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High-dimensional single-cell
analysis unveils distinct immune
signatures of peripheral blood in
patients with pancreatic
ductal adenocarcinoma
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and Heguang Huang 1*
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Introduction: Pancreatic ductal adenocarcinoma (PDAC) is one of the most

lethal malignancies with poor response to immune checkpoint inhibitors. The

mechanism of such poor response is not completely understood.

Methods: We assessed T-cell receptor (TCR) repertoire and RNA expression at

the single-cell level using high-dimensional sequencing of peripheral blood

immune cells isolated from PDAC patients and from healthy human controls.

We validated RNA-sequencing data by performing mass cytometry (CyTOF) and

by measuring serum levels of multiple immune checkpoint proteins.

Results: We found that proportions of T cells (CD45+CD3+) were decreased in

PDAC patients compared to healthy controls, while proportion of myeloid cells was

increased. The proportion of cytotoxic CD8+ T cells and the level of cytotoxicity per

cell were increased in PDAC patients, with reduced TCR clonal diversity. We also

found a significantly enriched S100A9+monocyte population and an increased level

of TIM-3 expression in immune cells of peripheral blood in PDAC patients. In

addition, the serum level of soluble TIM-3 (sTIM-3) was significantly higher in

PDAC patients compared to the non-PDAC participants and correlated with

worse survival in two independent PDAC cohorts. Moreover, sTIM-3 exhibited a

valuable role in diagnosis of PDAC, with sensitivity and specificity of about 80% in the

training and validation groups, respectively. We further established an integrated

model by combining sTIM-3 and carbohydrate antigen 19- 9 (CA19-9), which had an

area under the curve of 0.974 and 0.992 in training and validation cohorts,

respectively.

Conclusion: Our RNA-seq and proteomic results provide valuable insight for

understanding the immune cell composition of peripheral bloodof patientswith PDAC.

KEYWORDS

pancreatic ductal adenocarcinoma, single-cell sequencing, T-cell receptor immune
signatures, tumor, signatures calculation
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most

lethal malignancies with five-year overall survival (OS) of

approximately 9% (1). The tumor microenvironment (TME) of

PDAC is also uniquely characterized by a dense desmoplastic

stroma that is related to treatment resistance and local immune

suppression (2, 3). Recent studies have shown that combination

immunotherapy may improve the efficacy for PDAC (4, 5). In our

previous study, we had found that increased CD47 expression of

PDAC cells and increased tumor infiltrating macrophages in the

TME correlated with poor survival. We also found that targeting

CD47 resulted in increased inflammatory infiltrates in the TME and

enhanced response to immune checkpoint inhibitor (6).

Several studies have shown that cancer can cause perturbation

of hematopoietic stem cells, increase the proliferation of monocytic

and granulocytic cells that move into the TME of tumors, and

differentiate into tumor infiltrating macrophages that suppress

inflammatory anti-tumor response (7, 8). Depletion of peripheral

blood lymphocytes has been shown to be a major immunologic

feature of metastatic pancreatic cancer. Blood immunologic

biomarkers such as immunosuppressive cytokines IL-6 and IL-10,

or cellular biomarkers CTLA-4 and TIM3 have been associated with

OS and progression in patients with PDAC (9). Serum levels of

soluble PD-1 and PD-L1 (sPD-1/sPD-L1), released from the surface

of PD-1/PD-L1-expressing cells that may reflect PD-1/PD-L1 levels,

can be detected in the serums of cancer patients with prognostic

values (10, 11). Kruger et al. reported that sPD-1 and sPD-L1 are

markers of systemic inflammation in patients with unresectable

pancreatic cancer, but they were not associated with the OS (12).

T cell-mediated antigen recognition depends on the interaction

of T cell receptor (TCR) with antigen major histocompatibility

complex (MHC) molecules (13, 14). TCR is highly diverse

heterodimers consisting of a and b chains (ab TCR) expressed

by most T cells. The variable regions of TCR a and d chains are

encoded by multiple variable (V) and linked (J) genes, while TCR b
and g chains are encoded by diversity (D) genes (15, 16). The V

region of TCR (Va and Vb) has three hypervariable regions,

complementary determination region 1 (CDR1), CDR2 and

CDR3, among which CDR3 has the largest variation, which

directly determines the specificity and diversity of TCR (17).

Therefore, high-throughput sequencing of TCR CDR3 may reflect

the adaptive immune status and is helpful to understand the

mechanism of anti-tumor immunity.

A previous study using bulk TCR sequencing of peripheral

blood revealed different immune responses between pancreatic

cancer and benign pancreatic diseases (18), however, the

relationship between immune cell composition and clonal

diversity of TCR was not investigated. Identifying the diversity of

TCR to each T cell may help us to better understand the mechanism

of tumor immune response. We performed high-dimensional

single-cell sequencing of peripheral blood mononuclear cells

(PBMCs) from PDAC patients and normal controls using 10×

Genomics RNA/TCR sequencing and mass cytometry technology,

with unsupervised clustering of immune cells and defining cell
Frontiers in Endocrinology 02
subclusters, revealing the proportion and genetic characteristics of

cell subclusters, and recognizing differential gene and pathways. We

explored the characteristics of peripheral blood adaptive immune

response at single-cell level. In addition, we measured multiple

serum immune-related soluble proteins to gain insight into disease-

related immune responses and provide potential valuable targets for

immune targeting.
Materials and methods

Patients

Peripheral blood was obtained from patients at Fujian Medical

University Union Hospital, Fuzhou, China, from June 2018 to

December 2021. Pancreatic cancer (PC) patient inclusion criteria:

(1) patients had histologically confirmed PDAC; (2) aged 18 years

or older. Exclusion criteria: (1) patients with neoadjuvant

treatment; (2) with inflammatory diseases; (3) with active

infection. Blood samples were collected prior to surgery. All

patients were followed up for survival status until September

2022. The stages of patients were assessed based on the American

Joint Committee on Cancer version 8 (AJCC 8). Informed consent

was signed before sample collection. Pancreatic benign diseases

included chronic pancreatitis, neuroendocrine tumors, and cystic

neoplasms. Blood samples were collected from healthy individuals

during routine physical examination. The health status of the

volunteers is determined by reviewing physical examination

results and medical history. Exclusion criteria included: acute

infection; cancer-related history; organ dysfunction; coagulation

dysfunct ion; immune deficiency syndrome; receiv ing

immunotherapy; blood transfusion records within the past 6

months; use of drugs affecting peripheral blood cells, such as

recombinant human erythropoietin and granulocyte stimulating

factor, within the past 3 months.

