃗rr +
1

r
m⃗× m⃗r, n = 2, (1.4)

with initial value problem, where r =
√
x21 + x22. When the Eq. (1.4) satisfies the small energy

initial condition, they have proved that there exists one global smooth solution to the Eq. (1.4).
However, it is extremely important to investigate this open problem that there exists global smooth
solution to the n-dimensional Landau-Lifshitz equation. In 2000-2001, B. Guo and G. Yang et al. [6]
constructed some exact blow-up solutions to n-dimensional cylindrical symmetric Landau-Lifshitz
equations:

m⃗t = m⃗× m⃗rr +
n− 1

r
m⃗× m⃗r, n ≥ 2, (1.5)

where r =
√
x21 + x22 + · · · · · ·+ x2n. In 2001, it was initially constructed by B. Guo and G. Yang

[7] to obtain some exact nontrivial global smooth solutions on unit sphere for vanishing external
magnetic field Eq. (1.4). Although many explicit dynamic solutions (depend only on the radius r
and time t) of the Landau-Lifshitz equation have been intensively constructed by many investigators,
we are still of the greatest interest in some dynamic solutions (depend only on the angle θ and time
t) to the Landau-Lifshitz equation. Meanwhile, some time periodic solutions (depend on the radius
r, the angle θ and time t) are known as magnetic vortex solutions (see [8],[9],[10]), which bear a
vital role in the understanding of the Landau-Lifshitz flow.

Our main purpose in this paper is to construct various explicit dynamic solutions of the Landau-
Lifshitz equation. We mainly consider these explicit solutions in two-dimensional cylindrical symmetric
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case. It is important to note that how to choose the suitable first orthogonal matrix is a key step
to achieve explicit transform.

In Section 2, our purpose is to obtain explicit dynamic solutions with respect to angle θ and time
t for the HLL with a uniaxial anisotropy field H⃗(m⃗) = (0, 0, f(m3(t), λ, t)), in which m3 depends
only on time t. In order to easily construct these solutions, we provide an explicit transformation
between the HLX and the HLL.

In Section 3, we provide a meaningful magnetic vortex solution to the Eq. (3.1) with anisotropy
field and consider the energy gradient modulus to gain Landau-Lifshitz energy. Furthermore, we
also construct a traveling wave solution (depends only on the angle θ and time t) to the Eq. (3.2)
with external magnetic field.

In Section 4, we will construct some explicit dynamic smooth solutions to two-dimensional HLZ in
cylindrical coordinates, when α(t) is continuous.

2 The Explicit Dynamic Solutions of the HLL

In this section, taking λ1 = 1 and λ2 = 0 for the Eq.(1.1), we consider the initial-boundary value
problem of the Landau-Lifshitz equation under non-vanishing uniaxial anisotropy field

HLL :


∂m⃗
∂t

= m⃗× (∆m⃗+ f(m3(t), λ, t)e⃗3), (x, t) ∈ Ω× (0, T ),
m⃗(x, 0) = φ⃗(x), x ∈ Ω,

m⃗(x, t) = ϕ⃗(x, t), (x, t) ∈ ∂Ω× (0, T ),
m⃗ ∈ S2 ⊂ R3, in Rn × [0,∞),

where e⃗3 = (0, 0, 1). When f(m3(t), λ, t) takes 0, the Landau-Lifshitz equation with isotropic case
will be written as follows:

HLX :


∂n⃗
∂t

= n⃗×∆n⃗, (x, t) ∈ Ω× (0, T ),
n⃗(x, 0) = ϖ⃗(x), x ∈ Ω,
n⃗(x, t) = ω⃗(x, t), (x, t) ∈ ∂Ω× (0, T ),
n⃗ ∈ S2 ⊂ R3, in Rn × [0,∞).

In the present section, we will construct explicit dynamic solutions to the HLL in 2-dimensional
cylindrical coordinates. Constructing explicit dynamic solution to n-dimensional HLL is still an
open and important problem. In order to obtain these explicit solutions of the HLL, the following
Lemmas are firstly established.

