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ABSTRACT 
 

Soil is considered as the source of life on the globe. Although, numerous research studies, the soil 
is not completely understood whereas it is dynamic complex matrix include many simultaneous 
processes. The conventional methods of soil testing are the most reliable for assessing the land 
productivity and management. Unfortunately, these methods are time consuming and laborious as 
well as costly and hazardous to the environment. Therefore, the soil spectroscopy technique 
provides the functions of detecting, characterizing, quantifying and mapping several soil properties 
based on the uses of different kinds of the sensors (ground-based, airborne-based, and satellite-
based). An integration of soil spectroscopic data, data processing, and modelling is considered as 
an effective tool for estimating soil parameters. Although these advanced techniques able to predict 
the majority of soil properties, there are some of these properties require more experiments for 
building accurate calibration models for estimation. Moreover, creating accurate soil spectral 
libraries (SSLs) for specific areas or soil types is very crucial for saving time, effort, expenses of soil 
surveying, sampling, and analysis. The application of these SSLs has a big limitation of the 
continuous variability of the soil properties over time. Thus, establishing extensive spectral libraries 
is important and mandatory for covering the small scaled areas’ variabilities as well as available soil 
types. Till now, the soil spectroscopy is not entirely replacing the conventional testing methods of 
soils because these techniques need future applications to be trusted and guaranteed of their 
effectiveness.  
 

 

Keywords: Remote sensing; spectroscopy; soil prediction; soil analysis 
 

1. INTRODUCTION 
 

Soil is an important and essential environmental 
resource to produce the food and regulate the 
Earth’s life, whereas soil plays crucial functions 
of water move management, metals and 
nutrients filtering, and storing the carbon for 
helping in global warming mitigation. These 
functions are affected by soil structure and 
composition as well as physical, chemical, and 
biological properties. Moreover, these soil 
properties differ spatiotemporally [1]. 
Furthermore, the soil is a dynamic complex 
matrix consists of organic and inorganic 
compounds which is hardly to be understood [2]. 
Therefore, there is a global need for a good 
technique which able to explain the soil details 
because there is a dramatic increase of the 
human needs of food with the limited available 
land resources. Moreover, the need of the 
extensive spatial soil data is crucial to achieve 
the precision agriculture goals (El-Sayed et al., 
2024). There is a big challenge in the qualitative 
and quantitative soil parameters’ estimation, 
whereas estimating different soil properties is 
essential as well to enhance the land production 
of food and mitigate the climate change impacts 
[3]. However, there are global efforts from 
scientists and researchers in different scales 
(regional, continental, and global) to create 
different soil databases for helping in improving 
agricultural and environmental practices. 
Therefore, soil surveying is needed for 
morphological studies and detecting the soil 

sampling locations; and more samples is better 
for detailed land management (Moursy and 
Thabit 2022a). Therefore, using of the 
conventional methods of soil analysis has many 
drawbacks such as consuming time and costs, 
laborious, slow, and destructive to the 
environment. These methods are limited to the 
number of the soil samples and tested soil 
properties, thus are not suitable for big land 
reclamation projects [4]. For example, assessing 
the soil health in a regional scale, requires huge 
number of soil samples to be collected, prepared, 
and analyzed. Therefore, there is a strong need 
for rapid, cost-effective (cheap), eco-friendly 
(non-destructive), and accurate approach for soil 
analysis which able to analyze many soil 
properties in the same time as well as having a 
potential for utilizing spatial information of the 
soils [5]. Thus, the soil spectroscopy has been 
found as a promising and effective tool for 
estimating soil properties which is faster and 
less-expensive compared to the conventional soil 
testing methods [6]. This technology provides 
visible-near-infrared (vis-NIR), and mid-infrared 
(MIR) hyperspectral ranges between 350 and 
2500; and between 2500 to 25000 nm, 
respectively which are suitable for predicting 
majority of the soil parameters [7]. The soil 
spectroscopy detects the sensitive spectral 
bands from the soil properties which have strong 
vibrations and these parameters are called 
‘chromophores’; and other soil properties which 
don’t give absorptions are called ‘non-
chromophores’ [8]. There are several types of the 
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spectral sensors which can be used for soil 
estimation such as field, laboratory, airborne and 
satellite sensors. However, many studies utilized 
the spectral data collected from various sensors 
for estimating and predicting the soil parameters 
like soil organic matter (SOM), texture, clay 
minerals, soil nutrients, structure, and biological 
parameters [9]. An example of soil spectroscopic 
advantages, the soil spectroscopy is ten times 
cheaper than conventional methods in estimating 
SOM [10]. Therefore, this technique is an optimal 
option large land projects like African Soil 
Information System (AFSIS), and others [11]. 
 
This review article aims to overview the different 
applications of soil spectroscopy for estimating 
and predicting soil parameters, and answer a 
question of ‘can these advances techniques be 
as an effective and potential substitution to the 
conventional methods of testing?’ 
 