The first cohort for mass cytometry and single-cell sequencing

analysis, including 10 PDAC patients and 10 healthy individuals

(shown in Tables S1, S2). The second cohort for for the validation

experiments of single-cell sequencing data, including 50 PDAC

patients and 50 healthy individuals (shown in Table S5). The third

cohort for the analysis of the expression of serum soluble immune

proteins, including training cohort and validation cohort. The

training cohort contained 45 participants with PDAC, 20

participants with benign pancreatic diseases and 30 healthy

volunteers (shown in Table S6). The validation cohort contained

53 participants with PDAC, 22 participants with benign pancreatic

diseases and 25 healthy volunteers (shown in Table S8). The study

was approved by the Committee for the Ethical Review of Research,

Fujian Medical University Union Hospital.
Blood samples

The peripheral blood mononuclear cells (PBMCs) were

isolated from whole blood samples by Ficoll-Hypaque gradient
frontiersin.org
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centrifugation (Haoyang Biotech, Tianjin, China) for the single-

cell sequencing and mass cytometry analyses. Blood samples

were centrifuged at 3000 g for 10 min at 4°C to separate the

serum. Serum samples were stored at - 80°C until experiments

were performed. Complete blood count (Neutrophils ,

lymphocytes and monocytes), and carbohydrate antigen 19–9

(CA19-9) were measured at the central laboratory of Fujian

Medical University Union Hospital. In this study, scRNA-seq

data of sample Con1 and Con2 (19) (doi : 10 .3389/

fimmu.2021.645666) were obtained from a publicly available

cDNA microarray dataset on PBMCs (2 normal peripheral

blood, GSE181279), and scRNA-seq data of sample Con3,

Con4 and Con5 were obtained from a previous study (20)

(https://doi.org/10.1038/s43587-022-00198-9) by Oscar

Junhong Luo. (3 normal peripheral blood, GSE157007).
Single-cell RNA sequencing

The single cell suspensions were converted into the Chromium

single cell controller to generate single-cell gel beads in the

emulsion, using the single-cell 5′ Library and Gel Bead Kit and

Chromium Single Cell A Chip Kit (10× Genomics). A total of

approximately 10000 cells to 12000 cells/chip were captured on the

10× Chromium platform. The libraries were pair-end sequenced on

Illumina Nobaseq6000 platform with read lengths of 150bp

(performed by CapitalBio, Beijing). And all the procedures

including the complementary DNA synthesis and library

preparation were performed according to the standard

manufacturer’s protocol using version 2 chemistry.
Cell Ranger pipeline

Cell Ranger software version 3.0.1, available from 10x

Genomics, were used to process raw sequencing data obtained

from the Illumina sequencing output with default and

recommended parameters. In short, raw base call (BCL) files were

converted to FASTQ files for each sample by CellRanger mkfastq.

The FASTQ files were mapped to the GRCh38 human reference

genome to distinguish human cell using CellRanger count. Then,

feature-barcode matrices were generated for each sample by

filtering, barcode counting, and unique molecular identifiers

(UMI) counting. The CellRanger aggr pipeline was used to

combine the data from five samples into an experiment-wide

feature-barcode matrix. Finally, the feature-barcode matrix was

loaded to the R package Seurat for quality control and

downstream analyses.
Seurat pipeline

The combined data set were read into the Seurat R package

(version 4.0.2). Low quality cells were filtered out according to these

thresholds (Table 1).
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TABLE 1 Single-cell RNA sequencing data quality control standards. (6)

Index threshold

nUMI >1000

nUMI <30000

nGene >750

nGene < 3000

Mito.percent < 10%
f

Using these thresholds, the number of cells vary as

follows (Table 2):
TABLE 2 Overview of single-cell RNA sequencing data quality. (6)

Group

Cell count
(Before
QC)

Cell
count
(After
QC)

Group
cell

count

Total
cell
count

PC1

Pancreatic
cancer

8768 6274

26,548

57175

PC2 5562 3609

PC3 8396 4724

PC4 5112 4521

PC5 9885 7420

Con1

Healthy
control

7115 6722

30,627

Con2 6945 6412

Con3 6320 5521

Con4 7069 6333

Con5 6984 5639
ron
Then, the data was normalized and scaled through Seurat’s

NormalizeData and ScaleData functions. The highly variable gene

(HVGs) was identified using the FindVariableGenes function for

the next principal component analysis (PCA), with default

parameters. PCA was performed based on about 2000 variant

genes and the first 14 PCA component were used for the 2D

uniform manifold approximation and projection (UMAP)

dimension reduction. Cell clusters were identified by running the

FindClusters function of Seurat using a resolution of 0.6. The

differential test used Wilcoxon ranked-sum method.

Function analysis for differently
expressed genes

DEGs were identified using the FindMarkers function of Seurat.