Lemma 2.1. Let g = f(m3(t), λ, t) satisfy the 3× 3 matrix

H =

 0 −g 0
g 0 0
0 0 0

 .

Then the first orthogonal matrix A(t) defined by

A(t) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1


that is an explicit solution of the equation

∂A(t)

∂t
= −HA(t),

in which φ =
∫ t

0
f(m3(s), λ, s)ds.
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Proof. We can easily verify that A(t) satisfies

∂A(t)

∂t
=

 −g sinφ g cosφ 0
−g cosφ −g sinφ 0

0 0 0

 = −HA(t).

Next the solution of the HLL considered, we gain some explicit dynamic solutions that include in
C1([0,∞);C2(Rn;R3)) and are classical. By using above lemma 2.1, we construct a transformation
from static solution of the HLX to explicit dynamic solution of the HLL, as follows:

Lemma 2.2. Let g = f(m3(t), λ, t) ∈ C(0, T )(0 < T ≤ ∞), φ⃗ ∈ C2(Ω) and ϕ⃗ ∈ C1(0, T ;C2(∂Ω;R3)),
then m⃗ ∈ C1(0, T ;C2(Rn;R3)) is a solution of the HLL if and only if

n⃗ = m⃗A(t)

is a solution of the HLX, where ϖ⃗ = φ⃗A(0) = φ⃗A0 and ω⃗ = ϕ⃗A(t).

Proof. i) For one thing, assuming that m⃗ is a solution of the HLL, we have

∂n⃗
∂t

− n⃗×∆n⃗

= ∂(m⃗A(t))
∂t

− (m⃗A(t)×∆(m⃗A(t)))

= m⃗ ∂(A(t))
∂t

+ (m⃗× (0, 0, g))A(t)

= m⃗ ∂(A(t))
∂t

+ m⃗HA(t)
= 0.

Thus, this proves n⃗ = m⃗A(t) is a solution of the HLX;

ii) For another thing, supposing that n⃗ = m⃗A(t) is a solution of the HLX, we deduce that

∂m⃗
∂t

− m⃗× (∆m⃗+ (0, 0, g))

= ∂(n⃗(A(t))T )
∂t

− (n⃗(A(t))T )× (∆(n⃗(A(t))T ) + (0, 0, g))

= n⃗ ∂((A(t))T )
∂t

− (n⃗(A(t))T )× (0, 0, g)

= n⃗ ∂((A(t))T )
∂t

+ (n⃗(A(t))THT )
= 0.

Therefore, this proves that m⃗ = n⃗(A(t))T is a solution of the HLL.

Remark 2.3. In Lemma 2.2, we construct the transform that is explicit form. When the solution
to the HLX is given by us, of course, we will easily calculate the solution to the HLL. In view of
explicit dynamic solution (depends only on the angle θ and time t) for the HLL, the first orthogonal
matrix A(t) ensures to achieve an explicit transform between static solution of the HLX and explicit
dynamic solution of the HLL. As a matter of fact, we introduce φ =

∫ t

0
f(m3(s), λ, s)ds that is

continuous on (0, T ) and
∫ t

0
f(m3(s), λ, s)ds =

∫ t

0
f(n3(s), λ, s)ds, in which n3 is independent of x,

thus m⃗ = n⃗(A(t))T can be easily obtained.

According to Lemma 2.2, some explicit dynamic solutions with respect to radius r and time t have
been abundantly constructed by Guo and Yang [11]. Nevertheless, it is really significant to construct
some explicit dynamic solutions (depend only on the angle θ and time t) of the HLL.
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Theorem 2.4. Let θ = arctan(x2
x1

), we have

m⃗(θ, t) =

 cos(θ − φ)
sin(θ − φ)
0

T

(2.1)

that is an explicit dynamic solution for 2-dimensional HLL in cylindrical coordinates, and satisfies
the initial condition

m⃗(θ, 0) =

 cosθ
sinθ
0

T

,

where φ =
∫ t

0
f(m3(s), λ, s)ds and m⃗(θ, t) ∈ S2 ∩ C∞([0,∞)× [0, 2π]).