2. SOIL SENSORS 
 
There are many hyperspectral sensors such as 
filed, laboratory sensors which are handheld; 
airborne sensors which are attached on airplanes 
or unmanned automated vehicles (UAVs) or 
drones; and satellite sensors [12]. Under NASA's 
auspices, the imaging spectroscopy (IS) is 
developed whereas many satellite and airborne 
sensors were created for research purposes. 
Among these sensors, an Airborne Imaging 
Spectrometer (AIS) and the Airborne Visible 

Infrared Imaging Spectrometer (AVIRIS) were 
created to study the Earth surface in details 
regarding geology, vegetation, soil and minerals 
[13]. The Thermal Infrared Multispectral Scanner 
(TIMS) and the Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) 
spacecraft sensor are produced by NASA and 
utilized for the thermal imaging and mineral 
identifying [14]. The TASI, MASI, HySi, and other 
sensors were developed also for thermal studies 
for the minerals and geophysical research. Over 
more than three decades, the spectral range of 
350 to 2500 nm in the vis-NIR region is widely 
used for studying soil [15]. Therefore, several 
sensors like GERIS, DAIS, hyperspectral 
mapping (HyMap), Compact Airborne 
Spectrographic Imager (CASI), and Shortwave 
Infrared Full Spectrum Imager (SFSI) were 
developed [16]. Various hyperspectral cameras 
such as HySpex were developed for research 
purposes. Regarding the spaceborne or satellite 
sensors such as MERIS, MODIS, and ASTER 
covering more than hyperspectral hundred 
narrow bands with less than thirty meters of 
spatial resolution [17]. The recent sensors of 
NASA are HyspIRI and EnMAP which has been 
found to provide spatiotemporal data of the globe 
[18]. According to the HI, Airborne Visible and 
Infrared Imaging Spectrometer - Next Generation 
(AVIRIS-NG) has been initiated by NASA's Jet 
Propulsion Laboratory (JPL) to cover significant 
sites over the world for studying geology, soil, 
water, and vegetation [19].  

 

 
 

Fig. 1. Types of hyperspectral sensors 
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Multispectral remote sensing (MSS) typically 
involves a limited number of spectral bands 
(ranging from 5 to 10) with wide bandwidths (50 
to 400 nm) [20]. In contrast, hyperspectral 
remote sensing (HSS) utilizes narrow bands (1 to 
10 nm) and can encompass a much larger 
number of bands (100 to 500). HSS offers 
several advantages over MSS, including the 
ability to detect multiple features—such as soil, 
rocks, vegetation, and snow—simultaneously 
[21]. the HSS provides a direct correlation with 
surface chemical structures and allows for 
approximate estimations of present materials 
[22]. HSS capability is particularly valuable for 
developing spectroscopic instruments aimed at 
both qualitative and quantitative soil 
assessments [23]. Recently, a variety of 
handheld HSS devices have emerged, including 
Snapshot, Nano-Hyperspec, and Micro-
Hyperspec. These imaging spectrometers 
provide centimeter-level spatial resolution                  
and can be mounted on UAVs, airplanes, robots, 
and ground-based vehicles. NASA's                    
satellite-based mission, the EO-1 Hyperion 
sensor, offers valuable datasets sampled 
globally. However, it is important to note that the 
Hyperion sensor has a relatively low signal-to-
noise ratio [24]. In India, numerous applications 
of Hyperion sensors have been conducted, 
particularly in agriculture, where they have been 
used to study mustard crop diseases, as well as 
in geological studies in Dongargarh, Rajasthan 
[25]. 
 

3. SOIL SENSORS’ APPLICATIONS 
 
There are many applications of the soil 
spectroscopy which focus on the sensitive bands 
which are related to the soil properties. For 
selecting these bands, the most absorbance 
vibrations represent the sensitive wavebands. 
Moreover, the spectral behavior of the soil is 
unique, whereas water absorption bands are 
distinguished in 1400, 1900, and 2200 nm 
wavelengths [26]. Furthermore, this behavior 
depends on some soil factors such as soil 
constituency, structure, concentration, and 
content of other nutrients or organic materials as 
well as the clay minerals. The soil spectra are 
differed from the plant whereas the plant spectral 
absorption is mainly affected by the pigment’s 
concentration or content in visible region (Miao et 
al., 2024). Additionally, the plant spectral 
behavior depends also on leaves’ structure, 
length, size, shape, pores, and water interfaces. 
These features can be detected within the vis-
NIR spectral region as the vegetation spectral 

signature include the green peak which can be 
identified between 500 and 600 nm as well as 
chlorophyll absorption (400 - 600 nm), red-edge 
(680 - 750 nm), plateau and water absorption 
(NIR region) as described by [27]. Moreover, the 
vegetation chemical properties can be predicted 
at of 480, 620, and 840 nm wavebands; and 
also, several spectral vegetation indices can be 
applied such as normalized difference vegetation 
index (NDVI), normalized difference water index 
(NDWI), water band moisture stress index 
(WBMSI), and normalized difference infrared 
index (NDIRI) as mentioned by [28]. Therefore, 
the hyperspectral sensing between 350 and 2500 
nm is very important in early detection of the 
plant biotic and abiotic stresses. By using this 
spectral information, the decision makers can 
take suitable actions in a suitable time [29]; as 
well as identifying the affecting factors                         
related to soil such as soil moisture, salinity, 
alkalinity, and nutrients status. Consequently, 
other sensors such as the ground,                              
airborne, and spaceborne hyperspectral sensors 
are used to get detailed spatial information 
related to plant responses in its local                      
ecology status in order to detect several 
environmental stresses which affect the 
agricultural production negatively [30]. An 
example for the airborne sensors is an AVIRIS-
NG which used for detecting crop                       
varieties, types, and for mapping. This sensor is 
also used for detecting, identifying, 
characterizing, analyzing and mapping several 
soil properties (physical, chemical, biological, 
others) as studied by [31]. Not only hyperspectral 
data but also multispectral remote sensing data 
such as LANDSAT images are used for soil and 
vegetation studies with a good resolution and 
spatial information.  
 