The following cutoff threshold values were used: adj. p val <0.05. In

order to better characterize the signature of DEGs, we used a fast per-

ranked gene set enrichment analysis (GSEA) named fgsea (v1.11.1, R

package) to evaluate functional enrichment analysis for DEGs. The

hallmark gene sets from Molecular Signatures Database5 were

extracted and used to feed each differentially expressed gene lists.
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GSEA analysis was performed to detect which gene set was

significantly enriched in each specific cell cluster. Then adjusted P

value < 0.05 were selected as the significantly and functionally

enriched biological states or processes.
Single-cell TCR sequencing analysis

Single-cell TCR clonotypes were assembled using Cell Ranger VDJ

function. Single-cell barcodes were then used to tie corresponding VDJ

(variable-diversity-joining TCR gene segments) and gene expression

data simultaneously. Only TCRs with full and paired a and b chain

sequences were included in the analysis. TCR Clonotypes were then

determined from grouping of cell barcodes that shared the same set of

productive CDR3 nucleotide sequences. TCR analysis utilized our

previously described scRepertoire R package (v1.805) with clonotype

being defined as the combination of the gene components of the VDJ

and the nucleotide sequence for both TCRA and TCRB chains and

assigned on the integrated Seurat object. The diversities of the TCR

CDR3 regions were evaluated by the InvSimpson index and Shannon–

Weiner index, respectively. TCR cluster lineage tracing was performed

by considering all clonotypes shared by cells from more than one

cluster. Raw numbers of cluster clonotype intersections were analyzed

and visualized as upset plots.
Mass cytometry (CyTOF)

Apanel of 44metal isotope-tagged antibodies (Table S6) was used to

evaluate the immune cell populations in peripheral blood of pancreatic

cancer. Fresh PBMCs were washed resuspended, cisplatin cocktail was

added and mixed, and incubated for 5min at room temperature under

light. 50 ml membrane antibody cocktail was added to each tube,

incubated for 1h, then washed, and the supernatant was discarded

after centrifugation. 1mL of nuclear antigen staining buffer was added to

each tube, and after 30min of incubation, 2mL of nuclear antigen fixing

solution was added, and the supernatant was discarded by

centrifugation. Each tube was fixed with 1mL formaldehyde working

solution, incubated for 10min, and the supernatant was discarded by

centrifugation. Cells were resuspended with 10% EQ Four Element

Calibration Beads per tube. The samples were detected by Helios 2 CY-

TOF mass cytometer. After data collection, Cytometry by Time-of-

Flight software (V6.7) was used for merging and data standardization.

Data were analyzed in Cytobank (https://www.cytobank.org/) and R

package. Normalized marker expression levels were visualized as

heatmaps. The cell types were distinguished by canonical markers.

The T-SNE map was generated by R package, and the differences in

phenotypes and relative proportion of different cell subclusters were

analyzed. P < 0.05 was considered statistically significant.
Serum soluble checkpoint/co-stimulatory
biomarkers analysis

A panel of sixteen checkpoint/co-stimulatory biomarkers was

analyzed in serum using MILLIPLEX Human Immuno-Oncology
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Checkpoint Protein Panel Kits (Cat. No. HCKPMAG-11K, Merck

Millipore; Massachusetts, US). Samples were performed in

duplicate, run in batches. Data were analyzed using the

MILLIPLEX Analyst. V5. 1 (Merck Millipore).
Statistical analysis

Quantitative data were expressed as the mean ± standard

deviation (SD) and analyzed based on variance and Student’s t-

tests. Chi-square tests were performed to compare serum protein

levels and clinical features. Correlative analyses were performed

using the Spearman coefficient analysis. Receiver operating

characteristics (ROCs) curves were constructed for each

biomarker to assess the diagnostic accuracy of the biomarkers in

distinguishing pancreatic cancer from normal controls. The area

under the ROC curve (AUC) was used to compare the biomarkers

for diagnostic purposes. OS was measured from the to the day of

death from any cause or the last censored follow-up. Survival was

measured using Cox-regression and Kaplan-Meier analysis. Data

were analyzed using the Statistical Package for Social Science

version 22.0 (SPSS, IBM, Armonk, USA).
Results

Single-cell RNA-seq of peripheral blood
mononuclear cells of patients with PDAC

To assess the changes of systemic immune state in patients with

PDAC, we performed scRNA-seq on PBMCs from five healthy

individuals (Con1-Con5) and five treatment-naïve PDAC (PC1-

PC5) patients. Sample and patient metadata were shown in Table S1

and S2, and the baseline characteristics of patients and healthy

controls were shown in Table S3. The PBMCs were subjected to

single-cell RNA sequencing (scRNA-seq) using the 10× genomics,

data were then processed using Cell-Ranger pipelines. After quality

control and filtering, transcriptomic maps of 26,548 and 30,627

CD45 positive cells, of which 10,745 and 21,739 cells had paired

TCR clonotypes, were obtained from the PDAC patients and

healthy controls, respectively (Figure 1A).

To enable an unbiased systematic comparison across patients,

we merged the data from all healthy individuals and patients to

create a map of peripheral blood immune cells by using Seurat

standard workflow, then the unsupervised clustering revealing a

various set of leukocyte clusters. Comparison with the Cellmarker

database and assessment of canonical markers identified the

majority of expected immune cell types (Figure 1B), including: T

cells (cluster 0, 2, 4, 6, and 7) characterized by CD3E and T cell

receptor (TRAC) expression; B cells (cluster 5, 12, and14)

characterized by CD79A, CD79B, and MS4A1 expression; natural

killer (NK) cells (1 and 11 clusters) characterized by NKG7,

FGFBP2, and GNLY expression; five subsets of myeloid cells

(cluster 3, 8, 9, 10 and 13) characterized by CD68, CD14, CST3,

LYZ, and S100A8 expression, respectively (Figures 1C; S1A). We

further investigated the proportion and composition of immune cell
frontiersin.org
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in each group or individual sample by the identified immune cell

populations (Figures 1D, E; S1B). Unlike the healthy controls in

which the main immune cells were T cells, the peripheral blood

immune cells from PDAC patients had a large proportion of

myeloid cells (Figures 1F, G; S1C, D).