Proof. We have constructed static cylindrical symmetric solution of the HLX in the following form

n⃗(θ) =

 cosθ
sinθ
0

T

.

According to Lemma 2.2, we obtain

m⃗(θ, t) = n⃗(A(t))T =

 cos(θ − φ)
sin(θ − φ)
0

T

that is an explicit dynamic solution for the HLL with the initial value above.

Remark 2.5. Let A1 ∈ R3×3 be the first constant orthogonal matrix i.e. |A1| = 1, in which

A1 =

 ±
√

1− C2
1 C1 0

C1 ∓
√

1− C2
1 0

0 0 −1

 ,

satisfying |C1| ≤ 1. If n⃗ is a static solution for the HLX, then n⃗A1B
T (t) is a dynamic solution for

the HLL, where

B(t) =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


and ϕ =

∫ t

0
f(m3(s), λ, s)ds.

Remark 2.6. Let A2 ∈ R3×3 be the first constant orthogonal matrix i.e. |A2| = 1, in which

A2 =

 ±
√

1− C2
2 C2 0

−C2 ±
√

1− C2
2 0

0 0 1

 ,

satisfying |C2| ≤ 1. If m⃗ is an explicit dynamic solution to the HLL, then m⃗A2 is also an explicit
dynamic solution to the HLL.

Example 2.7. On the case of 2-dimensional Landau-Lifshitz equation with a uniaxial anisotropy
field (0, 0, 2λ(1−m3)

3), explicit static solution has been derived by Papanicolaou and Zakrezewski
[12]. This equation may be recast as follows:{

∂m⃗
∂t

= m⃗× (∆m⃗+ (0, 0, 2λ(1−m3)
3)), in Rn × (0,∞),

m⃗ ∈ S2, in Rn × [0,∞).
(2.2)
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It follows from Theorem 2.4 that

φ =
∫ t

0
f(n3(s), λ, s)ds

=
∫ t

0
f(m3(s), λ, s)ds

=
∫ t

0
2λ(1− 0)3ds

= 2λt;

therefore, we gain

m⃗(θ, t) =

 cos(θ − 2λt)
sin(θ − 2λt)
0

T

(2.3)

that is an explicit dynamic solution of 2-dimensional Eq.(2.2) in cylindrical symmetric system, and
satisfies the initial value

m⃗(θ, 0) =

 cosθ
sinθ
0

T

.

3 The Vortex or Traveling Wave Solution of the Eq.
(3.1) and Eq. (3.2)

In this section, we construct vortex solution of the Landau-Lifshitz equation with uniaxial anisotropy
field

u⃗t = u⃗× u⃗rr +
1

r
u⃗× u⃗r +

1

r2
u⃗× u⃗θθ + u⃗× H⃗(u⃗), (3.1)

and traveling wave solution (see [13],[14]) of the Landau-Lifshitz equation with external magnetic
field

v⃗t = v⃗ × v⃗rr +
1

r
v⃗ × v⃗r +

1

r2
v⃗ × v⃗θθ + v⃗ × α(t)H⃗, (3.2)

where H⃗(u⃗) = (0, 0, λu3), H⃗ = (0, 0, h3) and α(t) satisfies
∫ t

0
α(s)ds ∈ C[0, T ], 0 < T ≤ +∞.

Theorem 3.1. Let r =
√
x21 + x22, θ = arctan(x2

x1
) and φ(r) = 2arctan

√
−b2+p2+λr2+ωr2

−b2+p2+λr2−ωr2
. Then

we have

u⃗(r, θ, t) =

 sin(φ(r))cos(pθ + ωt+ ξ)
sin(φ(r)) sin(pθ + ωt+ ξ)
cos(φ(r))

T

(3.3)

that is a magnetic vortex solution of 2-dimensional Eq. (3.1) in cylindrical symmetric system.