Abdulraheem et al. [32] reviewed the quantitative 
remote sensing of soil properties, providing 
comprehensive insights into HSRS and its 
applications in soil studies. Furthermore, many 
studies have focused on developing accurate 
protocols and standard methods for                  
predicting and estimating soil parameters using 
various ground and air-based hyperspectral 
sensors, often integrating multiple data 
processing techniques. There are also  
numerous methodologies for processing data 
obtained from sensors (soil spectra) and 
traditional soil laboratory analyses.                           
These methodologies are such as data 
transformation (using logarithms, box-cox, 
arcsine, etc), data randomization, data sorting, 
data dividing, etc. 
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4. SOIL SPECTRAL LIBRARIES (SSLs) 
 
Despite the significant potential of spatial 
variability assessment through geostatistical 
approaches and the quantitative evaluation of 
soil attributes using spectral reflectance models, 
substantial knowledge gaps remain. Soil spectral 
libraries (SSLs) play a crucial role in predicting 
soil parameters in unknown samples by 
accounting for various types of variability in 
reflectance spectra [9]. Additionally, mid-infrared 
(MIR) spectroscopy serves as a rapid and 
reliable analytical tool for predicting several soil 
parameters using global SSLs (Wang et al., 
2023). Historically, there is a very rapid progress 
in the field of sensors especially for the soil 
sensors whereas this progress started when the 
first relation between soil spectral information 
and corresponding soil characteristics was 
explored till creating the first soil spectral library 
(SSL). Recently, the expression of 
‘chromophores’ be common in the soil 
spectroscopic community, whereas it is used in 
an interpretation of the soil spectral behavior. 
However, the comprehensive understanding of 
this relationship is mandatory for achieving better 
accuracy and predictability of the soil parameters 
(i.e. SOC, and carbonates) are categorized 
under the well-predicted parameters while other 
soil properties performed a lower predictability 
because of the weaker spectral responses as 
well as the correlations between the soil 
chromophores and the SSL [33]. There are 
several applications of the SSL in soil studies 
whereas it is used as standard references for the 
obtained data in different scales and sensors 
such as field, laboratory, airborne, and space-
borne. These SSLs are integrated with advanced 
data analytics approaches as well as statistical 
and mathematical models for predicting and 
estimating the soil parameters [34]. An 
advantage of the SSL is that the limited number 
of soil sample is not a barrier in creating these 
libraries as mentioned by several studies such in 
[35]. On the other hand, many researchers used 
SSLs which include numerous numbers of soil 
samples’ data such as an ASTER SSL of clay 
minerals which consists of more than 2400 
spectra in the spectral range between 400 and 
15400 nm [36]. Another SSL is created the 
United States Geological Survey (USGS) which 
include a wide variety of clay minerals and helps 
many researchers to estimate the cay minerals 
as well as the relation between these minerals 
and other several soil properties using an 
automated prediction model [37]. Moreover, the 
free SSLs such as SPECCHIO, DLR, ASTER, 

and USGS are used for detecting, characterizing, 
classifying and mapping the soil properties. In 
SSLs usage, there are several issues related to 
the spectral images’ classification like unmixing 
problem whereas one pixel can include different 
responses from different objects (i.e. soil, water, 
vegetation, mineral, etc.). Therefore, using SSL 
created from pure soil spectra has more helpful 
for identification and estimation the soil 
properties [38]. Furthermore, there is a new 
expression called ‘spiking’ which means using 
the spectra of unknown sample to estimate it 
using the SSL without analyzing it in the wet 
chemistry laboratory [39]. Although, there are 
many examples of using the SSLs in different 
applications of soil, there is an increasing need 
for a global SSL that include all soil variabilities 
including types, classes, and properties. As the 
soil is a very complex matrix, and hardly to be 
understood, the needed SSL is differed from the 
clay library. However, the global SSL has more 
than 10000 samples and spectra data which 
collected from the soil variations over the world. 
Another SSL is created by the ICRAF-ISRIC 
which consists of 4438 soil samples which are 
collected from 785 soil profiles in 58 countries; 
while an Australian SSL included 21500 spectra 
collected from more than 4,000 profiles. The US 
SSL contained 145000 spectral data obtained 
from 32000 profiles; and a European SSL 
includes 20000 spectra acquired from the 
surface soils and tested for different 13 different 
soil parameters; and used for develop SSL of 
New Zealand [40]. Lobsey et al. [41] created SSL 
which include 18000 soil spectra collected from 
92 countries and focused on SOC estimation. 
Moreover, the Chinese SSL (CSSL) is created of 
4000 samples; while Brazilian SSL included 223 
soil profiles’ spectra [42]. 
 

