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ABSTRACT

We investigate the motion of an electron in a one dimensional crystal coupled to an EMF
potential, driven by an external force which is continuously switched on and off. The
Shannon entropy and the thermodynamic parameters of the system are evaluated using the
density matrix and the statistical sum, through the Feynman path integral method. The
coupling with the system and its environment (modelised here by the quenching field)
inducing decoherence. That effect is reduced when the magnetic confinement frequency
increases.
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1. INTRODUCTION

Quantum decoherence, where coherence in a quantum system is reduced due to interaction
with its environment is a fundamental and complicated concept of physics. Decoherence
refers to the destruction of a quantum interference pattern and is relevant to the many
experiments that depend on achieving and maintaining entangled states. Examples of such
efforts are in the areas of quantum teleportation [1], quantum information and computation
[2, 3], entangled states [4], Schrödinger cats [5], and the quantum-classical interface [6]. For
an overview of many of the interesting experiments involving decoherence, we refer to [4, 7-
11]. Coherent manipulation and storage of quantum information are required in order to
construct a working quantum computer and rely on reducing decohering interaction between
its basic elements, the qubits, and their environment. The application of a magnetic field
potential as confining potential to solids have provided recently valuable information on
electron spin dynamics and decoherence in quantum computing [11]. After the pioneering
work on the information theory by Shannon [12], many studies have been carry out on the
question of how information storage, processing and transmission tasks can be performed
with macroscopic decohered resources [13,14]. All thermodynamic quantitative tools such as
entropy and specific heat capacity applied perfectly in the quantum domain require that, one
should focus on a single type of information associated with a particular measurement on the
quantum system [15]. The difference between quantum information with its classical
counterpart has been mathematically defined using thermodynamic quantities [16, 17]. The
Shannon entropy given by the classical information theory can be negative when considering
quantum entangled systems [18, 19].

The thermodynamic properties of electron in a system without a magnetic confinement,
driven by a constant force have been discussed in the literature [20-22]. These quantities are
used to characterize the lost of information showing decoherence phenomenon related to
evolving pure quantum states [12, 22, 23]. Indeed, it is known that the external force
enhances disorder in the system by increasing its entropy as compared to the motion of a
simple harmonic oscillator [24].

The simplest way of analyzing decoherence in a motion of single electron is to evaluate the
electronic density and the partition function of the system; because once both functions are
known, their thermodynamic properties can then be obtained.

In this paper, our objective is to show the effect of the magnetic field potential on the
thermodynamic quantitative tools and decoherence tailoring of a single electron driven by a
quenching field, using the path integral method. The organization of the paper is as followed;
in section 2 we explain the fundamental definitions needed for the comprehension of the
decoherence phenomenon as well as its formulation for the case of this investigation. The
nature of the external on/off force is given and the electronic density through the Feynman
path integral method is found. In section 3, the Shannon entropy is determined in the case of
simple and double Gaussian wave packet. In sections 4, we evaluate the statistical sum
which helps to establish the thermodynamic parameters of the system, such as the internal
energy, the specific heat capacity and the Boltzmann entropy. Finally in section 5 a brief
discussion and concluding remarks are presented.
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2. FUNDAMENTAL DEFINITIONS

The problem of decoherence in a classical and quantum systems has been extensively
studied [4,7, 25-28]. In this work, we consider the system with the following   Hamiltonian:

 xtfe φHH a )( (2.1)

where aH , eφ are respectively the Hamiltonian of non-bonded electron in a magnetic field

potential and the electric field potential. )(tf is an arbitrary function of time  that is modeled

to characterize the coupling between the harmonic oscillator ( e φΗ a  ) and the classical
pump.

Considering the electron system with s degrees of freedom and using the non-negative time
dependent phase space density function of the system noted by    ,t,...,v,tv ι21 xx,xx  ,
obeying the normalization condition,

  1xx d,t v (2.2),

and associated to the Gibbs-Shannon entropy relation

       .d,t v,t v
N!

tS s

GSE xxx ln1
(2.3),

with 1 , the Shannon entropy for the state given by the wave function  x,tψ leads to

    xx d,tψψtSSE

22 ln (2.4).

This relation is obtained with the help of the Schrödinger wave equation in the Born
interpretation [29], using the Leipnik entropy condition [18].

    02
 ,tψ,tv xx (2.5)

To get the entire expression of the Shannon entropy given in Eq.(2.4), we use the following
time dependent evolution operator

    
     t  i St D',t'",t", T

t"xx"

t'xx' xxxx  


exp (2.6)

where  tDx is the mesure,         duu,uLtS
t

T 
0

xxx  the total action of the system and

L the Lagrangian of the system (for a more detailed analysis, see Ref. [30]). The evolution
operator is related to the time dependent Schrödinger’s wave function through Eq.(2.7)
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     
"

'
,,

x

x
s

*

s tψtψd',t'",t", xxxxx (2.7).

