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Thelytokous Wolbachia-infected Trichogramma species have long been considered
as biological control agents against lepidopteran pests in agriculture and forestry.
Wolbachia has been suggested to increase the probability of the superparasitism of
Trichogramma, but the fate of infected offspring in the superparasitised host is still
unknown. The present study aimed to evaluate the fitness of thelytokous Wolbachia-
infected (TDW) and bisexual Wolbachia-free (TD) Trichogramma dendrolimi Matsumura
(Hymenoptera: Trichogrammatidae) lines in superparasitised or single-parasitised hosts.
The results showed that irrespective of whether Trichogramma wasps were developed
from superparasitised or single-parasitised hosts, the TDW line was characterized by
reduced fitness, including lower fecundity, shorter longevity, and smaller body size of
F1 offspring, and lower emergence rate of F2 offspring than the TD line. This was
not true for the survival rate and developmental time of F1 offspring. Additionally, the
fitness parameters of T. dendrolimi that developed from superparasitised hosts were
lower compared with that of T. dendrolimi that developed from single-parasitised hosts.
Interestingly, Wolbachia-infected females had higher dispersal capacity than bisexual
females when they developed from superparasitised hosts. The results indicated that
Wolbachia negatively affects fitness of T. dendrolimi, but enhance dispersal capacity of
T. dendrolimi females in superparasitism condition. Further studies need to be carried
out to select the best line that will allow Wolbachia and their host Trichogramma to be
better adapted to one another.

Keywords: Wolbachia, Trichogramma dendrolimi, superparasitism, biological control, thelytokous
parthenogenesis, intraspecific competition
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INTRODUCTION

The egg parasitoids Trichogramma spp. have been widely used
worldwide to control lepidopteran pests in agriculture and
forestry (Li, 1994; Smith, 1996; Wang et al., 2019; Zhou et al.,
2019a,b; Zang et al., 2020). In general, the sex determination of
Trichogramma wasps is haplodiploidy, as haploid males develop
from unfertilized eggs and diploid females develop from fertilized
eggs (Cook, 1993; Werren et al., 2008). However, certain strains
of Trichogramma spp. only produce females, even without
fertilization, in a process known as thelytoky. Thelytoky caused
by parthenogenesis-inducing (PI) Wolbachia has been found in
at least 15 Trichogramma species (Vavre et al., 2004; Zhang, 2009;
Ma and Schwander, 2017).

Thelytokous Trichogramma has advantages in biological
control programs including easier colonization without mating
and less costly to rear en masse (Stouthamer, 1993; Zhou et al.,
2019b, 2020). Rahimi-Kaldeh et al. (2017) found that Wolbachia
infection increases fecundity of thelytokous Trichogramma
brassicae Bezdenko. Vavre et al. (1999) also reported the presence
of the A subdivision of Wolbachia increases fecundity of
Trichogramma bourarachae Pintureau and Babault. However,
others showed Wolbachia has negative effects on host fitness
in most occasions, including lower emergence rate, shorter
longevity, smaller body size, and lower fecundity, when compared
to their uninfected counterparts (Stouthamer and Luck, 1993;
Hohmann et al., 2001; Tagami et al., 2001; Miura and Tagami,
2004; Russell and Stouthamer, 2011; Zhou et al., 2020). Previous
studies also found that Wolbachia is the factor that causes
the occurrence of intersex (Bowen and Stern, 1966; Beserra
et al., 2003; Tulgetske and Stouthamer, 2012; Ning et al.,
2019). In these cases, although thelytokous Trichogramma have
many advantages in biological control programs, the Wolbachia
infection may have potential negative consequences on the
production of thelytokous Trichogramma.