To examine transcriptomic changes in the systemic immune

environment of pancreatic cancer, we recognized differentially

expressed genes (DEGs) by comparing the patients with

pancreatic cancer to the control samples and then performed

gene set enrichment analysis (GSEA) of the DEGs in the systemic
Frontiers in Endocrinology 05
immune environment. We observed the top 25 upregulated genes in

patients compared with controls including S100A8, S100A9, LYZ,

RACK1, VCAN, ATP5MC2, FYB1, and FCN1 (Figure S2A) and

those upregulated genes involved in ATP biosynthetic process,

oxidative phosphorylation, proteolysis, innate immune response,

inflammatory response, immune cells migration, and apoptosis

(Figures S2B, C). These results highlighted a strong signature for

inflammatory and immune responses in PDAC patients.

To validate the scRNA-seq data, we confirmed the immune

cell surface protein markers in five PDAC patients (PC6-PC10)
B

C

D

E

F

G

A

TABLE 1

scRNA-seq of PBMCs in PDAC. (A) Schematic of single-cell RNA sequencing and TCR-seq of PBMCs from PDAC patients and healthy individuals. (B)
UMAP plot of all PBMCs from 5 healthy individuals (Con1-Con5) and 5 treatment-naïve PDAC (PC1-PC5). (C) Dot plot depicting percent expression
and average expression of canonical marker genes in all clusters. (D) UMAP plot of PBMCs from PDAC and control group. (E) Fraction of 15 immune
clusters in each sample from PDAC and control group. (F, G) Average proportion of immune subclusters in PDAC and control group. One-way
analysis of variance Wilcoxon rank sum test was used.
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and five healthy controls (Con6-Con10) by using mass

cytometry (CyTOF) (Figure 2A), using 44 metal isotope-

tagged antibodies (Table S4). Patient and control information

was shown in Tables S1, S2. PBMCs were collected for CyTOF

analysis from which 20 subpopulations were identified in PDAC

patients and controls (Figure 2B). The expression of protein

markers in each population were shown in Figure 2C, and

canonical cell types were identified, including CD4+ T cells

(CD3 and CD4), CD8+ T cells (CD3 and CD8), B cells (CD19

and CD24), NK cells (CD16, CD56, and CD335), and myeloid

cells (CD14, CD16, CD163, CD11c, CD11b, and HLA-RD)
Frontiers in Endocrinology 06
(Figures 2D; S3). We confirmed that the percentages of these

major cell types in PDAC and controls measured by CyTOF

were in line with the result of scRNA-seq (Figures 2E; S4A). To

further confirmed the numbers and proportions of lymphocytes

and monocytes between PDAC patients and normal healthy

controls, we measured the complete blood count from 50

patients with PDAC and 50 healthy volunteers. The baseline

characteristics of patients and healthy controls are shown in

Table S5. We found decreased percent of lymphocytes and

increased percent of monocytes in PDAC patients (Figures 2F,

G; S4B, C).
B

C

D E

F G

A

FIGURE 2

Mass cytometry confirmed the major clusters of PBMCs in PDAC. (A) Schematic of workflow for CyTOF (PC, n = 5; Con, n = 5). (B) T-SNE plot of
immune cell clusters from PC and Con merged. (C) Heatmap displaying the relative protein expression of select markers in each cell subcluster. (D)
T-SNE plot showing the selected markers of CD45, CD3, and CD14 in PC and control group. (E) Average proportion of immune subclusters in PC
and Con group. One-way analysis of variance Wilcoxon rank sum test was used. (F) Cell counts of peripheral blood monocytes in PC and Con
group. (G) Cell counts of peripheral blood lymphocytes in PC and Con group.
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Expansion of cytotoxic T cells in patients
with PDAC

The largest immune cell clusters present in the peripheral blood

of healthy individuals and PDAC patients were T cells. To scrutinize

and better define the T cell clusters identified by single-cell RNA-
Frontiers in Endocrinology 07
seq, we computationally separated T cell clusters (17,019 total cells,

Figure 1B) and reanalyzed these data. The approach produced 9

distinct T cell clusters broadly defined by the specific marker gene

expression (Figures 3A; S5A), including 5 CD8+ and 4 CD4+ T cell

clusters. We annotate these T-cell subtypes using distinct

expression patterns of typical T-cell markers coupled with
B

C D

E F

G

H I J

A

FIGURE 3

Distinct T-cell transcriptional signatures in PDAC and control group. (A) UMAP plot of T cells presenting 9 clusters (Tcm, central memory T cell; Tcyt,
cytotoxic T cell; Tn, naïve T cell; Treg, regulatory T cell). (B) Fraction of 9 T cell subclusters in each sample from PC patient and control. (C) Average
proportion of T cell subclusters in PC and control group. One-way analysis of variance Wilcoxon rank sum test was used. (D) Gene set enrichment
analysis of differentially expressed genes in total T cells from PC versus control group. (E) UMAP plot from merged data of T cells. Different colors
represent 2 clusters (non-cytotoxic T cells and cytotoxic T cells). (F) Heatmap displaying expression of select genes in 2 clusters (non-cytotoxic T
cells and cytotoxic T cells). (G) Proportion of cytotoxic T cells in total PBMCs from PC and control group. (H) Proportion of cytotoxic T cells in T
cells from PC and control group. (I) Proportion of non-cytotoxic T cells in T cells from PC and control group. (J) Number of detected genes out of 5
cytotoxic genes (NKG, PRF1, GNLY, GZMA and GZMB) per cell.
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reference data sets (21–23). CD4_C2-SELL and CD4_C3-ANXA1

correspond to central memory T cells (Tcm) due to the stable

expression of distinct signature genes, including CD69, LEF1, SELL,

CCR7, and ANXA1. CD8_C1-GNLY, CD8_C3-GZMK, CD8_C4-

CD69, and CD8_C5-NKG7 correspond to cytotoxic CD8 T cells

(Tcyt), characterized by expression of GZMA, GZMB, GZMK,

PRF1, GNLY, and NKG7. Moreover, CD4_C1-TCF7 and

CD8_C2-CCR7 belong to naïve T cells (Tn) due to the presence

of LEF1, SELL, TCF7, and CCR7, and absence of the effector genes.

