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Abstract 
This paper demonstrates the existence, propagation, transmission, reflection, 
and interaction of deviatoric stress waves in polymeric fluids for which the 
mathematical models are derived using conservation and balance laws (CBL) 
of Classical Continuum Mechanics (CCM) and the constitutive theories are 
based on the entropy inequality and representation theorem. The physical 
mechanisms of deformation in polymeric liquids that enable the stress wave 
physics are identified and are demonstrated to be valid using Maxwell, Ol-
droyd-B, and Giesekus polymeric fluids, and are illustrated using model 
problem studies. We assume polymeric fluids to be isotropic and homogene-
ous at the macro scale so that the CBL of the CCM can be used to derive their 
mathematical models. For simplicity, we assume the polymeric fluids to be 
incompressible in the present work. 
 

Keywords 
Classical Continuum Theory, Viscoelastic Fluids, Polymeric Liquids, Stress 
Waves, Memory, Rheology 

 

1. Introduction, Literature Review and Scope of Work 

A polymeric fluid is synthesized using a solvent consisting of short-chain mole-
cules and a polymer consisting of long-chain molecules. The resulting fluid is 
referred to as a polymeric liquid, or fluid, or viscoelastic fluid. When the compo-
sition of a polymeric fluid is dominated by the solvent, it is referred to as a dilute 
polymeric fluid. On the other hand, if the composition of a polymeric fluid is 
dominated by the polymer, then it is called a dense polymeric fluid or polymer 
melt. Early experimental studies aimed at understanding the physics of motion 
in polymeric fluids using microscopic photography of the flow reveal very com-
plex Brownian motion at the molecular level. It is observed that in the unstressed 
or relaxed state of a polymeric fluid, the long-chain molecules of the polymer are 
mostly in a coiled state in the solvent, either by themselves or collectively in a 
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colony of long-chain molecules. These colonies of long-chain molecules are ob-
served to be interconnected with the neighboring colonies. 

A solvent and/or a polymer have their own separate viscosities and other 
properties. Likewise, a polymeric fluid has its own viscosity and other properties 
that obviously depend on the properties of the solvent and the polymer and their 
volume fraction, but they must be determined experimentally, just like the 
properties of a solvent and a polymer. 

Upon applying disturbances to a polymeric fluid, the short-chain molecules col-
lectively behave in a similar manner as a Newtonian fluid does. The long-chain 
molecules, on the other hand, begin to uncoil in the direction of the distur-
bance (or flow). This requires that they overcome the viscous resistance of-
fered by the solvent as well as the viscous resistance offered by the neighboring 
polymer molecules. Thus, the motion of the polymer molecules in a polymeric 
fluid is like a one-dimensional spring. Collectively, the polymer molecules act 
like one-dimensional springs in the direction of the flow (or disturbance). Just 
like a one-dimensional spring is only active in its axial direction and has no re-
sistance or response normal to this direction, the polymer molecules behave in a 
similar manner. That is, normal to the direction of the flow, the polymeric fluid 
response is quite weak but not zero due to the random orientation and arrange-
ment of the polymer molecules in the polymeric fluid. 

Even though at scales lower than the macroscale, polymers are not homoge-
neous and isotropic (the Brownian motion confirms this), at the macroscale, 
polymeric fluids can be considered isotropic and homogeneous, i.e., we can use 
the conservation and balance laws (CBL) of classical continuum mechanics (CCM) 
and the constitutive theories to derive the mathematical models for deformation 
physics of polymeric fluids. Surana et al. [1] [2] [3] have presented the derivation 
of the mathematical models for Maxwell, Oldroyd-B, and Giesekus fluids, both 
compressible and incompressible using conservation and balance laws of classic-
al continuum mechanics and the derivation of the constitutive theories based on 
entropy inequality and representation theorem [4]-[20], i.e., theory of isotropic 
tensors. 