Nevertheless, our previous studies and others indicated that
infected Trichogramma females show a higher probability of
superparasitism, which parasitoid females lay a second clutch
of eggs on a host that has been parasitised by the same species
(Harvey et al., 2013; Farahani et al., 2015; Huang et al., 2017a; Liu
et al., 2018; Zhou et al., 2019b). According to Lack’s hypothesis
as applied to gregarious parasitoids by Lack (1947) and Charnov
and Skinner (1984), parasitoid females always allocate an
optimal clutch size to a host to maximize offspring fitness. In
superparasitised hosts, parasitoid offspring compete with each
other for limited resources, leading to reduced individual fitness
and increased mortality (Devescovi et al., 2017; Tunca et al., 2017;
Duval et al., 2018). Thus, superparasitism had long been viewed
as a maladaptive mistake of parasitoids (van Dijken and Waage,
1987; van Alphen and Visser, 1990). It is worth noting that
some pathogens or symbionts can be horizontally transmitted
among parasitoids when superparasitism occurs (Martinez et al.,
2012; Parratt et al., 2016). Wolbachia has been found to
transmit horizontally from infected to uninfected individuals
as the offspring share a superparasitised host (Schilthuizen and
Stouthamer, 1997; Huigens et al., 2004a; Zhang, 2009).

Some authors argue that a genomic conflict may exist
between the PI Wolbachia and their host’s genome, because
the nuclear genes favor a population with at least some
males, while PI Wolbachia favor a 100% female population
(Stouthamer, 1997). In such situations, an “arms race” ensue
between the Wolbachia, which try to enhance their transmission,
and host nuclear genes, which try to suppress Wolbachia
and their effects (Stouthamer, 1997). Consequently, a higher
fitness cost is expected in infected individuals (Huigens et al.,
2004b). However, Herre (1993) hypothesized that Wolbachia
and the host may be better adapted to one another due
to their common evolutionary fate, as the transmission of
Wolbachia is largely vertical. In other words, Wolbachia
quickly spreads in the host population as the host produces
more offspring. Considering these two opposite hypotheses,
an important question that should be tested arises: is the
effect of Wolbachia on the fitness of Trichogramma offspring
positive or negative in superparasitised hosts? Although previous
studies have shown that Trichogramma infected by Wolbachia
have higher probability for superparasitism (Huigens et al.,
2004b; Farahani et al., 2015; Zhou et al., 2019b, 2020), the
fate of Trichogramma offspring in the superparasitised host
is still unknown.

Trichogramma dendrolimi Matsumura has been described as
an effective biological control agent against many lepidopteran
pest species, including Ostrinia furnacalis (Guenée) (Wang
et al., 2014; Zhang et al., 2018; Zhou et al., 2019a), Mythimna
separata Walker (Huang et al., 2017b; Du et al., 2018), and
Mamestra brassicae (Linnaeus) (Takada et al., 2001). The adults
of Trichogramma spp. can deposit several to hundreds of
eggs on a relatively large lepidopteran egg, such as those
of Antheraea pernyi Guérin-Méneville, Samia cynthia ricini
Donovan, Helicoverpa armigera (Hübner), and M. brassicae
(Takada et al., 2001; Wang et al., 2015, 2020; Iqbal et al.,
2019, 2020). However, on small eggs such as those of Corcyra
cephalonica (Stainton), the females of Trichogramma spp. often
deposit only one egg by a single oviposition event (Li et al.,
2008; Wang et al., 2015, 2019; Du et al., 2018). Owing to the
easier and more exact determination of the superparasitism of
host eggs, the eggs of C. cephalonica were used as the host
eggs in this study.

To determine whether the effect of Wolbachia on the fitness
of T. dendrolimi offspring is positive or negative in single-
parasitised or superparasitised hosts, we tested the survival rate,
body size, and developmental time of F1 offspring; fecundity,
adult longevity, and dispersal capacity of F1 female offspring;
and emergence rate of F2 offspring of a thelytokous Wolbachia-
infected line (TDW) and a bisexual Wolbachia-uninfected line
(TD) of T. dendrolimi in superparasitised or single-parasitised
hosts. The single-parasitised host eggs were determined as
one offspring being allocated to a C. cephalonica egg. The
superparasitised host eggs were determined as two offspring
being allocated to a C. cephalonica egg. As the effects of
Wolbachia on the fitness of Trichogramma have rarely been
examined in superparasitism condition, the results bridge some
gaps in the interaction of Wolbachia and host Trichogramma, and
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provide the reference for the application of Wolbachia-infected
thelytokous Trichogramma.