Proof. If u⃗(r, θ, t) = (u1(r, θ, t), u2(r, θ, t), u3(r, θ, t)) is a magnetic vortex solution for the Eq.(3.1),
where 

u1(r, θ, t) = sin(φ(r))cos(pθ + ωt+ ξ),
u2(r, θ, t) = sin(φ(r))sin(pθ + ωt+ ξ),
u3(r, θ, t) = cos(φ(r)),

(3.4)

p denotes the vortex degree; ω denotes the frequency; ξ denotes the initial phase, then we deduce
from the Eq. (3.1) and (3.4) that

−r2 d
2

dr2
(φ(r))− r

d

dr
(φ(r)) + (

p2

2
+
λr2

2
)sin(2φ(r)) + r2ω sin(φ(r)) = 0. (3.5)

Next let us introduce function

φ(r) = 2 arctan(
rb

µ
), (µ ̸= 0), (3.6)
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and substitute (3.6) into the equation (3.5), then we gain

b2µ2rb − b2r3b − p2µ2rb + p2r3b − λµ2r2+b + λr2+3b − ωµ2r2+b − ωr2+3b = 0. (3.7)

After simplifying (3.7), we have

r2b =
µ2(−b2 + p2 + λr2 + ωr2)

−b2 + p2 + λr2 − ωr2
.

Thus, we obtain

φ(r) = 2arctan

√
−b2 + p2 + λr2 + ωr2

−b2 + p2 + λr2 − ωr2
. (3.8)

Remark 3.2. We deduce from (3.3) and (3.8) that energy gradient modulus

|u⃗r(r, t)|2 =
4(ωb2 − ωp2)

2
r2

(b2 − p2 − λr2)2(b2 − p2 − λr2 + ωr2)(b2 − p2 − λr2 − ωr2)
(3.9)

is independent of t. And
∫ R

0
|u⃗r(r, t)|2rdr (R is constant or infinity) is bounded or unbounded.

Example 3.3. In view of (3.9), we take R = +∞, ω = 1, p = 2, b = 1, λ = 3, and obtain

|u⃗r(r, t)|2 =
36r2

(−3− 3r2)2(−3− 2r2)(−3− 4r2)
. (3.10)

Integrating (3.10) over [0,+∞), we have the energy

E =

∫ +∞

0

|u⃗r(r, t)|2rdr = 2 + 2 ln(3)− 6ln(2).

If we also take R = 2, ω = 1, p = 1, b = 3, λ = 1, then we gain

|u⃗r(r, t)|2 =
16r2

(8− r2)2(4− r2)
. (3.11)

Therefore, we also have the energy

E =

∫ 2

0

16r2

(8− r2)2(4− r2)
rdr = +∞.

Remark 3.4. As is mentioned above, it is the fact that there exists finite energy magnetic vortex
solution of the Eq.(3.1) under prescribed boundary data. In addition, if the Landau-Lifshitz equation
loses anisotropy field, then magnetic vortex solution will transform traveling wave solution.

Theorem 3.5. Let θ = arctan(x2
x1

). There is a traveling wave solution v⃗(θ, t) = (v1(θ, t), v2(θ, t), v3
(θ, t)) for the Eq.(3.2) with external magnetic field, in which

v⃗(θ, t) =

 sin(2 arctan(1))cos(pθ −
∫
h3α(t)dt+ ξ1)

sin(2 arctan(1))sin(pθ −
∫
h3α(t)dt+ ξ1)

cos(2 arctan(1))

T

. (3.12)

Proof. We will suppose 
v1(r, θ, t) = sin(φ(r))cos(pθ + ω(t)t+ ξ),
v2(r, θ, t) = sin(φ(r))sin(pθ + ω(t)t+ ξ),
v3(r, θ, t) = cos(φ(r)),

(3.13)

45



Zhang; JAMCS, 35(1): 39-52, 2020; Article no.JAMCS.54297

and deduce from the Eq. (3.2) and (3.13) that

−r2( d
2

dr2
φ(r))− r(

d

dr
φ(r)) +

p2

2
sin(2φ(r)) + r2(h3α(t) + (

d

dt
ω(t))t+ ω(t))sinφ(r) = 0. (3.14)