5. APPLICATIONS OF SSLs 
 
As discussed previously that the SSLs are 
important tools for estimating various oil 
properties using the untested samples. For that, 
using the hyperspectral data collected by the 
satellites or airborne sensors are not highly 
accurate and not suitable for estimating the soil 
parameters except few. Thus, the ground 
sensors (fled or laboratory) are recommended to 
be used as they are accurate and suitable for 
creating the SSLs because they are used in 
estimating the majority of the soil parameters. 
However, these SSLs are efficient in estimating 
soil properties in any research studies such as a 
very recent study of Wang et al. [43]. They 
concluded their study with that the accuracy of 



 
 
 
 

Kuntoji et al.; Int. J. Plant Soil Sci., vol. 36, no. 9, pp. 755-770, 2024; Article no.IJPSS.122826 
 
 

 
760 

 

the USGS SSL is similar to the field and lab data 
in estimating the limonite mineral and in selecting 
the sensitive bands of 500, 620, 930, 1410, and 
1800 nm. They also used this SSL for comparing 
their findings with the AVIRIS-NG sensor, 
whereas a strong correlation between the two 
datasets was recorded in the 460 and 540nm 
wavebands for the limonite mineral. Spectral 
libraries are effective tools for estimating various 
important soil parameters, soil classification, and 
digital mapping. Rossi and Gholizadeh [44] 
emphasized that spectral libraries must include 
sufficient soil spectral signatures representing 
spatial diversity, with carefully collected, 
prepared, stored, and scanned soil samples. 
Calibrations should be established using 
reference data from accurate and trusted 
analyses. Large SSLs developed on regional, 
national, continental, or global scales are used 
for predicting soil parameters. Many soil 
parameters, such as sand, silt, clay, CEC, pH, 
organic carbon, total organic carbon, calcium, 
nitrogen, potassium, manganese, kaolinite, 
gibbsite, montmorillonite, and iron oxides, can be 
estimated using hyperspectral remotely sensed 
data such as reviewed in Yang et al. [45] study. 
The MIR region of spectra, with a range between 
2500 and 25000 nm, has proven to be a good 
technique for estimating some soil parameters, 
such as organic carbon, total nitrogen, and soil 
texture [46]. Partial least squares regression 
(PLSR) models have been used to estimate 
SOC, clay, sand, and CEC based on SSLs. The 
boosted regression trees (BRT) models are 
applied for estimating SOC on the basis of vis-
NIR global SSL data. There are different results 
obtained when comparing between several 
prediction models, whereas Egeonu and Jia [47] 
pointed out that the artificial neural networks 
(ANN) demonstrated better performance than the 
PLSR model in predicting the soil parameters 
using the MIR SSL. In contrast, El-Sayed et al. 
[48] demonstrated that the PLSR was more 
accurate than ANN in estimating soil pH and 
moisture. Goydaragh et al. [49] applied PLSR 
and Cubist models to predict SOC, clay and CEC 
based on the MIR spectral data and concluded 
that the Cubist was better. However, these 
applications can be more accurate by using a 
wide global SSL as well as more data analytics 
and prediction approaches.  
 

6. DATA ANALYTICS OF SOIL SPECTRA 
 
Fig. 2 illustrates the overall methodology for 
predicting and mapping soil properties using 

various types of sensors. Data analysis 
techniques based on soil spectral variables 
involve several processes suitable for qualitative 
analysis, such as discriminant analysis, band 
ratios, and classification methods [50]. These 
processes are most appropriate for satellite 
imagery acquired over bare soils. One challenge 
is that soil spectral signatures collected in the 
field or laboratory can be noisy and difficult to 
evaluate. Data preprocessing is used to clean 
these noises and develop fit soil spectral curves 
[51]. Spectral transformation plays a crucial role 
in correcting non-linear measurements, noisy 
spectra, and variations in soil samples. Spectral 
smoothing methods, such as Savitzky-Golay, 
mean-median filtering, and running average, are 
commonly used to suppress soil spectral noises. 
The first derivative and second derivative are 
widely used to account for viewing geometry, 
solar angle, and enhance outputs [52]. The 
continuum removal (CR) technique is used to 
identify and quantify material absorptions in 
specific spectral ranges, excluding other material 
absorptions around the studied range. Santra et 
al. (2009) successfully applied spectral data 
transformation methods, including CR factors 
integrated into the prediction model, to estimate 
soil hydraulic conductivity parameters using an 
ASD spectroradiometer and Landsat satellite 
imagery [53]. Principle component regression 
(PCR) calculates principal components of data 
and uses them as predictors in a linear 
regression model. Partial least squares (PLS) 
uses both known property data and spectral data 
during principal component calculation, reducing 
wavelength selection and removing spectral 
noises [54]. 
 