MATERIALS AND METHODS

Insects
The insects used in this study, including the TD and TDW of
T. dendrolimi and their host C. cephalonica, were maintained in
the Pest Biological Control Laboratory, Shenyang Agricultural
University. All insects were reared at 25 ± 1◦C, 70 ± 5%
RH and a L16:D8 photoperiod. Both T. dendrolimi lines were
originally obtained from the same bisexual isofemale line. The
TDW line was first obtained by artificially transferring Wolbachia
derived from infected females of Trichogramma embryophagum
Hartig into developed pupae of an TD female by micro-
injection (Zhang, 2009). Thereafter, the females of the TDW
line produced offspring that were nearly 100% female-biased
even without mating. The infection of T. dendrolimi individuals
by Wolbachia was detected and determined by specific primers
(81F: 5′-TGGTCCAATAAGTGATGAAGAAAC-3′ and 691R:
5′-AAAAATTAAACGCTACTCCA-3′) for the wsp gene of PI
Wolbachia (Braig et al., 1998; Liu et al., 2018). The host,
C. cephalonica, was reared on a semi-artificial diet (Yang et al.,
1990). The C. cephalonica eggs were collected in groups of ca. 300
and then glued onto a 10 mm × 40 mm card using Arabic gum
solution (Arabic gum powder:water = 1:6). To prevent the hatch
of C. cephalonica larvae, the host eggs were then killed by UV-
irradiation for 30 min. Both T. dendrolimi lines were reared on
C. cephalonica eggs by generations in the laboratory.

The active host eggs (1-day-old, without UV-irradiation)
were collected in groups of 30 and glued on a white card
(10 mm× 10 mm) using the Arabic gum solution. The egg cards
were used in this experiment.

Experimental Procedure
The egg card containing 30 glued host eggs was transferred into a
small Durham glass tube (8 mm diameter, 10 mm length, stopped
with cotton balls). Thereafter, a group of 10 TD or TDW wasps
were introduced into the tube. The oviposition behaviors were
observed under an anatomical lens. A single egg from the female
parasitoid was successfully deposited into the host egg when a
single oviposition behavior occurred with a time of fluctuating
abdominal movement (Guo, 1993). The egg locations on the egg
card were marked by a surgical skin marking pen (0.5 mm tips,
T3023; Tondaus, Dongguan, China) quickly as the oviposition
behavior occurred. Ten egg cards were supplied to TD or TDW
wasps for 30 min, after which the wasps were removed. The host
eggs were then reared until the eggs blackened, which occurs
during the Trichogramma prepupal stages (Flanders, 1937). The
blackened host eggs were cut off and transferred singly into a new
Durham glass tube for emergence. Thereafter, the host egg was
reared until the wasp(s) either emerged or not.

After wasp emergence, the blackened host eggs were dissected
to determine the existence of a dead body of a Trichogramma
offspring. The survival rate of F1 offspring was calculated by the
number of wasps that emerged and the total number of offspring

deposited. The single-parasitised host eggs were determined
as one offspring being allocated to a C. cephalonica egg. The
superparasitised host eggs were determined as two offspring
being allocated to a C. cephalonica egg. Every unmated female
wasp was supplied with a host egg card with approximately
300 eggs for parasitization and replaced daily. The wasps were
fed with 10% honey solution via a cotton thread daily. Female
lifespan and fecundity were recorded daily. The body size of the
females was measured as the length of the left hind tibia.

Thirty TD or TDW females that emerged from
superparasitised hosts or single-parasitised hosts, were randomly
selected to test their aerial dispersal capacity by recording the
flying distance according to the method of Zboralski et al. (2016).
A single female was introduced into a 100 µL pipette tip (50 mm
height, and the wide mouth side stopped with cotton). The tip
was erected in the center of an A2 paper (594 mm × 420 mm) as
the diving tower and the tip of the tower was coated with Vaseline
to prevent the female from walking along the tip. The females
had to fly from the tower and their landing positions were
marked by the position of the female glued on the paper coated
with vaseline. The flying distance of the female was recorded.

Statistical Analysis
Two factors were considered in this study: the parasitism type
(superparasitised host eggs or single-parasitised host eggs) and
the T. dendrolimi line (TD and TDW). The binary logistic
regression model was used to estimate the survival rate of F1
offspring and the emergence of F2 offspring as influenced by the
parasitism type and the T. dendrolimi line (Walker and Duncan,
1967). The log-linear model was used to estimate the effects of
the T. dendrolimi line and the parasitism type on the fecundity
and developmental time of T. dendrolimi (Berk and MacDonald,
2008). A generalized linear model with Gaussian distribution was
applied to analyze the body size and flying distance as influenced
by the parasitism type and the T. dendrolimi line.