If we take

h3α(t) + (
d

dt
ω(t))t+ ω(t) = 0, (3.15)

then we obtain an exact solution for the equation (3.15), and it may be written as

ω(t) =
C1 −

∫
α(t)h3dt

t
, (3.16)

in which C1 is constant. Therefore, (3.13) can be rewritten as
v1(r, θ, t) = sin(φ(r))cos(pθ −

∫
h3α(t)dt+ ξ1),

v2(r, θ, t) = sin(φ(r))sin(pθ −
∫
h3α(t)dt+ ξ1),

v3(r, θ, t) = cos(φ(r)),
(3.17)

in which ξ1 is constant. Substituting (3.17) into the Eq. (3.2), we easily obtain

−r2 d
2

dr2
(φ(r))− r

d

dr
(φ(r)) +

p2

2
sin(2φ(r)) = 0. (3.18)

Let us define function

φ(r) = 2arctan(
arβ

µ
), (µ ̸= 0), (3.19)

where β, a, µ are constant.

Thus, we deduce from (3.18) and (3.19) that

φ(r) = 2 arctan(1). (3.20)

4 The Explicit Dynamic Solutions of the HLZ

In this section, we consider the initial-boundary value problem of the Landau-Lifshitz equation
under non-vanishing external magnetic field

HLZ :


∂m⃗
∂t

= m⃗× (∆m⃗+ α(t)H⃗), (x, t) ∈ Ω× (0, T ),

m⃗(x, 0) = ϕ⃗(x), x ∈ Ω,

m⃗(x, t) = ψ⃗(x, t), (x, t) ∈ ∂Ω× (0, T ),
m⃗ ∈ S2 ⊂ R3, in Rn × [0,∞),

and the initial-boundary value problem for the Landau-Lifshitz equation under vanishing external
magnetic field

HLY :


∂n⃗
∂t

= n⃗×∆n⃗, (x, t) ∈ Ω× (0, T ),

n⃗(x, 0) = ξ⃗(x), x ∈ Ω,

n⃗(x, t) = ζ⃗(x, t), (x, t) ∈ ∂Ω× (0, T ),
n⃗ ∈ S2 ⊂ R3, in Rn × [0,∞),

where H⃗ = (h1, h2, h3), and h1, h2, h3 are constant, and α(t) is continuous.

Next we construct some explicit dynamic solutions in respect to angle θ and time t to the HLZ.
Considering two cases, we let h2

2 + h2
3 ̸= 0 and h2

2 + h2
3 = 0 in this section. In order to conveniently

get explicit dynamic solution of the HLZ, we give some Lemmas as follows:
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Lemma 4.1. Let

i) h2
2 + h2

3 ̸= 0 and h1 = h2 = 0, we have f = α(t)
∣∣∣H⃗∣∣∣ that satisfies the 3× 3 matrix

H∗
1 =

 0 −f 0
f 0 0
0 0 0

 ;

ii) h2
2 + h2

3 = 0 and h2 = h3 = 0, we have the 3× 3 matrix in the following form

H∗
2 =

 0 0 0
0 0 −g
0 g 0

 ,

in which g = α(t)
∣∣∣H⃗∣∣∣;

then

iii) the first orthogonal matrix F1(t) defined by

F1(t) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


that is an explicit solution of the equation

∂F1(t)

∂t
= −H∗

1F1(t),

in which
∣∣∣H⃗∣∣∣ = h3 and ψ =

∣∣∣H⃗∣∣∣ ∫ t

0
α(s)ds;

iv) the first orthogonal matrix F2(t) defined by

F2(t) =

 0 0 1
− sinϕ cosϕ 0
− cosϕ − sinϕ 0


that is an explicit solution of the equation

∂F2(t)

∂t
= −H∗

2F2(t),

in which
∣∣∣H⃗∣∣∣ = h1 and ϕ =

∣∣∣H⃗∣∣∣ ∫ t

0
α(s)ds.