There is a vast amount of published work related to the boundary value prob-
lems (BVPs) and initial value problems (IVPs) for polymeric fluids. Solutions of 
IVPs generally report a time response for specific physics of interest, whereas 
BVPs report solutions that are stationary states of IVPs. To our knowledge, wave 
propagation physics in polymeric fluids has not been studied and reported. Thus, 
we do not have any published work to report or discuss in this area. This is in 
fact the incentive for the work presented in this paper. Generally speaking, we 
can have two types of waves in continua: 1) waves associated with volumetric 
deformation; these are pressure waves. Existence of such waves is possible only 
in compressible continua. 2) The second type of waves is distortional; these are 
waves of deviatoric stresses. Existence and propagation of these waves require 
stiffness as well as mass. For example, in incompressible solid continuum that 
has stiffness and has mass, deviatoric stress waves can exist and propagate, but 
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pressure waves cannot exist as this solid continuum has no volumetric deforma-
tion. Similarly, in a compressible gas with virtually no stiffness, the deviatoric 
stress wave cannot exist, but the pressure waves can exist and propagate as the 
medium can support volumetric deformation.  

Motivation and Scope of Present Work 

In the present work we investigate the possibility of existence, propagation, ref-
lection, transmission, and interaction of stress waves in polymeric fluids. First, 
we consider pressure waves. If the polymeric fluid is incompressible (no volu-
metric deformation), then pressure waves cannot exist. If the polymeric fluid is 
compressible, then pressure waves can exist and propagate. Existence of devia-
toric stress waves requires stiffness and mass. The viscous resistance offered by 
the solvent and the neighboring polymer molecules in the uncoiling process of 
each molecule in the direction of the flow or disturbance can be collectively 
viewed as one dimensional springs acting in the direction of the disturbance. 
This is the main source of stiffness in polymeric fluids, and these fluids naturally 
have mass. Thus, polymeric fluids can support existence and propagation of a 
deviatoric stress wave related to distortional physics. Since this mechanism of 
stiffness exists regardless of whether the polymeric fluid is compressible or in-
compressible, the deviatoric stress wave can exist and propagate in compressible 
as well as incompressible polymeric fluids. A complete study of wave existence 
and propagation in polymeric fluids requires the following three investigations. 

1) Existence and propagation of distortional stress waves in incompressible 
polymeric fluids:  

a) Existence, propagation, transmission and reflection of distortional stress 
waves;  

b) Factors influencing the speed of propagation of distortional stress waves;  
c) Determination of the stress wave speed.  
2) Existence and propagation of distortional stress waves in compressible po-

lymeric fluids:  
a) Existence, propagation, transmission and reflection of distortional stress 

wave;  
b) Factors influencing the speed of propagation of distortional stress waves;  
c) Determination of the stress wave speed.  
3) Existence and propagation of pressure waves in compressible polymeric 

fluids.  
Out of the above three studies, study (1) focuses on the fundamental physics, 

science, and the corresponding mathematical models for deviatoric stress wave 
existence, propagation, reflection, and transmission in polymeric fluids. The 
pressure wave physics in compressible continua is well understood and studied. 
While deviatoric stress waves in compressible polymeric fluids, perhaps in the 
presence of pressure waves, is certainly of much interest as well, we believe the 
work proposed in (1) is of more basic importance, hence address this work here. 
We consider well known incompressible Maxwell, Oldroyd-B, and Giesekus po-
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lymeric fluids. The mathematical models (CBL and the constitutive theories) 
that are strictly based on CCM [1] [2] [3] are considered in the present work. 

Mathematical models are non-dimensionalized and their solution for 1D de-
viatoric stress waves are obtained using space-time coupled finite element me-
thod based on the space-time residual functional (STRF) for a space-time strip 
with time marching [21]. The space-time local approximations in higher order 
spaces in space and time used in the present work permit higher order global 
differentiability of space-time approximations for a space-time discretization 