Cox’s proportional hazard model (hereafter “Cox model”) was
applied to quantify the adult longevity of F1 female offspring
by the hazard rate, which can be interpreted biologically as the
death risk at different age. The Cox model are well suited to time-
to-event data (e.g., longevity of organisms), which are seldom
normally distributed and cannot be made to fit the assumption
of linear models with transformations. The hazard death rate at
wasp’s age t is given by:

h(t) = h0(t) exp

{ n∑
i=1

βizi

}

Where h0 (t) is the baseline hazard function of adult death
depending only on the age when all covariates Zi are set to
zero, and βi is the regression coefficient that give the relative
contribution of the n covariates Zi (t). If hazard ratio of adult
death, expressed by exp {6β iZi}, is reduced, resulting in an
increase of the adult longevity. The instantaneous death risk
describe the increasing rate of mortality increased with the age.
The Kaplan-Meier plot was applied to describe the curve of
cumulative hazard of adult death increased with the age (Cox,
1972; Sheng et al., 2014).
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All analyses were carried out in R ver. 4.0.2
(R Core Team, 2020).

RESULTS

The survival rate of F1 offspring was not affected by the
parasitism type (χ2 = 2.19, df = 1, P = 0.14), the T. dendrolimi
line (χ2 = 3.68, df = 1, P = 0.055), or their interaction (χ2 = 0.073,
df = 1, P = 0.79) (Figure 1).

The body size of F1 female offspring was significantly affected
by the parasitism type (χ2 = 205.59, df = 1, P < 0.001) and the
T. dendrolimi line (χ2 = 7.08, df = 1, P = 0.0078), but it was
not affected by their interaction (χ2 = 0.39, df = 1, P = 0.53).
The body size of the females that emerged from superparasitised
hosts (TD: 120.35 ± 2.29 µm; TDW: 115.76 ± 2.02 µm) was
significantly smaller than that of those that emerged from single-
parasitised hosts (TD: 154.03 ± 2.42 µm, z = 14.98, P < 0.001;
TDW: 146.64 ± 2.26 µm, z = 14.34, P < 0.001). The body size of
TD females was significantly higher (z = 2.66, P = 0.0078) than
that of TDW females (Figure 2-S1).

Fecundity of F1 female offspring was significantly affected
by the parasitism type (χ2 = 167.56, df = 1, P < 0.001)
or the T. dendrolimi line (χ2 = 65.86, df = 1, P < 0.001).
Regardless of the T. dendrolimi line, the fecundity of the females
that emerged from superparasitised hosts (TD: 71.29 ± 4.27;
TDW: 48.44 ± 2.13) was significantly lower than that of those
that emerged from single-parasitised hosts (TD: 142.90 ± 7.55,
z = 3.64, P< 0.001; TDW: 92.37± 4.39, z = 2.70, P = 0.0069). The
fecundity of the TD females was significantly higher than that of
the TDW females in superparasitised (z = 4.50, P < 0.001) and
single-parasitised (z = 6.68, P < 0.001) hosts (Figure 2-S2).

The developmental time of F1 offspring was not affected
by the parasitism type (χ2 = 0.083, df = 1, P = 0.77), the
T. dendrolimi line (χ2 = 2.99, df = 1, P = 0.084), or their
interaction (χ2 = 0.0010, df = 1, P = 0.99) (Figure 2-S3).

The emergence rate of F2 offspring was significantly affected
by the interaction of the parasitism type and the T. dendrolimi
line (χ2 = 48.57, df = 1, P < 0.001). The emergence rate
of TDW offspring that emerged from superparasitised hosts
(61.78 ± 2.12%) was significantly lower than that of those that
emerged from single-parasitised hosts (85.38 ± 1.28%; z = 8.38,
P< 0.001), but the difference was non-significant in TD offspring
(superparasitised host: 70.20 ± 2.13%; single-parasitised host:
70.41 ± 2.13%; z = 0.41, P = 0.68). The emergence of TDW
offspring was significantly higher than that of TD offspring
(z = 7.22, P < 0.001) in single-parasitised hosts, but was
significantly lower than that of TD offspring (z = 2.65, P = 0.0082)
in superparasitised hosts (Figure 2-S4).