Proof. We can easily verify that F1(t) is the first orthogonal matrix satisfying

∂F1(t)

∂t
=

 −α(t)h3 sinψ α(t)h3 cosψ 0
−α(t)h3 cosψ −α(t)h3 sinψ 0

0 0 0

 = −H∗
1F1(t).

Similarly, we can prove that

∂F2(t)

∂t
=

 0 0 0
−α(t)h1 cosϕ −α(t)h1 sinϕ 0
α(t)h1 sinϕ −α(t)h1 cosϕ 0

 = −H∗
2F2(t).

47



Zhang; JAMCS, 35(1): 39-52, 2020; Article no.JAMCS.54297

Lemma 4.2. Let α(t) ∈ C[0, T ], ϕ⃗ ∈ C2(Ω) and ψ⃗ ∈ C1([0, T ];C2(∂Ω;R3)), then m⃗ ∈ C1([0, T ];C2

(Rn;R3)) is a solution of the HLZ if and only if

i)
n⃗ = m⃗F1(t)

is a solution of the HLY, where ξ⃗ = ϕ⃗P1 and ζ⃗ = ψ⃗F1(t);

ii)
n⃗ = m⃗F2(t)

is a solution of the HLY, where ξ⃗ = ϕ⃗P2 and ζ⃗ = ψ⃗F2(t).

Proof. For the proof of i), assume that n⃗(θ) = m⃗(θ, t)F1(t), then α(t) ∈ C[0, T ] shows that ψ(t) =
h3

∫ t

0
α(s)ds is continuously differentiable on [0, T ]. We have

m⃗ ∈ C1([0, T ];C2(Rn;R3))

if and only if
n⃗ ∈ C2(Rn;R3).

Let ψ(0) = 0, we know F1(0) = P1. So for every θ ∈ Ω, m⃗(θ, 0) = ϕ⃗(θ) if and only if n⃗(θ) = ϕ⃗(θ)P1,

and for every (θ, t) ∈ ∂Ω×(0, T ), m⃗(θ, t) = ψ⃗(θ, t) if and only if n⃗(θ) = ψ⃗(θ, t)F1(t). Next performing
the similar proof of Lemma 2.2, we complete the proof of i). Meanwhile, the same procedure may
be easily adapted to complete the proof of ii). Thus, the proof of Lemma 4.2 is completed.

According to above Lemma 4.2, some explicit exact solutions (depend only on the radius r and time
t) have been obtained by Guo and Yang [15]. But we are interested in explicit dynamic solution
with respect to angle θ and time t for the HLZ. Here we will derive some explicit dynamic solutions
to the HLZ by using above Lemma 4.2.

Theorem 4.3. Let θ = arctan(x2
x1

) and ψ(t) = h3

∫ t

0
α(s)ds. Then m⃗(θ, t) ∈ S2 ∩ C∞([0,∞) ×

[0, 2π]) defined by

m⃗(θ, t) =

 cos(θ − ψ)
sin(θ − ψ)
0

T

(4.1)

that is an explicit dynamic solution of 2-dimensional HLZ in cylindrical symmetric system, satisfying
the following initial-boundary conditions:

i) initial condition:

m⃗(θ, 0) =

 cos θ
sin θ
0

T

,

where θ ∈ Ω = [0, 2π];

ii) boundary conditions:

m⃗(0, t) =

 cos(−ψ)
sin(−ψ)
0

T

,

where (0, t) ∈ {0} × [0,∞), and

m⃗(2π, t) =

 cos(2π − ψ)
sin(2π − ψ)
0

T

.

where (2π, t) ∈ {2π} × [0,∞).
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Proof. Since we constructed static solution to the HLY in the following form

n⃗(θ) =

 cos θ
sin θ
0

T

,

using Lemma 4.2, we obtain

m⃗(θ, t) = n⃗(F1(t))
T =

 cos(θ − ψ)
sin(θ − ψ)
0

T

that is an explicit dynamic solution of the HLZ with above initial value and boundary values.