Partial least squares regression (PLSR) is a 
popular technique in chemometrics for 
quantitative estimation of hyperspectral 
reflectance data, particularly when many highly 
collinear predictor variables are present. Artificial 
neural networks (ANNs) are another statistical 
and mathematical method recently used for 
estimating soil parameters integrated with Vis 
and NIR hyperspectral reflectance data. Linear 
discriminant analysis (LDA) minimizes within-
class scatter to between-class scatter ratios, 
while multivariate adaptive regression splines 
(MARS) develop non-parametric regression 
models. Random forests (RF) and boosted 
regression trees (BRT) divide data into multiple 
predictor trees, with RF being suitable for 
hyperspectral data and few soil samples, robust 
to noise, and with low bias [55]. 
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Fig. 2. Predicting and mapping of soil parameters using hyperspectral sensors 
 
Other machine learning algorithms, such as 
relevance vector machines (RVM), are similar to 
support vector machines (SVM), using a linear 
combination of calibration datasets to produce 
real predictions, unlike SVM's pseudo-outputs. 
Root means square error (RMSE) is used to 
assess the accuracy of calibration and validation 
models, estimating prediction error from soil 
estimations and corresponding soil spectra [56]. 
The regression coefficient (R2) is another 
statistical parameter used to evaluate model 
performance, representing the square of the 
correlation between observed and predicted 
values of the targeted soil parameter. The R2 and 
RMSE statistical parameters can be not sufficient 
for evaluating the accuracy of the prediction 
model in calibration and validation, because the 
insufficient dataset size, specifically when the soil 
samples have wide variability.  

7. SOIL CHARACTERISTICS’ MODELING 
 
Several studies applied the multivariate 
regression models for estimating different soil 
properties, whereas this process starts with the 
soil spectral data processing and transformation 
to enhance the models’ accuracy. Afterwards, the 
data normalization, randomization, removing 
outliers, and sorting processes are applied. Liu et 
al. [57] used the principal component analysis 
(PCA) for estimating and spatial variability 
mapping of the soil parameters. Song et al. [58] 
suggested the use of wavelet analysis (WA) for 
smoothing the soil spectral data to improve an 
accuracy of prediction. Vaudour et al. [59] used 
the BRT model for estimating different soil 
parameters on the basis of global SSL; and they 
mentioned that soil complexity can prevent the 
prediction model from well performance. 
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Moreover, several research studies revealed 
good results of predicting soil properties using 
the vis-NIR-MIR spectral data or SSLs. For 
example, Karray et al. [7] employed partial least 
square regression (PLSR), locally weighted 
regression (LWR), and support vector machine 
(SVM) prediction models to estimate soil 
nitrogen. Rossel et al. [60] successfully predicted 
soil parameters using a local regression model 
integrated with hyperspectral data based on SSL. 
Shen et al. [61] recommended PCA and PLSR 
algorithms to extract soil information regarding 
various properties from spectra in the range of 
350 to 2500 nm. Abdellatif et al. [62] used ASD 
spectroradiometer reflectance data to predict soil 
properties through PLSR multivariate techniques. 
Li et al. [63] focused on predicting soil properties 
such as carbon, phosphorus, and nitrogen for 
soil fertility assessment, noting that qualitative 
predictions heavily rely on reflectance 
spectroscopy and infrared reflectance. Karray et 
al. [7] achieved quantitative predictions of soil 
parameters using the PLSR algorithm and 
suggested that more accurate predictions could 
be made using MIR data. Lee et al. [64] utilized 
ASD spectroradiometers to obtain soil spectra 
and applied the PLSR model to effectively predict 
soil organic matter in certain Korean soils. 
Safanelli et al. [65] estimated various parameters 
in Italian soils by collecting spectra in the vis-
NIR-MIR regions, applying the PLSR model to 
predict sand, silt, clay, soil organic carbon, and 
total nitrogen. Mustafa and Moursy [66] 
concluded that integrating soil reflectance with 
the PLSR model enhances the estimation of total 
carbonate and soil electrical conductivity in the 
Mugan Plain area. To select the most accurate 
model for predicting soil properties, several 
comparative studies have been conducted. Mariz 
and Soofastaei [67] compared two prediction 
models, NN-PCR and PLSR, and recommended 
NN-PCR for estimating soil properties. Miloš et 
al. [53] assessed the PLSR efficiency for mining 
the spectral data in order to estimate soil clay, 
SOC, and pH. They suggested that MARS, RF, 
SVM, and NN are efficient data mining tools for 
predicting these soil parameters. Chang et al. 
[68] applied the NIR-PCR approach using four 
processing steps: pretreatment, calibration and 
validation dataset development, application of 
PCR, and prediction-validation assessment; and 
they classified spectral range of 350 to 2500 nm 
into three main classes based on statistical 
parameters, including the ratio of performance 
deviation (RPD). Class "A," with RPD > 2.0 and 
R² = 0.80 - 1.00, includes parameters such as 
total soil carbon, total nitrogen, soil moisture 

content, sand, silt, exchangeable calcium, and 
cation exchange capacity. Class "B," with RPD 
ranging from 1.4 to 2.0 and R² from 0.50 to 0.80, 
includes parameters like clay, pH, available iron, 
potassium, magnesium, and manganese. Class 
"C" encompasses parameters with R² < 0.50 and 
RPD < 1.4, such as available copper, 
phosphorus, zinc, and exchangeable sodium. 
This technique can also estimate soil minerals 
like kaolinite and montmorillonite [69]. 
 