In the semi-classical approximation, the time evolution operator (2.7) called the propagator
reads:

     

















 ',t'",t",Si',t'",t", S
"'

i',t'",t", clcl xxxx
xx

xx


exp
2
1

2

(2.8)

where clS is a classical action given by [30, 31]

            

      

          ufτfτtΩΩududτ
Ωtm

duu futΩ
Ωt

x

duu fΩu
Ωt

x
xxΩTxx

Ωt
mΩ

t τ

t

O

i

t
f

fifi

  

 



 0 0

0

22

sinsin
sin
1

sin
sin

sin
sin

2cos
sin2clS

(2.9).

In Eq.(2.9) , the following quantities m , Ω , ix and fx are respectively the electron mass, the
electromagnetic frequency, the initial and final displacements. In the following sections, to
explain the decoherence observation; we have evaluated the Shannon entropy as well as
the electron’s thermodynamic properties in a Gibbs ensemble.

3. SHANNON ENTROPY

From the Hamiltonian given in Eq.(2.1), using the canonical transformation, the Lagrangian
of the system reads:

       xtfxm Ωx
c
e

 m
,tL 






  22

0

2

2
1

2
1 APxx,  (3.1)

where 0Ω is the frequency of the electric field and

  xΗA 
2
1x (3.2)

is the magnetic field potential vector. For the incoming light (with photon of energy ω ) of
the relatively low intensity and within the coulomb Gauge, Eq. (3.2) is rewritten as the
interaction potential by introducing the substitution
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2
2

c
int  x

2
ωm

2
1V 






 (3.3)

In Eq.(3.3) c represents the cyclotron frequency. Considering the frequency of the entire
system as

4
ωΩΩ

2
c2

0
2  (3.4),

and considering Eqs.(3.3) and (3.4),  Eq. (3.1) becomes

   
2

2 21
2 2

mL ,t m Ω  x f t  x  
xx,x


 (3.5).

Using the Euler-Lagrange equations, Eq.(3.5)  obeys the following differential equation

 tf xm Ωxm 2  (3.6)

Equation.(3.6) has previously been solved to study the decoherence phenomenon in a
dissipative harmonic oscillator with several methods such as the reduced density matrix
[10,32]. Using the Feynman path integral method, the classical action along the classical
path is found as follows:

      321

0

sin
1

sinsin
Δ

tm Ω
Δ

t
xΔ

t
x

SS if

clcl 






 (3.7)

with

      fificl xxΩtxx
Ωt

mΩS 2cos
sin2

220  (3.8)

being the action of the free harmonic oscillator. The parameters 1Δ , 2Δ and 3Δ are the
displacement coordinates given respectively by

   dττ fΩτΔ
t


0

1 sin (3.9)

    dττftΔ
t

 
0

2 sin  (3.10)

        duufτ  ftΩΩudτΔ
t τ

 
0 0

3 sinsin  (3.11)

Considering Eqs (3.9) to (3.11), the propagator (2.8) representing the transition amplitude of
the electron leads to
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          
















 fifiif xxΩtxx

Ωt
mΩi.

Ωtπ i
mΩ,,t;xx 2cos

sin2
exp

sin2
0 22

21


(3.12).

In the limiting case where the external field is neglected, i.e. 0321  ΔΔΔ , we recover
the well-known statistical sum of a free harmonic oscillator [33].

  2sinh210 ΩλZ  (3.13).

Now, to facilitate the resolution of the problem, using the Green’s function G [26], relation
(3.9) becomes

      dττ fτtGtxΔ
t

d  
0

(3.14)

and from where we deduce (3.15) and (3.16)

     
t

dfτtΩ
m Ω

Δ
0
sin1  (3.15)

ΔmΔ 2 (3.16).

To determine the entropy and the specific heat capacity, we start by looking for the
probability distribution density in space coordinates.

    2x,tψx,tP  (3.17)

     224
1

2 4exp20 σxπσx,ψ  
(3.18)

          2222
4
1

2 42'exp42'exp80 σdxσdxπ σ,xΨ '  
 (3.19)

where   22 8exp121 σd is the normalization factor and d represents the

distance between the top of the two waves in the double Gaussian state;  m22  .The
time dependent wave functions are respectively expressed in terms of the propagator as

      dxx,x,txtx iff 0,0,,  (3.20)

Eqs. (3.18) and (3.19) designate the Gaussian centered at the mean position of the particle
at time 0t  with the variance . Without loss of generality, we take 0xi  .