Theorem 4.4. Let θ = arctan(x2
x1

) and ϕ(t) = h1

∫ t

0
α(s)ds. We have m⃗(θ, t) ∈ S2 ∩ C∞([0,∞)×

[0, 2π]) defined by

m⃗(θ, t) =

 0
sin(θ − ϕ)
− cos(θ − ϕ)

T

(4.2)

that is an explicit dynamic solution of 2-dimensional HLZ in cylindrical coordinates, and satisfies
the following initial-boundary conditions:

i) initial condition:

m⃗(θ, 0) =

 0
sin θ
− cos θ

T

,

where θ ∈ Ω = [0, 2π];

ii) boundary conditions:

m⃗(0, t) =

 0
sin(−ϕ)
− cos(−ϕ)

T

,

where (0, t) ∈ {0} × [0,∞), and

m⃗(2π, t) =

 0
sin(2π − ϕ)
− cos(2π − ϕ)

T

,

where (2π, t) ∈ {2π} × [0,∞).

Proof. Since we constructed static solution of the HLY in the following expression:

n⃗(θ) =

 cos θ
sin θ
0

T

,

using Lemma 4.2 again, we gain

m⃗(θ, t) = n⃗(F2(t))
T =

 0
sin(θ − ϕ)
− cos(θ − ϕ)

T

that is an explicit dynamic solution of the HLZ with above initial value and boundary values.
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Remark 4.5. Let

F =

 C ±
√
1− C2 0

∓
√
1− C2 C 0
0 0 1


be the third-order first constant orthogonal matrix, and satisfy |C| ≤ 1, here if n⃗ is a solution of the
HLY, we conclude that m⃗ = n⃗(F2(t)F )T = n⃗(F2(t)F )−1 is an explicit dynamic solution of the HLZ.

Example 4.6. In Nakamura and Sasada [16], authors studied the HLZ with external magnetic field
in 1974. On the system of two-dimensional cylindrical symmetric model, if we take H = (0, 0, h)
and α(t) ≡ 1, the HLZ can be written as{

∂m⃗
∂t

= m⃗× (∆m⃗+ (0, 0, h)), in Rn × (0,∞),
m⃗ ∈ S2, in Rn × [0,∞),

(4.3)

in which h is nonzero constant.

According to Theorem 4.3, we construct explicit dynamic solution m⃗(θ, t) = (m1(θ, t),m2(θ, t),m3

(θ, t)) of the Eq.(4.3), in which

m⃗(θ, t) =

 cos(θ − ht)
sin(θ − ht)
0

T

(4.4)

satisfies the initial value

m⃗(θ, 0) =

 cos θ
sin θ
0

T

and boundary values

m⃗(0, t) =

 cos(−ht)
sin(−ht)
0

T

,

m⃗(2π, t) =

 cos(2π − ht)
sin(2π − ht)
0

T

.

Example 4.7. Considering the HLZ with external magnetic field H⃗ = (h1, 0, 0) and α(t) ≡ 1, we
recast the equation as follows:{

∂m⃗
∂t

= m⃗× (∆m⃗+ (h1, 0, 0)), in Rn × (0,∞),
m⃗ ∈ S2, in Rn × [0,∞),

(4.5)

in which h1 is nonzero constant.

Similarly, using Theorem 4.4, we obtain

m⃗(θ, t) =

 0
sin(θ − h1t)
− cos(θ − h1t)

T

(4.6)

that is an explicit dynamic solution of the Eq.(4.5), and satisfies the initial value

m⃗(θ, 0) =

 0
sin θ
− cos θ

T
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and boundary values

m⃗(0, t) =

 0
sin(−h1t)
− cos(−h1t)

T

,

m⃗(2π, t) =

 0
sin(2π − h1t)
− cos(2π − h1t)

T

.