The adult longevity of F1 female offspring was significantly
affected by the parasitism type (χ2 = 18.37, df = 1, P < 0.001)
or the T. dendrolimi line (χ2 = 4.66, df = 1, P = 0.031), but it was
not influenced by their interaction (χ2 = 0.71, df = 1, P = 0.40).
Regardless of the T. dendrolimi line, the adult longevity of females
that emerged from superparasitised hosts [instantaneous death
risk: 1.37 ± 0.22 (TD), 1.77 ± 0.30 (TDW)] was significantly
shorter than that of those that emerged from single-parasitised

hosts (TD: 0.48 ± 0.087, z = 3.81, P < 0.001; TDW: 0.85 ± 0.14,
z = 3.52, P < 0.001). The adult longevity of TD females was
significantly higher (z = 2.12, P = 0.035) than that of TDW
females (Figure 3).

The flying distance of F1 female offspring was significantly
affected by the interaction of the parasitism type and the
T. dendrolimi line (χ2 = 15.42, df = 1, P < 0.001), but it
was not affected by the parasitism type (χ2 = 3.43, df = 1,
P = 0.064) or the T. dendrolimi line (χ2 = 2.09, df = 1, P = 0.15).
The flying distance of TDW females in superparasitised hosts
(32.21 ± 2.81 mm) was significantly higher than that in single-
parasitised hosts (19.28 ± 1.28 mm; z = 4.01, P < 0.001), but the
difference was non-significant in TD offspring (superparasitised
host: 19.56± 2.64 mm; single-parasitised host: 25.53± 2.56 mm;
z = 1.67, P = 0.094). The difference in the flying distance between
TD and TDW females was non-significant in superparasitised
hosts (z = 1.24, P = 0.20) or single-parasitised (z = 1.41, P = 0.16)
hosts (Figure 4).

DISCUSSION

Our results showed that the survival rate of F1 offspring was not
affected by the parasitism type or the T. dendrolimi line. However,
the fitness parameters including body size, adult longevity,
and fecundity of T. dendrolimi females that developed from
superparasitised hosts were reduced compared with those of
T. dendrolimi females developed from single-parasitised hosts,
regardless of the T. dendrolimi line.

Generally, the outcome of intrinsic competition depends
on the host usage strategies of the parasitoids (Harvey et al.,
2013). Once the hosts are superparasitised, parasitoid offspring
compete for the host resources by scramble competition
for the acquisition of shared host nutrition, or by contest
competition for monopolization of host resource through
excluding competitors. Larvae of solitary parasitoid species
often destroy their competitors and gregarious parasitoid
larvae often share the host resources with other individuals
in a superparasitised host. T. dendrolimi can be considered
a facultative gregarious species (Martel and Boivin, 2010).
These tiny wasps often deposit only one egg on a small
host egg, such as that of C. cephalonica, but they can also
deposit a clutch of several to hundreds of eggs on a large
host egg, such as those of M. separata, M. brassicae, and
A. pernyi (Kong et al., 1988; Takada et al., 2001; Wang
et al., 2015). However, the larvae of Trichogramma carverae
Oatman and Pinto have been observed to siphon and kill
their siblings (Heslin and Merritt, 2005). So far, T. dendrolimi
larvae have not been observed to initiate aggressive attacks.
If the larva shows a form of scramble competition, most
offspring would emerge, but with reduced fitness. Our previous
study and others revealed that infected parasitoids have a
higher probability of parasitizing host eggs that had been
previously parasitised (Farahani et al., 2015; Liu et al., 2018).
In superparasitised hosts, Wolbachia gains the opportunity for
horizontal transmission from infected Trichogramma individuals
to uninfected Trichogramma individuals (Huigens et al., 2004a;
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FIGURE 1 | Survival rate of TDW or TD F1 offspring in superparasitised (cyan bars) or single-parasitised (white bars) hosts. Bars indicate Means. Error bars indicate
the interval of Mean ± Standard Error. The same uppercase letters indicate non-significant difference between TD (n = 35) and TDW (n = 38) in superparasitised
hosts. The same lowercase letters indicate non-significant difference between TD (n = 39) and TDW (n = 35) in single-parasitised hosts. “ns” indicates non-significant
difference between superparasitised hosts and single-parasitised hosts. Texts labeled on the bars indicate sample size and values of Mean ± Standard Error.