Hereafter, we apply a driven external force as a switching protocol in which the source is
turned on and off for a finite time [34],



Physical Review & Research International, 4(2): 267-282, 2014

273

 
 





 


rwise      othe

t     iftf
tf

0

0sin0 
(3.21)

In relation (3.21), 0f is the amplitude of the driven force. Particularly, we assume in the
present work that both the single electron system and the external force are in the
resonance frequency . Based on the information entropy definition


N

i
iiBT PPKS ln (3.22)

and considering both single Gaussian and double Gaussian states, the  time dependent
entropy leads respectively to:

     

   













otherwise       ,π σKΓπ

Ωπt      ,σbπ σσbKΓ
π σ

σK

S

B

B
B

21ln2231

02exp21ln23
2
2

2

22222

2

2

1
(3.23)












erwise       oth' ,''

Ωπt,
TKS iB

0
2 ,  22 8exp1 σdTi  (3.24)

In Eq. (3.24), by letting

 22

1 4σdbC  ;  ΩtdZ cos21  ;     ΩtΩtΩtm ΩfY sincos2

0  ;

22 22 πγ  ,
2

8
2

cos
2
d   e ,

the quantities ' , ' , ' are respectively expression in terms of,  ,  in the absence
of the external force and are given by:

       21

2

1

2

12

22

1

2

cosh12exp1
2
2expln σZσZσ Y Z

σ
YZx








 
  (3.25)

       22

1

2

11
2 2ln2expcos2 σγ  Zσ CY Cα   (3.26)

     21

2

1

22

111 exp122expcos2 σZσ CσZ CZα  (3.27).

Γ is gamma function and b is the diving factor due to the external force given as,

    tΩ tΩ tΩ tab  sincos0 (3.28)
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Where  
 m

 tfta
2
0

0  defining an attenuation coefficient. The driving factor b plotted in Fig.1

represents the principal factor that characterizes the coupling of the system with the driven
field. This factor which contains all information about the coupling of the system is a usual
factor of decoherence characteristic.

Fig. 1. Plot of decoherence driving factor versus time, for different values of the
driven field intensity.  The fact that the factor b when 0f shows the

increase of the decoherence in the system.

In accordance with the resolution of Eq. (3.28), this curve shows that the decoherence
driving factor b displays different maxima and minima showing different bounded zones.
Outside these zones 0b . These zones are the decoherence free regions. Obviously, the
characteristic ,0b is also obtained for very low driven field frequency.  Thus, in this
consideration (i.e. ,0b ) the entropy becomes independent of time.  In Fig. 2, to describe

the coherence of the system we plot the entropy 0S versus the frequency  of the system

for 0b and the Shannon entropy 0S is seen to decrease exponentially (i.e. 00 S ).

This property 00 S is particular for the pure state system and thus to the coherence
motion of the system.
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Fig. 2. Plot of the Variation of the Shannon entropy 0S with respect to the field

confinement . This curve tends rigorously to zero for high frequency of the field and
shows that the effect of the field confinement contributes to reduce decoherence.

The Shannon entropy for the single and double Gaussian wave packets are found
theoretically and are given by Eqns. 3.23 and 3.24. These results are represented
graphically by Figs. 3,4 and Fig. 5 with respect to time t and the induced factor b .

Fig. 3. plot of the Shannon entropy versus time in the case of single Gaussian
wave packet.
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Fig. 4. plot of the Shannon entropy versus the driven factor b in the case of single
Gaussian wave packet.

Fig. 5. plot of the Shannon entropy versus time in the case of double Gaussian wave
packet.

These curves show that Shannon entropy increases when t and b is increased.

The temperature as a source of disorder induces the loss of the original information of the
system when the later interacts with its environment. With the Feynman’s statistical method,
in the following section we will determine some thermodynamic parameters allowing us to
evaluate the influence of the temperature on the decoherence of the system.
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4. THERMODYNAMIC PARAMETERS AND DECOHERENCE.

According to the Feynman statistics, the thermodynamic parameters such as specific heat
capacity, Boltzmann entropy can easily be calculated through the statistical sum by
evaluating the free energy of the system.