Remark 4.8. Investigating limit behavior of solutions for the HLZ, we nowadays face this problem
that we don’t find proper conditions to establish some necessary and sufficient conditions to ensure
that the solution of two-dimensional Landau-Lifshitz equation under non-vanishing external magnetic
field converges to the solution of the Landau-Lifshitz equation without external magnetic field if the
external magnetic field tends to zero (as α(t) → 0). In order to solve this problem, further study
needs to be finished in the future.

5 Conclusions

In the present work, we obtain some new explicit dynamic solutions of the Landau-Lifshitz equation
in 2-dimensional cylindrical symmetric system that contains two cases: the generalized uniaxial
anisotropic case and the external magnetic field. These explicit dynamic solutions don’t equip with
some properties of solutions depending only on the radius r and time t. The construction of these
solutions are based on an explicit transform and an ansatz about the solution. However, many
interesting problems are still unresolved here. Such as:

(i) How is the stability of these explicit dynamic solutions in the energy space?

(ii) Whether we can find suitable transform to construct explicit dynamic solution of the HLL,
if the third component of static solution to the HLX depends only on the angle θ.
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explicit solutions. Phys. Lett. A. 1990;146(6):329-334.

51



Zhang; JAMCS, 35(1): 39-52, 2020; Article no.JAMCS.54297

[4] Nahmod A, Stefanov A, Uhlenbeck K. On Schrödinger maps. Comm. Pure Appl. Math.
2003;56(1):114-151.

[5] Chang N, Shatah J, Uhlenbeck K. Schrödinger maps (unpublished).

[6] Guo BL, Han YQ, Yang GS. Exact blow-up solutions for multidimensional Landau-Lifshitz
equations. AdV Math (China). 2001;30(1):91-93.

[7] Guo BL, Yang GS. Some exact nontrivial global solutions with values in unit sphere for two-
dimensional Landau-Lifshitz equations. Journal of Mathematical Physics. 2001;42(11):5223-
5227.

[8] Pu XK, Guo BL. A note on vortex solutions of Landau-Lifshitz equation. Mathematical
Methods in the Applied Sciences. 2010;33(7).

[9] Zverev VV, Izmozherov IM, Filippov BN. Visualization of dynamic vortex structures in
magnetic films with uniaxial anisotropy (Micromagnetic Simulation). Physics of the Solid State.
2018;60(2):299-311.

[10] Gamayun O, Lisovyy O. On self-similar solutions of the vortex filament equation. Journal of
Mathematical Physics. 2019;60(8):083510.

[11] Yang GS, Guo BL. Some exact solutions to multidimensional Landau-Lifshitz equation with
uprush external field and anisotropy field. Nonlinear Analysis. 2009;71(9):3999-4006.

[12] Papanicolaou N, Zakrezewski WJ. Dynamics of interacting magnetic vortices in a model
Landau-Lifshitz equation. Physical D. 1995;80(3):225-245.

[13] Akram, Ghazala, Batool, Fiza. A class of traveling wave solutions for space-time fractional
biological population model in mathematical physics. Indian Journal of Physics. 2017;91(10):1-
4.

[14] Zhang L, Wang ZC, Zhao XQ. Time periodic traveling wave solutions for a Kermack-
McKendrick epidemic model with diffusion and seasonality. Journal of Evolution Equations;
2019.

[15] Yang GS, Zhang Y, Liu LM. Explicit piecewise smooth solutions of Landau-Lifshitz equation
with discontinuous external field. Acta Mathematicae Applicatae Sinica. 2009;5(1):61-74.

[16] Nakamura K, Sasada T. Solition and wave trains in ferromagnets. Physics Letters A.
1974;48(5):321-322.

——————————————————————————————————————————————–
c⃝2020 Zhang; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribu-
tion and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://www.sdiarticle4.com/review-history/54297

52

http://creativecommons.org/licenses/by/2.0

	Introduction
	The Explicit Dynamic Solutions of the HLL
	The Vortex or Traveling Wave Solution of the Eq. (3.1) and Eq. (3.2)
	The Explicit Dynamic Solutions of the HLZ
	Conclusions