FIGURE 2 | Body size of F1 female offspring (S1), fecundity of F1 female offspring (S2), developmental time of F1 offspring (S3), and emergence rate of F2 offspring
(S4) of TDW or TD line in superparasitised (cyan bars) or single-parasitised (white bars) hosts. Bars indicate Means. Error bars indicate the interval of
Mean ± Standard Error. The different uppercase letters indicate significant difference between TD and TDW in superparasitised hosts. The different lowercase letters
indicate significant difference between TD and TDW in single-parasitised hosts. “ns” or “***” indicates non-significant difference or significant difference at P < 0.001,
respectively, between superparasitised hosts and single-parasitised hosts. Texts labeled on the bars indicate sample size and values of Mean ± Standard Error.
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FIGURE 3 | Kaplan-Meier curve of adult survivorship and survival number of TDW (red) or TD (cyan) F1 female offspring in single-parasitised (S1) or superparasitised
(S2) hosts with the time extended.

FIGURE 4 | Flying distance of TDW or TD F1 female offspring developed from superparasitised or single-parasitised hosts. Bars indicate Means. Error bars indicate
the interval of Mean ± Standard Error. The different uppercase letters indicate significant difference between TD (n = 30) and TDW (n = 30) in superparasitised hosts.
The different lowercase letters indicate significant difference between TD (n = 30) and TDW (n = 30) in single-parasitised hosts. “ns” or “***” indicates non-significant
difference or significant difference at P < 0.001, respectively, between superparasitised hosts and single-parasitised hosts. Texts labeled on the bars indicate sample
size and values of Mean ± Standard Error.

Farahani et al., 2015; Liu et al., 2018). Thus, superparasitism may
have a positive effect on the spread of Wolbachia.

Our results also showed that the infected line of T. dendrolimi
had reduced fitness, including lower fecundity and a shorter

longevity, than the uninfected T. dendrolimi line, regardless
if it was developed in superparasitised or single-parasitised
hosts. However, the survival rate of F1 offspring did not vary
among parasitism types or T. dendrolimi lines. The results
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support the genomic conflict hypothesis that exists between the
PI-Wolbachia and their host’s genome. Superparasitism does
not seem to be an adaption of T. dendrolimi wasps to PI-
Wolbachia.

Similar to our results, other studies also reported that
the infected Trichogramma offspring exhibit greater mortality,
shorter longevity, and smaller body size (Tagami et al., 2001;
Huigens et al., 2004b). PI-Wolbachia can convert the haploid eggs
of Trichogramma into diploid embryos through an aborted first
mitotic division. This mechanism is called gamete duplication.
Consequently, homozygous individuals develop as females. In
contrast, the nuclear genes of the host favor a sex ratio
with at least some males developed from haploid eggs and
try to suppress Wolbachia and their effects. This arms race
between the nuclear genes of hosts and PI Wolbachia may
lead to a higher fitness cost in infected individuals (Stouthamer
et al., 2010). First, the conflicts between Wolbachia and host
Trichogramma may lead to delayed hatching in the early mitotic
stage of Trichogramma embryo. Hohmann and Luck (2000)
reported that the infected offspring of Trichogramma kaykai
Pinto and Stouthamer took approximately half a day longer
than uninfected offspring to hatch. Tagami et al. (2001) found
that most embryos of uninfected Trichogramma could develop
to the cellular blastoderm stage 6 h after oviposition, while
approximately 35% of embryos of infected Trichogramma still
remained at the mitotic stage even 48 h after oviposition. Owing
to the delayed hatching, the Trichogramma offspring may be
unable to obtain sufficient nutrition from the host eggs especially
in superparasitism conditions. A second factor suspected to
affect the fitness of Wolbachia-infected Trichogramma larvae,
is their requirement for more nutrients when compared to
that of uninfected counterparts (Huigens et al., 2004b). During
the mitotic proliferation of host organisms, Wolbachia divides
rapidly and rely on nutrients and energy sources provided
by the host (Landmann et al., 2010; Grote et al., 2017).
Rahimi Kaldeh et al. (2017) implied that the presence of
Wolbachia may cause energy reduction when facing stresses.
Although potential quality risks exist in PI Wolbachia-infected
Trichogramma wasps, the PI Wolbachia-infected thelytokous
Trichogramma line will allow a predictable performance in
fields and could be used as a population to help maintain a
typical genotype and traits without change. Genetic improvement
methods should be encouraged to select the best line in the
future. For example, Ebrahimi et al. (2019) tried to create a
set of completely homozygous Wolbachia-infected recombinant
lines by hybridizing Wolbachia-infected Trichogramma wasps
and bisexual wasps.