The Lagrangian in (3.5) becomes

    xσfxm Ωxmσ,x,-iL  2
2

2

22
x (4.1)

Thus the propagator in (3.12) takes the following form:
   4321exp BBBBπηλi,xx,   (4.2)

where

    ΩλxxxxηB fifi 


cosh2 22

1  (4.3a)

     
λ

i dσσλΩσf
Ωm

 xB
0

2 sinh2





(4.3b)

    dσσΩσf
Ωm

η x
B

λ
f

0

3 sinh
2




(4.3c)

          
λ σ

dσσ dΩσ'λΩσ'fσf
Ωm
ηB

0 0
224 'sinhsinh2 


(4.3d)

 Ω λ
m Ωη

sinh2
 (4.3e)

With relations (4.1) and (4.2), and assuming that the system is at the thermodynamic
equilibrium with ordered energy microstates nE , ,...2,1n , the partition function Z that
encodes the probabilistic information about the system is

  


1
exp

n
nβEZ (4.4)

Where the parameter TKβ B1 represents the inverse temperature of the system. The
form of (4.4) is reminiscent of the time-evolution constructed from the energy eigenstates
back in Eqs.(3.19) and (3.20). These have an equivalent expression through the integral
over propagators to all possible points. Hence, we replace the time t with the quantity iβ
and this operation moves us into the real part of the Euclidean path integrals.

Following the Feynman-Hibbs [30] methods, the partition function (4.4) becomes

         






n n
nn β EnxxβEdxn,xx',βdxZ expexp (4.5)
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and thus

     01022

2

1

2

0

2

0 41exp DDλ DDDDλDA LZZ   (4.6)

with  2sinh 20 Ω λD  ,  2sinh81 2

1 Ω λΩD  and

 Ω λΩD  3

2 sinh41 .

Now, the various thermodynamic quantities can be found using the free energy

ZTKTSUF BB ln (4.7)

where  dβZdU ln represents the internal energy and dTdFSB  the Boltzmann
entropy. In the microcanonical ensemble, the specific heat capacity at constant volume is
defined by the relation dTdUCV  . In the high temperature regimes the following
expressions are obtained

   83922945723432343 2

2233

1

2

120   TΩTKΩTKΩTU BB

……………………………………………………………………. (4.8)

   83928745721549343 4

22

3

63322

3

3

4   BBBBV KΩβKΩKKΩC

…………………………………………………………… (4.9)

 45783922923432343ln 2243323

50  TΩTΩTTΩTΩSB  

……………………………………………………………(4.10)

where TKB

2

1  ; mf 81
2

02   ; 222

3  BK ; m fK B 83
2

04  
; 22

05 8mTKf B

according to the theoretical results obtained in Eqs.(4.8), (4.9) and (4.10)  the curves
presented in Figs. 6-8 are plotted in the unit of BK .

Fig. 6 shows the dependence of the specific heat capacity on both external quenching field
and temperature. Note that for high quenching field intensity, there exists a range of
temperature where the specific heat capacity is slightly negative. This range of temperature
corresponds to the domain where the system lost it energy to it environment.

Figs. 7 and 8 show consequently that the internal energy and the Boltzmann entropy
increase when the temperature T and the driven quenching field intensity 0f increases.
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Fig. 6. plot of the Specific heat capacity VC as a function of Temperature T , plotted

for different value of the external field intensity 0f .

Fig. 7. plot of the Boltzmann entropy BS as a function of Temperature T , plotted for
different value of the external field intensity 0f .
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Fig. 8. plot of the Internal energy U as a function of Temperature T , plotted for
different value of the external field intensity 0f

As it is already shown in the literature, we observed in the two principal parts of this work
that, the environment (external periodic force in resonance with the harmonic oscillator)
increases the entropy [35]. Taking into account the fact that the disorder induces
decoherence and that the entropy is the main characteristic of disorder, we can say that the
decoherence increases with the increase of the entropy of the system.

5. CONCLUSION

In this work, it is shown from the above that, the coupling with the environment (modelised
here by the external quenching field) is described by the factor b . This factor that translates
the interference term is characterized by the cosine factor. The later measures the
disappearance of the interference term, that is, the loss of coherence (decoherence), by
defining an attenuation coefficient  ta , which is the factor multiplying the cosine. The results
are presented for the resonant case, i.e. when the cyclotron frequency is equal to that of the
quenching driven field.  The Shannon entropy is evaluated, respectively for one and two
Gaussian wave packet. The thermodynamic quantities such as the internal energy, the
Boltzmann entropy, and the specific heat are calculated. The Shannon entropy increases
with time and with the external quenching field intensity. The internal energy and the
Boltzmann entropy increase with temperature and the external quenching field intensity,
while the specific heat decreases. It is seen with the factor b and  ta that decoherence
exist even in the absence of dissipation. This effect (decoherence) is reduced with the
increase of the magnetic confinement.
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