8. SOIL MAPPING 
 
There is no doubt that the soil maps play vital 
role in understanding the soil status, types and 
achieving better management, whereas these 
maps were started as aerial photographs for soil 
surveying purposes till now as high-resolution 
soil maps represent mandatory, effective, 
accurate, and cheap tool for soil monitoring and 
management. However, these soil maps are 
crucial for land capability, suitability, fertility, 
degradation and productivity evaluation in order 
to achieve the agricultural sustainability goals 
and reduce the environmental impacts. 
Therefore, different governments work on 
developing the soil databases as well as the soil 
maps for improving the agricultural practices 
management [70]. On the other hand, the spatial 
variability evaluation of the soil properties is 
important for the precision agriculture activities 
whereas accurate detection of the crop and soil 
requirements of fertilization, irrigation and pest-
control can be achieved easily using the digital 
soil maps [71]. These new advanced 
technologies of soil mapping such as using the 
hyperspectral satellite or areophane imageries 
are found as a very good alternative to the 
conventional methods of mapping. The traditional 
method are consuming time, cost and effort as 
well as laborious and destructive. Therefore, 
remote sensing (RS) and geographic information 
systems (GIS) are utilized for mapping the soil 
properties very efficiently in the time and cost 
[72]. For the RS technology, understanding and 
evaluating the spatial variability distribution of the 
different soil properties can be done through 
developing the corresponding maps. Moreover, 
imaging spectrometers (IS) which cover several 
spectral ranges (vis; vis-NIR; NIR; vis-NIR-MIR) 
offer the hyperspectral interval of 1nm for 
generating very high-resolution maps. 
Furthermore, ground-based sensors such as 
portable spectroradiometers can be used for 
generating soil properties’ models through the 
machine learning algorithms (ML) which can be 
used for mapping the soil properties’ spatial 
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variability based on the hyperspectral airborne or 
satellite sensors’ imageries [13]. For examples, 
using the AVIRIS-NG sensor for mapping 
different soil properties, minerals and earth’s 
surface objects [73]. 
 

9. SSLs DRAWBACKS 
 

Utilization of SSLs has some limitations such as 
the soil parameters applicability can be suitable 
for one area but not for other areas, whereas the 
African SSL successfully predicted some soil 
properties such as clay and SOC in the same 
areas while not suitable for predicting the same 
soil parameters in other areas. On the other 
hand, many researchers proved that the 
applications of the SSLs are effective and 
important. For example, Tziolas et al. [74] 
revealed that creating the SSLs is useful for 
stablishing reliable estimation models for soil 
monitoring and management using various 
sensors or platforms. The uniformity of the soil 
samples as well as soil data in order to create a 
precise SSL; and also, the unknown samples 
must be under the same soil type or region. 
Furthermore, the heterogeneity of the soil 
samples (database) may lead to improper 
calibration of the soil properties’ prediction 
models. Another drawback of the SSL is the 
various effects on the soil spectra such as soil 
roughness and moisture content variabilities, as 
well as the atmospheric effects and sensor 
characteristics like spectral and spatial resolution 
which can impact the accuracy of the SSL. 
Moreover, in situ acquiring the soil spectral 
reflectance is affected by the sunlight, while soil 
roughness and microrelief cause non-Lambertian 
reflectance behavior. Thus, the filed instruments 
must be calibrated through the available 
conditions for generating an accurate SSL 
[11,50]. 
 

10. SOIL SPECTROSCOPY CHALLENGES  
 

It is essential to know the behaviors of the soil 
spectral reflectance data to understand the 
disadvantages of the soil spectroscopy. There 
are different factors which affect the vis-NIR 
performance and calibrations such as sampling 
and preparation like drying, grinding, and sieving; 
and instrument conditions such as lighting effects 
as well as the surrounding noises. Unfortunately, 
there is no a standard protocol for soil sampling, 
preparation, collecting spectra, data processing, 
modelling and many other factors which affect 
the predictability of the soil parameters [50]. 
Grinding soil samples can significantly affect the 
obtained spectral signatures, particularly in clay-

rich samples, where reflectance tends to 
increase. A similar increase in reflectance has 
been observed when drying soil samples, which 
also reduces absorption in the 1400, 1900, and 
2200 nm bands [11]. The impact of grinding can 
be minimized through data transformation or 
correction. Rossel et al. [60] noted that air-drying 
soil negatively affects predictions of SOC and 
total nitrogen. Kouakou et al. [75] compared 
ground soils (<0.2 mm and <2 mm) and found 
that finer soils yielded better predictions of soil 
parameters. Conversely, some studies have 
indicated that grinding does not significantly 
affect the estimation of micronutrients using 
hyperspectral techniques. Despite the 
advantages of spectroscopy in soil analysis, 
several issues can affect its performance and 
accuracy. Soil fractions influence the obtained 
spectral signatures, and the protocols used for 
collecting soil spectra can vary between 
laboratory and field conditions. The type of 
instrument used also plays a role, as different 
laboratories may employ different equipment. 
Currently, there is no standardized protocol for 
obtaining soil spectral signatures or for soil 
preparation prior to spectral collection. 
Additionally, there is no fixed approach for data 
processing or for establishing calibration and 
validation models. As a result, building SSLs is 
challenging and requires standardization through 
a reliable protocol. Utilizing a standard protocol 
for soil sample preparation, spectral data 
collection, and modeling can help reduce errors. 
To further minimize analysis errors, it is advisable 
to send the same soil samples to multiple trusted 
soil testing laboratories. This approach can also 
be applied during soil spectral data collection to 
enhance accuracy. Relying on spectral data 
collected from a single laboratory (with one 
spectroradiometer) can lead to higher error rates 
[11]. Both ground-based and airborne sensors 
have drawbacks. One significant external error 
affecting soil spectral data acquisition is 
atmospheric attenuation, which is particularly 
problematic in imaging spectroscopy techniques, 
as some soil chromophores may not correlate 
with the obtained spectra. In multispectral remote 
sensing, this issue is less pronounced because 
the broader spectral bands tend to mitigate 
atmospheric noise. Atmospheric noise arises 
from solar radiation and natural atmospheric 
gases, necessitating atmospheric data correction 
to improve spectral accuracy. Such corrections 
require substantial expertise and technical skills. 
 