Though the infected Trichogramma offspring is less
competitive relative to uninfected offspring when competing
in superparasitised hosts, we found Trichogramma offspring
benefit for survivorship from Wolbachia in single-parasitised
hosts. Our previous study also observed a higher emergence of
Wolbachia-infected offspring than that of uninfected offspring
when the wasps emerged from A. pernyi eggs (Zhou et al.,
2020). One potential explanation is that Wolbachia protect hosts
against a broad range of pathogens by induction of host innate
immune responses or competing with pathogens for nutrients

(Brownlie and Johnson, 2009; Zhang et al., 2020). Some studies
doubted that the abortion of Trichogramma offspring may be
caused by the vertical transmitted pathogens like Nosema spp.
and pathogenic bacteria in host eggs (Pu, 1983; Ruan et al., 2000;
Qin, 2015; Zhao et al., 2019). Therefore, further investigations
need to be carried out to bridge the gaps in knowledge pertaining
to the pathogenicity of the pathogens in Trichogramma. Another
explanation is that Wolbachia has evolved nutritional mutualism
for the survival of host organisms (Braquart-Varnier et al.,
2015). For example, Wolbachia is the supplier of B vitamins for
their hosts (Hosokawa et al., 2010; Ju et al., 2020). Although
Wolbachia protect immature Trichogramma offspring against
death, Wolbachia also taxes resources of infected Trichogramma
offspring, necessitating a longer developmental time and
requirement for more nutrients (Huigens et al., 2004b). Thus the
infected Trichogramma offspring is less competitive for limited
resources in intra-specific competition.

Interestingly, our results showed that Wolbachia-infected
females had a higher dispersal capacity than bisexual females
when they developed from superparasitised hosts. Similar results
were also found in Laodelphax striatellus (Fallén) (Sun et al.,
2015), Coccotrypes dactyliperda Fabricius (Tremmel et al., 2020),
and Aedes aegypti (Linnaeus) (Evans et al., 2009). Caragata
et al. (2011) found that Wolbachia infection increases the
recapture rate of field-released Drosophila melanogaster Meigen.
Hoffmann et al. (2007) revealed that Wolbachia infection results
in size differences in flies and, consequently, affects their
dispersal distances. Nevertheless, infecting nervous tissues with
Wolbachia could also influence the locomotor activities of insects
(Strunov et al., 2013). While in this study we showed that the
increased dispersal capacity of infected wasps might be driven
by superparasitism, the mechanism behind this phenomenon was
not explained. Future studies should be encouraged to examine
the dispersal behaviors and motivation of infected females under
superparasitism conditions.

Although Wolbachia and the host will be better adapted to
one another as Wolbachia quickly spreads in the host population
when the host produces more offspring, Wolbachia-infected
T. dendrolimi wasps could not benefit from superparasitism
according to our results. However, the experiments were
conducted in laboratory conditions. The Wolbachia-infected and
uninfected lines have been separately reared on intermediate
hosts for over 40 generations. This makes it a little challenging
to be confident that the effects were directly attributable to
Wolbachia. It is critical to clarify the effects of Wolbachia on
the intraspecific competition of Trichogramma offspring in field
conditions. In biological control programs, genetic improvement
methods should be encouraged to select the best line that will
allow Wolbachia and the host to be better adapted to one
another in the future.
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