CD4_C4-TNFRSF14 shows distinct features of regulatory T cell

(Treg), such as high expression of FOXP3, CTLA4, TNFRSF14,

TIGIT, and ICOS. All T cell clusters were stably expressed in both

PDAC and healthy samples (Figures 3B; S5B). Cells in PDAC

samples mainly consisted of CD8_C1-GNLY (Tcyt) subclusters,

while CD4_C1-TCF7 (Tn) subpopulations were the predominant T

cells in control samples (Figures 3C; S5C, S6).

Furthermore, DEG analysis of total T cells, CD4+ T cells or

CD8+ T cells in PDAC versus healthy controls indicated that the

level of RACK1, ATP5F1E, FYB1, NOP53, VSIR, and PRF1were

increased (Figures S7A–C). GSEA of upregulated genes revealed

that the signaling pathway, such as lymphocyte mediated immunity,

leukocyte mediated cytotoxicity, immune response, and cell killing

were enriched in PDAC patients (Figures 3D; S7D, E, S8).

To examine the differences of cytotoxic T cells between PDAC

patients and healthy individuals, we reclassified T cells into two

major clusters: cytotoxic cluster and non-cytotoxic cluster,

according to high level of GZMH, GZMK, PRF1, GNLY, and

NKG7, and low expression of LEF1, SELL, TCF7, and CCR7

(Figures 3E, F). We found that the proportion of cytotoxic cluster

in total T cells was more abundant in PDAC patients than the

controls (P = 0.032, Figures 3G, H), with the percent of cytotoxic T

cells in the control group increased from 18% to 37% of the total T

cell population, whereas the median percentage of non-cytotoxic

cluster in patients (50%) was less abundant than the controls (70%)

(P = 0.031, Figure 3I). We then detected the expression of five

cytotoxic genes (NKG, PRF1, GNLY, GZMA and GZMB) in each

cell. As a result, most cells in non-cytotoxic cluster contained either

0 or 1 cytotoxic gene in both PDAC patients and healthy controls

(Figure 3J, right). Cells in cytotoxic cluster contained 4 and 5

cytotoxic genes were more abundant in patients when compare

with controls (Figure 3J, left). These findings suggested that the

proportion of cytotoxic T cells and the level of cytotoxicity per cell

might be more elevated in PDAC patients.
CD8+ T-cell dependent unique TCR
repertoire changes in pancreatic cancer

Next, we examined the TCR repertoire of the same T cells from

which we extracted transcriptome data from the patients with

PDAC and the healthy controls. Paired transcripts that are

distally encoded but co-expressed in single cells, TCR a (TRA)

and TCR b (TRB) were sequenced and filtered through a

programmed filtering system (Cell ranger, 10× genomics). After

barcode correction and trimming, V(D)J genes in the
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complementary determining region 3 (CDR3) of the TCR

transcripts were annotated.

We identified a total of 27,819 unique paired ab TCR sequences

and 32484 T cells with paired TRA and TRB CDR3 sequences from

the T- cell repertoire of 10 control and PDAC samples. The

frequency of cells encompassing 1 to 100 expansion clonotypes

was higher in the PDAC patients compared with controls

(Figure 4A). The Inverse Simpson Diversity (InvSimpson) index

was significantly lower in PDAC patients compared with the

controls (Figure 4B) and this finding was verified by the

Shannon–Weiner index (Figure 4C), indicating lower clonal

diversity in the T cells of peripheral blood of patients with PDAC.

InvSimpson score of the distinct T- cell populations revealed

CD8+ T cell skewed clonal diversity in the peripheral blood of

patients with PDAC and healthy controls (Figure 4D). When we

divided T cells into CD8+ T cells and CD4+ T cells, the InvSimpson

score of CD8+ T cells was significantly lower than that of CD4+ T

cells (Figure 4E). This result was further confirmed by comparing

UMAPs of CD8A gene level and clonally expanding the cell

populations (Figure 4F). Finally, we observed that InvSimpson of

subjects in all samples had a negative correlation with CD8+ T- cell

frequency, while had a positive correlation with CD4+ T- cell

frequency (Figures 4G, H). This result suggests that expansion of

CD8+ T cells contributes to the lower InvSimpson index and clonal

diversity in patients with PDAC compared to the healthy controls,

consistent with our scRNA-seq data.