Another challenge researchers face is the high 
cost of spectroradiometers and scanning 
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instruments. Estimating soil properties utilizing 
several algorithms side by side of different 
calibration and validation models provide a 
proficiency of the statistical analysis and 
software. Advanced techniques and 
methodologies suggested must be followed to 
enhance the outputs. There is no doubt that the 
soil spectroscopy is crucial for fast analysis but 
this technique still empirical and need to be 
guaranteed; and the researchers have to 
continue their efforts by using more prediction 
models and data transformation techniques as 
well as different kinds of soil spectral data. 
 

11. FUTURE DIRECTIONS 
 
For over 40 years, soil spectroscopy and 
integrated tools have been studied for their 
applications in the quantitative estimation of 
various soil parameters. In the past two decades, 
a significant number of research papers have 
been published utilizing these techniques, with 
findings strongly recommending the use of 
visible-near-infrared (vis-NIR) spectroscopy for 
estimating soil properties. The data obtained 
from these studies are directly applicable for 
mapping and land-use management. Additionally, 
diffuse reflectance spectroscopy (DRS) has 
proven to be an effective method for accurately 
estimating soil parameters such as pH, organic 
carbon, clay content, exchangeable cation 
capacity, and soil mineralogy [60]. Despite these 
advancements, the technique remains empirical, 
and there is a pressing need for the development 
of reliable theoretical calibrations and trusted 
protocols. A deeper understanding of the 
behavior of soil spectral signatures in relation to 
different soil chromophores is essential for 
building effective soil spectral libraries (SSLs). 
The demand for a standardized method for 
obtaining spectra, whether in the laboratory or 
the field, is increasing due to the inaccuracies 
that can arise from using spectroradiometers. 
Factors such as soil surface roughness, 
structural complexity, and chromophore 
interactions must also be understood. To address 
these issues, high-quality spectral libraries 
should be used to standardize methods applied 
in both laboratory and field settings. Furthermore, 
a comprehensive collection of soil spectral 
signatures on a global scale is necessary to 
represent the diversity and variation of soils 
effectively. The selection of appropriate data 
treatment methods is crucial in establishing these 
protocols. With the right approach, significant 
progress can be made in creating new standards 
for assessing soil parameters. In summary, while 

ground-based spectrometers provide reliable 
data, they can be costly, making satellite data 
essential for larger-scale applications. Several 
spectral databases, such as NASA's Terra 
spacecraft imagery collected in 2016 and the 
European spectral database covering parts of 
Europe and North America from 2011 to 2013, 
offer freely accessible resources. NASA has 
been a leader in sharing spectral data, with 
various platforms making this information 
available to the public. Looking ahead, conditions 
for using space-borne data include ensuring 
uniform spatial resolution that matches ground-
based sensor data and obtaining cloud-free data. 
The integration of multisource data is anticipated 
to become more common. Certain soil 
parameters, including soil texture, clay minerals, 
soil organic carbon, and moisture content, have 
been accurately estimated using the visible and 
near-infrared spectrum in conjunction with 
advanced modeling techniques. However, other 
parameters, like soil pH and nutrients, may not 
always yield accurate predictions due to varying 
correlations with soil chromophores. For 
instance, soil pH is indirectly correlated with 
chromophores but directly correlated with 
buffering capacity. Therefore, parameters with 
indirect correlations should not be assumed to 
provide guaranteed results. More research is 
needed to apply hyperspectral data alongside 
laboratory data to develop robust prediction 
models for estimating unknown soil parameters. 
Currently, this technique is particularly effective 
for estimating soil moisture content and clay 
minerals, while results for other parameters, such 
as available macro- and micro-nutrients, remain 
less reliable. Field measurements using 
handheld spectroradiometers are essential for 
enhancing this technique. While field spectral 
measurements of soil parameters, such as 
minerals and moisture content, are 
recommended, they do face limitations. For 
example, artificial noise from plant residues, 
gravels, and other materials can contaminate 
data acquisition. Additional studies focusing on 
field spectral measurements are necessary to 
reduce time and costs associated with soil 
surveying and analysis. The data obtained from 
such studies are invaluable for large-scale 
mapping and improving land use management 
such as in Moursy et al., [76]. 
 