T
xtΩ  of a space-time domain xtΩ  of a space-time strip. Since the space-time 

differential operator is nonlinear, Newton’s linear method with line search is 
employed in the STRF formulation with adjustments made to ensure that the 
resulting space-time integral form from the STRF is space-time variationally 
consistent [21]. The rate of entropy production due to viscous dissipation is in-
herent in the physics under consideration. We assume that the model problems 
domains are completely insulated. Thus, the temperature change (rise) in the 
deforming volume of matter is only due to entropy generation. For the type of 
model problems considered in this paper, the temperature rise due to the rate of 
entropy production is almost negligible ( ( )310O −  or ( )410O − ) compared to 
the initial or ambient temperatures of ( )210O . Thus, non-isothermal physics 
has relatively little influence on the existence and propagation of deviatoric 
stress waves. This permits us to consider isothermal physics only. Thus, the first 
and the second laws of thermodynamics (FLT, SLT) need not be considered as 
part of the mathematical model. An outline of the work presented in this paper 
is summarized in the following. 

1) Identification and discussion of the mechanism of stiffness.  
2) Mathematical models based on CCM [1] [2] [3] for Maxwell, Oldroyd-B, 

and Giesekus polymeric fluids, their dimensional form, and their reduction to 
1  for 1D axial deviatoric stress wave studies.  
3) Details of space-time integral form for a space-time strip and the space-time 

finite element formulation based on the space-time residual functional (STRF).  
4) Model problem studies using Maxwell, Oldroyd-B and Giesekus constitu-

tive models.  
a) Wave propagation and reflection.  
b) Parametric studies using parameters influencing wave speed.  
c) Wave propagation, reflection, transmission, and interaction in domain 

containing bi-material interfaces.  
d) Wave speed determination.  
A summary of the work presented in this paper and some conclusions drawn 

from it are given in the last section of this paper. 

2. Mechanisms of Elasticity in Polymeric Fluids 

We have explained in the introduction section that drag or resistance offered to 
the motion of a polymer molecule during uncoiling or stretching due to applied 

https://doi.org/10.4236/ajcm.2022.121007


K. S. Surana, M. D. Kitchen 
 

 

DOI: 10.4236/ajcm.2022.121007 91 American Journal of Computational Mathematics 
 

external disturbance is similar to stretching of a one-dimensional spring. Collec-
tively, this physics of polymer molecules in the direction of the disturbance is the 
source of stiffness in the polymeric fluids. Since the viscous drag forces are pro-
portional to viscosity (η ) of the polymeric fluids, viscosity η  is a parameter 
that controls presence and the extent of stiffness in polymeric fluids. Higher 
values of polymeric fluid viscosity η  naturally results in more pronounced 
stiffness. The viscosity of the polymeric fluid naturally depends upon solvent 
viscosity ( sη ) as well as polymeric viscosity ( pη ). pη  is generally much higher 
than sη . Polymeric fluid viscosity (η ) is not the sum of sη  and pη  (even 
though used so in many published works), but must be determined experimen-
tally using the polymeric fluid. Since η  is dependent on sη  and pη , both sη  
and pη  influence stiffness in the same manner as η  does, i.e., increasing val-
ues of sη  and pη  will result in increasing η  that would yield higher stiffness 
is the polymeric fluid. 

The second source of changing elasticity in polymeric fluids is the relaxation 
time. A smaller relaxation time implies less physical time for the polymer mole-
cules to revert to the relaxed state, hence increased viscous resistance during the 
relaxation process compared to a larger relaxation time that requires longer 
physical time for the relaxation process. Thus in this case, the relaxation process 
is spread over a larger time implying decreased stiffness. 

Thus, in polymeric fluids, the speed of propagation of deviatoric stress waves 
is directly proportional to polymeric fluid viscosity but inversely proportional to 
the relaxation time. This is obviously due to the fact that the dynamic stiffness of 
a polymeric fluid is proportional to the viscosity of the polymeric fluid but is in-
versely proportional to the relaxation time. 

In the present work we present model problem studies to determine and 
demonstrate the influence of viscosity η  and relaxation time λ  on the speed 
of the deviatoric stress wave as well as determine the wave speed. We remark 
that this mechanism of stiffness only exists in polymeric fluids when the polymer 
molecules are in motion, i.e., the stiffness in polymeric fluids is dynamic. Thus, 
for a stationary column of polymer fluid the stiffness mechanism is totally ab-
sent.  