To investigate the interactions among the T cell clusters, we

matched single-cell TCR-ab profiling and tested the unique

clonotype overlaps among subclusters from all samples

(Figure 5A). The greatest clonotype overlaps were discovered in

CD8_C5−NKG7 (Tcyt), CD8_C4-CD69, and CD8_C3−GZMK

(Tcyt), especially in the PDAC samples (Figure 5A). This result

suggests unique interactions between T cell clusters and shared TCR

clonotypes in patients with PDAC. To compare the frequency of the

V and J gene of the TCR, a usage frequency histogram was

generated according to common usage frequency of the V and J

gene (Figures 5B, C). V genes, including TRBV20-1 and TRBV9,

and J genes, including TRBJ1-6, showed a higher frequency in

patients with PDAC compared to the healthy controls. Finally, we

tracked the TCR clonotypes based on the scTCRseq data and

observed that the percentages of clonal TCRs were decreased in

PDAC patients. (Figure 5D). These scTCR-seq data unveiled a

visible T cell immune response in patients with PDAC which is

consistent with our scRNA-seq results.
Expansion of S100A9+ monocytes
in patients with pancreatic
ductal adenocarcinoma

Mye lo id c e l l s f r om pe r i phe r a l b l ood o r tumor

microenvironment play key roles in many types of cancer (24),

including pancreatic cancer (25). Previous result showed that

myeloid cell numbers were significantly increased in patients with

PDAC compared with the controls (P = 0.016, Figure 1G). We
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further clustered the myeloid cells into 12 distinct subtypes

(Figure 6A). Myeloid cell clusters were manually annotated by the

typical cell marker gene expression (26, 27) (Figures 6B; S9A, B).

MC0, MC1, MC2, and MC7 correspond to classical monocytes due

to the presence of CD14, FCN1, SELL, CD36, S100A8, S100A12, and

MS4A6A. MC4 and MC11 correspond to nonclassical monocytes

according to the expression of FCGR3A, FCGR3B, FCN1, TCF7L2,
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CDKN1C, and CDH23. MC3 corresponds to macrophages (Mac),

characterized by expression of NLRP3, IL1B, CD83, CCL3L3,

THBS1 , and PLAUR . MC5 and MC6 belong to type 1

conventional dendritic cells (cDC1), identified by the presence of

CST7, IL6ST, IFITM1, and ANXA6. MC9 belongs to type 2 cDCs

(cDC2) due to the expression of CD1C, CLEC10A, FCGR2B,

ADAM8, FCER1A, and ADAM28 . MC10 corresponds to
B C
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A

FIGURE 4

scRNA sequencing and TCR-seq reveals CD8+ T cell group dependent unique TCR repertoire changes in PDAC. (A) Percentage of clonally expanded
cells in PC and control group. Yellow, cells possessing 1 to 100 expansion clonetypes; Orange, cells possessing 101 to 1000 expansion clonetypes;
Fuchsia, cells possessing 1001 to 10000 expansion clonetypes; Purple, cells possessing 10001 to 30000 expansion clonetypes; Blue, cells possessing
above 30001 expansion clonetypes. (B) InvSimpson index of PC and control group across total T cells. (C) Shannon–Weiner index of control and PC
group across total T cells. One-way analysis of variance Tukey test was used. (D) Heatmap showing InvSimpson score of all T cell subclusters in
each sample. (E) InvSimpson score of CD4+ T cells and CD8+ T cells in PC and control group. (F) UMAP plot of CD8A gene level in PC and control
group (top). UMAP plot of TCR clonality revealing the distribution of clonally expanded cells in PC and control group (bottom). P1, cells possessing
100 to 500 expansion clones in the group; P2, cells possessing 20 to 100 expansion clones; P3, cells possessing 5 to 20 expansion clones in the
group; P4, cells possessing 1 to 5 expansion clones in the group; P5, cells possessing only one expansion clone in the group; P0, unexpanded. (G)
Correlation between InvSimpson score of T cells and CD4+ T-cell frequency in PC and control group. (H) Correlation between InvSimpson score of
T cells and CD8+ T-cell frequency in PC and control group.
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plasmacytoid DCs (pDC) due to the presence of IRF7, IRF8, and

SPIB. MC8 corresponds to megakaryocytes (Mega), characterized

by presence of PPBP and PF4.

Importantly, we found that distinct subclusters contributed to

the myeloid compartment of peripheral blood immune cells

(Figure 6C). The frequency of classical monocytes (MC0, MC1,

MC2 and MC7) was significantly higher in patients with PDAC

than the controls, while macrophages (MC3) comprised a higher

proportion of myeloid cells in the peripheral blood of healthy

controls than the PDAC patients (Figure 6D).

Furthermore, DEG analysis of total myeloid cells or monocyte

subpopulations in PDAC patients versus healthy controls revealed

that the expression of S100A9, S100A8, S100A12, RACK1, LYZ, and

VCAN was upregulated (Figures 6E; S10). These data indicated that

PDAC patients had a higher expression of S100A family members,
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which was found to be associated with tumor aggressive and

metastasis previously (28). Up-regulation of S100A9 expression

inhibited the differentiation of DCs and macrophages and

induced accumulation of MDSCs (29). We found that the

proportion of S100A9+ monocytes was significantly up-regulated

in PDAC patients compared to the healthy controls (Figures 6F, G).

We also found that PDAC patients had a lower CD4+ T cells/

monocyte ratio than that of healthy controls (Figure 6H). High

S100A9 levels in peripheral blood monocytes and a lower ratio of

CD4+ T cells/monocyte was previously found to correlate positively

with poor response to anti-PD-1 immunotherapy but inversely with

overall survival in melanoma patients (30). Overall, single-cell

analysis of PBMCs revealed a significantly enriched S100A9+

monocyte population in PDAC patients and the potential role of

S100A9+ monocytes in immunotherapy resistance.
B

C D

A

FIGURE 5

Interactions between T cell clusters and shared TCR clonotypes in PDAC. (A) Clonotype overlap coefficients between subclusters in PC and control
group. (B) The frequency histogram of the 49 V genes in PC and control group. (C) The frequency histogram of the 13 J genes in PC and control
group. (D) Alluvial plots tracking the frequencies of TCR clonotypes from each sample.
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The expression of HAVCR2 (TIM-3)
in PDAC