12. CAN THIS TECHNIQUE SUBSTITUTE 
TRADITIONAL METHODS?  

 
After examining the advantages and 
effectiveness of diffuse reflectance spectroscopy 
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(DRS) in estimating soil parameters, a critical 
question arises: Is this technique promising?  
The answer hinges on the body of evidence 
supporting the efficiency of DRS for soil 
parameter estimation. Many studies advocate for 
the use of soil remote sensing sensors as viable 
alternatives to traditional laboratory analysis, 
utilizing field-acquired data. That DRS is 
emerging as a strong alternative to conventional 
soil analysis methods, albeit with some 
limitations. That various remote sensing 
techniques, including mass spectroscopy, 
nuclear magnetic resonance, and visible-near-
mid-infrared spectroscopy, could serve as 
surrogates for routine soil analysis. Key soil 
parameters of interest that influence soil fertility 
include soil texture, organic carbon, and nutrient 
levels. No single sensor can estimate all soil 
parameters effectively. Furthermore, most 
previous studies have utilized laboratory sensors 
under controlled conditions, which may not 
accurately reflect actual field situations. Another 
reason for the technique's perceived immaturity 
is that a prediction model for a specific soil 
parameter may yield accurate results in one 
region but not necessarily in another. To 
minimize data collection errors, a universal soil 
sensor should be employed across all studies. A 
potential solution is to gather a large number of 
soil spectral signatures along with corresponding 
soil testing data to develop a universal spectral 
library and prediction model. This would enable 
the estimation of unknown soil samples with 
reasonable accuracy [77]. Using a global spectral 
library allows for the effective testing of several 
soil parameters, including moisture content, 
organic matter, cation exchange capacity, 
salinity, pH, and electrical conductivity. There are 
some key factors contributing to variability in 
results when employing this technique, such as 
soil genesis diversity and mineralogy, which can 
lead to discrepancies in soil reflectance data and 
reduced accuracy of prediction models [78,79]. 
Thus, creating a spectral library with a 
comprehensive range of soil spectra is 
recommended to address soil diversity and 
enhance the use of vis-NIR spectroscopy. A 
necessary step in developing spectral libraries is 
establishing calibrations that relate near-infrared 
spectra to analytical data. Currently, DRS should 
at least be considered a cost-effective alternative 
to more expensive soil parameter analyses, such 
as measuring soil organic carbon, which typically 
requires complex procedures like dichromate 
digestion with large amounts of acid. Therefore, 
DRS is a valid method for estimating soil organic 
carbon. Using mid-infrared (MIR) spectral data 

combined with PLSR is suggested for accurate 
quantitative estimation of soil pH. While the 
ability of DRS to estimate other soil parameters 
remains empirical and requires further 
evaluation, it is particularly effective for 
estimating soil moisture content and clay 
minerals, where reliable results have been 
achieved. However, the technique's effectiveness 
for estimating other parameters, such as 
available nutrients, is still under investigation. 
Field measurements using handheld 
spectroradiometers are essential for enhancing 
the application of this technique. Although field 
spectral measurements of soil parameters, 
including minerals and moisture content, are 
recommended, they do have limitations. For 
instance, artificial noise from plant residues, 
gravel, and other materials can contaminate data 
acquisition. More studies focusing on field 
spectral measurements are needed to reduce the 
time and costs associated with soil surveying and 
analysis. The data obtained from such studies 
are crucial for large-scale mapping and improved 
land use. 
 

13. CONCLUSION 
 
The integration of hyperspectral reflectance data 
with multivariate regression and machine 
learning models has proven to be an effective 
technique for estimating various soil parameters. 
This approach is eco-friendly, rapid, non-
destructive, and both time- and cost-effective, 
allowing for in situ analysis of soil samples. 
Additionally, it enables the simultaneous 
estimation of multiple soil parameters. Several 
mathematical and statistical methods have been 
successfully applied to achieve reasonable and 
acceptable efficiencies in estimating different soil 
properties. Both ground-based and airborne 
sensors have demonstrated high efficiency in 
estimating various soil parameters. 
Hyperspectral remote sensing, particularly in the 
visible and near-infrared (vis-NIR) ranges, has 
emerged as a promising alternative to traditional 
laboratory analysis. Studies have shown that this 
technique can effectively estimate key soil 
parameters, including soil texture, organic carbon 
content, and nutrient levels. Despite its 
advantages, the technique is still considered 
empirical, and there is a need for improved 
theoretical calibrations and standardized 
protocols. Understanding the behavior of soil 
spectral signatures in relation to different soil 
chromophores is essential for building reliable 
soil spectral libraries (SSLs). The demand for a 
common standard method for obtaining spectra 
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in both laboratory and field settings is increasing, 
as inaccuracies can arise from various factors, 
including soil surface roughness and the 
complexity of soil structure. To address these 
challenges, it is recommended to create 
extensive spectral libraries that encompass a 
wide range of soil types and conditions. By 
acquiring a large number of soil spectral 
signatures and corresponding soil testing data, 
researchers can develop universal spectral 
libraries and prediction models. This would 
facilitate the estimation of unknown soil samples 
with improved accuracy. Furthermore, studies 
have shown that using a global SSL can yield 
good results for estimating various soil 
parameters, such as moisture content, organic 
matter, cation exchange capacity, and soil pH. 
However, variability in results can occur due to 
differences in soil genesis and mineralogy, which 
affect soil reflectance data and the accuracy of 
prediction models. In summary, while 
hyperspectral reflectance data combined with 
multivariate regression and machine learning 
models offer a promising approach for soil 
parameter estimation, further research is needed 
to refine these techniques and establish 
standardized protocols. The integration of 
diverse data sources and the development of 
comprehensive spectral libraries will enhance the 
reliability and applicability of this technology in 
soil science. 
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