Immune checkpoint proteins have been associated with overall

survival (OS) and progression in cancer patients as previously
Frontiers in Endocrinology 11
reported (31). We then compared mRNA expression of immune

checkpoint proteins between PDAC patients and controls using

scRNA-seq. We found that RNA expression level of BTLA, CD40,

CD86, HAVCR2 (TIM-3), and TLR2 were increased in PDAC

compared to controls, while the level of CD28, ICOS, CTLA4, and
B
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FIGURE 6

Distinct myeloid cells transcriptional signatures in PDAC and control group. (A) UMAP plot of myeloid cells presenting 12 clusters (mono, monocytes; Mac,
macrophages; cDC, conventional dendritic cells; pDC, plasmacytoid dendritic cells; Mega, megakaryocytes). (B) Dot plot depicting percent expression and
average expression of canonical marker genes in all myeloid cell subclusters. (C) Fraction of 12 myeloid cell subclusters in each sample from PC patient and
control. (D) Average proportion of myeloid cell subclusters in PC and control group. One-way analysis of variance Wilcoxon rank sum test was used. (E)
Analysis of differentially expressed genes in monocytes from PC versus control group. Red dots represent the significantly upregulated top 25 genes in PC
versus control group. (F) UMAP plot of S100A9 gene level in total PBMCs from control and PC group (left and middle). Proportion of S100A9+ cells in total
PBMCs from PC and control group (right). One-way analysis of variance Wilcoxon rank sum test was used. (G) UMAP plot of S100A9 gene level in myeloid
cells from control and PC group (left and middle). Proportion of S100A9+ cells in myeloid cells from PC and control group (right). One-way analysis of
variance Wilcoxon rank sum test was used. (H) CD4+ T cells/monocyte ratio in PC and control group.
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CD80 were decreased (Figure 7A). Moreover, we examined protein

level of TIM-3, LAG3, PD-1, GITR, TIGIT, CD274 (PD-L1), CD40,

CD86, CD27, CD28, ICOS, CTLA4, and CD80 in both PDAC and

controls by mass cytometry (Figures 7B, C; S11, S12), and found

that protein level of TIM-3, CD40, and CD86 in immune cells was

higher in PDAC patients than that of the controls (Figure 7C),

consistent with our scRNA-seq results.

Previous studies had revealed that serum levels of soluble

protein detected in the serum of PDAC patients had prognostic
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value (32). We next measured the serum levels of immune

checkpoint proteins of the peripheral blood in 45 PDAC patients

and 50 non-PDAC participants (including 20 participants with

benign pancreatic diseases and 30 healthy controls). The

clinicopathological characteristics of 45 patients with PDAC and

50 non-PDAC participants are presented in Table S6. Sixteen

soluble immunologic protein (including sBTLA, sCD27, sCD28,

sTIM-3, sHVEM, sCD40, sGITR, sLAG-3, sTLR-2, sGITRL, sPD-1,

sCTLA-4, sCD80/B7-1, sCD86/B7-2, sPD-L1, and sICOS) levels
B
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A

FIGURE 7

Expression of HAVCR2 (TIM-3) in PDAC. (A) Heatmap displaying expression of select genes in each sample from PC and control group. (B) T-SNE
plot showing the selected marker TIM-3 in PC and control group. (C) Protein expression level of TIM-3 (left), CD40 (middle), and CD86 (right) in PC
and control group. One-way analysis of variance Wilcoxon rank sum test was used. (D, E) Serum levels of sTIM-3 in PDAC patients and non-PDAC
participants. The p-values were calculated based on a Student’s t-test. (F) The ROC curves of sTIM-3, CA19-9, and sTIM-3+CA19-9 for PDAC
detection in the training cohort and validation cohort. Table showing the sensitivity, specificity and AUC value of the three models in these two
cohorts. (G) Kaplan–Meyer plot of OS in PDAC patients with high or low serum sTIM-3 expression in different cohorts. AUC, area under the curve;
CA19-9, carcinoma antigen 19-9; ROC, receiver operating characteristic.
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were detectable in all serum samples. Median values are presented

in Table S7. There was no significant difference in sex and age

distribution between the PDAC patients and the non-PDAC

participants (Table S6). The level of serum sTIM-3 was

significantly higher in PDAC patients, compared to the non-

PDAC participants (Figure 7D; Table S7). The levels of other

soluble proteins were no difference between PDAC cohort and

non-PDAC participants (Table S7).

To confirm whether sTIM-3 can be a potentially valuable

diagnostic marker, the cohort contained 45 PDAC patients and

50 non-PDAC participants were defined as the training cohort, and

another 53 PDAC patients, 22 participants with benign pancreatic

diseases and 25 healthy volunteers from our center were defined as

the validation cohort. The clinicopathological characteristics of all

participants in validation cohort are presented in Table S8. In the

validation cohort, the serum sTIM-3 level of the patients with

PDAC was significantly higher than that of the non-PDAC subjects

(Figure 7E), consistent with the results observed in the training

cohort. sTIM-3 alone achieved a sensitivity of 72.5% and a

specificity of 86.7%, with an AUC of 0.89 in the training cohort

(Figure 7F). In the validation cohort, the sensitivity was 84.9% and

the specificity was 76.7%, with an AUC of 0.887 (Figure 7F). We

then combined the CA19-9 level and sTIM-3 together to generate a

new diagnostic model (named as sTIM-3+CA19-9), which had a

better sensitivity of 92.5% and specificity of 93.3% in the training

cohort, with an AUC of 0.974, which was greater than CA19-9 alone

(AUC=0.857). Similarly, the sensitivity (98.1%) and specificity
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(90%) in the validation cohort were also enhanced compared with

the sTIM-3 alone (Figure 7F). The AUC value of sTIM-3+CA19-9

in the validation cohort was 0.992, which was better than that of

CA19-9 (AUC=0.847) or sTIM-3 alone (AUC=0.887). These results

indicated that sTIM-3 combined the CA19-9 may be of value in the

diagnosis and follow-up for patients with PDAC.

To determine the prognostic values of sTIM-3, we performed

Kaplan-Meier analysis and found that PDAC patients with high

serum sTIM-3 level had worse OS in the training cohort (Cutoff

value = median, p = 0.034, Figure 7G) or in the validation cohort

(Cutoff value = median, p = 0.022, Figure 7G). We then performed

multivariate Cox regression analysis to determine if sTIM-3

remains an independent predictor of OS. As shown in

Figures 8A, B, either in the training cohort or in the validation

cohort, the correlation with OS remains statistically significant for

sTIM-3 after adjusting for tumor site, resection margins, TNM

stage, grade, vascular invasion, and postoperative chemotherapy.
Discussion

We have shown that there were increased proportion of

myeloid cells as well as increased proportion of cytotoxic T cells

in the peripheral blood of patients with PDAC, suggesting the

presence of a certain degree of systemic inflammatory and immune

response in patients with PDAC, rather than a state of complete

immunologically “cold” tumor. We also found increased S100A
B

A

FIGURE 8

Multivariate analysis of level of serum soluble TIM-3 for association with OS in patients with PDAC from different cohorts. (A) Training cohort.
(B) Validation cohort. Analysis was adjusted for tumor site, resection margins, TNM stage, grade, vascular invasion, and chemotherapy.
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expression on the monocytes of patients with PDAC. S100A

proteins have been found to be associated with cancer

progression. In addition, we found increased level of sTIM-3 in

the peripheral blood of patients with PDAC and that high sTIM-3

serum level correlated with worse OS, suggesting that serum level of

immune checkpoint proteins may be critical for mounting

appropriate immune response for patients with PDAC.

The mechanism of treatment resistance of cancer is determined

by several factors including intrinsic characteristics of tumor cells,

systemic immune state of a host and tumor microenvironment (33)

(34). Studies have shown that higher TCR clonal diversity of PD-1+

CD8+ T cells provides enhanced opportunities for tumor

neoantigen recognition (35). In patients with non-small cell lung

cancer the clonal diversity of PD-1+ CD8+ TCR in peripheral blood

correlated with better survival (35, 36). It is not clear if such a T cell

clonal diversity is associated with the survival of PDAC. Our high-

dimensional sequencing to simultaneously assess TCR repertoire

and RNA/protein expression at the single-cell level provide a more

comprehensive picture for understanding the immune state of

patients with PDAC.

TCR diversity plays an important role in maintaining immune

system homeostasis, and the loss of TCR clonal diversity may lead

to diseases (37). In the TCR repertoire analysis, patients with PDAC

had significantly different T cell characteristics compared with the

healthy control. TCR diversity in PDAC was significantly reduced.

Peripheral blood T cells from PDAC patients show increased clonal

expansion in CD8+ T cell subsets, and higher expansion of CD8+ T

cells contributes to the lower clonal diversity in PDAC. This may be

due to the specific immune response of peripheral blood T cells to

some tumor-specific antigens and the antigen-dependent selective

rearrangement of CD8+ TCR. Our data suggest that the different

TCR diversity found in control versus PDAC are highly correlated

with the distribution of T-cell subsets. Although monoclonal

expansion of peripheral blood toxic CD8+ TCR in PDAC patients

has been identified, the specific antigens responsible for clonal

changes in T cells require further perform epitopes matching

analysis and validation study.

Myeloid cells from the peripheral blood or tumor

microenvironment play a key role in malignancies including

immune evasion. Previous study found increased number of

CD14+ S100A9high myeloid cells in the peripheral blood of colon

cancer patients compared to healthy individuals (38). Also, it has

been shown that high numbers of S100A9+ inflammatory cells in

tumor stroma correlated with shorter survival in patients with

prostate cancer (39). Moreover, in patients with gastric cancer

high plasma levels of S100A8/A9 correlated with the increased

population of myeloid cells (40). Our results revealed that

proportions of the myeloid cells from the peripheral blood were

significantly increased in patients with PDAC and that increased

S100A9+ monocytes and lower ratio of CD4+ T cells/monocytes

may be partly responsible for poor response to anti-PD-1/PD-

L1 therapy.

Recent studies showed that TIM-3 and galectin-9 interaction

was involved in the immune escape of several malignancies such

as acute myeloid leukemia (AML) and non-small cell lung cancer

(41, 42). Soluble TIM-3 level was highly increased in the blood
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plasma of AML patients and was shown to prevent secretion of

interleukin-2 (IL-2) required for the activation of NK cells and

cytotoxic lymphoid cells (41). The plasma level of TIM-3

reportedly could be used to predict failure of graft-versus-host-

disease (GVHD) treatment and mortality (43). However, serum

soluble TIM-3 has not yet been investigated in PDAC. Our results

suggest that serum sTIM-3 could be an additional valuable

biomarker for the diagnosis and prognosis of PDAC. Although

the trade-off between sensitivity and specificity depends on the

clinical setting, it is worth noting that the combination of sTIM-3

and CA19-9 further improved the AUC value, suggesting that

sTIM-3 is complementary to this traditional tumor marker,

resulting in excellent performance. And that high serum sTIM-3

level correlated with poor outcomes in patients with PDAC by

univariate and multivariate analysis.

In conclusion, our comprehensive single-cell RNA-seq data

provides an in-depth understanding of the immune signatures of

the peripheral blood of patients with PDAC. The expansion of

peripheral blood cytotoxic CD8+ T cells in PDAC patients resulted

in a decrease of TCR clonal diversity, suggesting that PDAC

patients may retain a specific immune response to potential

novel tumor antigens in PDAC that could be valuable for

therapeutic targeting.
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