3. Mathematical Model 

The CBL of CCM constitutes the core mathematical model for describing the 
deformation physics of polymeric fluids. These are naturally augmented by the 
constitutive theories so that the resulting set of partial differential equations has 
closure. In the early development of the polymer science, the constitutive theo-
ries were phenomenological [22] [23], i.e., experimental observation were given 
mathematical empirical forms and then used in conjunction with CBL so that 
the mathematical model would have closure. Surana et al. [1] [2] [3] discussed 
that the polymeric fluid must be assumed isotropic and homogeneous at the 
macroscale otherwise CBL of CCM may not be valid, and if the polymeric fluid 
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is isotropic and homogeneous, then we must be able to derive the constitutive 
theories for the polymeric fluids using entropy inequality and the representation 
theorem [4]-[24]. This is what is in fact presented by Surana et al. [1] [2] [3]. In 
this paper, we do not present the derivations of the constitutive theories for de-
viatoric Cauchy stress tensor and, instead, borrow these equations from refer-
ences [1] [2] [3] and use them in the model problem studies. 

Conservation and Balance Laws and the Constitutive Theories 

As pointed out earlier in Section 2, in the present work it is valid to assume that 
the deformation process is isothermal (insulated system and negligible heat gen-
eration due to rate of entropy production). Thus, the CBL consists of conserva-
tion of mass (CM), balance of linear momenta (BLM) and balance of angular 
momenta (BAM). The symmetric Cauchy stress tensor (contravariant, see ref. [1] 
[2]) ( )0σ  is additively decomposed into equilibrium ( ( )0eσ ) and deviatoric ( ( )0dσ ) 
stress tensors. The constitutive theory for equilibrium stress tensor ( )0eσ  de-
scribes volumetric deformation and the distortional deformation is described by 
the constitutive theory for ( )0dσ . 

( ) ( ) ( )0 0 0e d= +σ σ σ                          (1) 

Since we are considering fluent continua, we must consider Eulerian descrip-
tion for CBL as well as constitutive theories. Conservation and balance laws in 
Eulerian description for incompressible fluent continua are given by [1] [2] (us-
ing notations of reference [1] [2]). 

Conservation and balance laws: 

( ) ( )0 CMρ ⋅ =v∇                        (2) 

( ) ( )0 0 BLMbD
Dt

ρ ρ− − ⋅ =
v F σ∇                  (3) 

( ) ( )( ) ( )
T0 0 BAM=σ σ                      (4) 

Constitutive theories: 
We need constitutive theories for ( )0eσ  and ( )0dσ . Since the deformation is 

isothermal and the polymeric fluid is assumed incompressible, the constitutive 
theory for ( )0eσ  is much simplified and is given by [1] [2] 

( )0e p= −σ δ                           (5) 

in which p  is mechanical pressure, which is assumed positive when compressive. 
Derivation of the constitutive theory begins with the conjugate pair ( )0 :d Dσ  
in SLT (see references [1] [2]) in which D  is the symmetric part of the velocity 
gradient tensor. Thus, for the incompressible and isothermal physics we can write 

( ) ( ) ( )0 0d d= Dσ σ                         (6) 

If ( ) ; 1, 2, ,i i n= γ  are the convected (covariant) time derivatives of Green’s 
strain tensor [ ]0ε  (see [1] [2]) up to order n, then we find that 
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( )1=D γ                              (7) 

Thus, D  in (6) can be replaced by ( )1γ . Furthermore, if we generalize the ar-
gument tensor of ( )0dσ  in (6), then we can replace D  by ( ) ; 1, 2, ,i i n= γ . 

( ) ( )
( )( )0 0 ; 1, 2, ,d d
i i n= = σ σ γ                   (8) 

The argument tensors of ( )0dσ  in (8) suggest that deviatoric Cauchy stress 
tensor depends upon the convected time derivatives of the Green’s strain tensor 
up to order n. This is strongly supported by inductive reasoning. 

From the published and experimental work in polymer science [1] [2] [22] [23] 
we know that a constitutive theory for deviatoric Cauchy stress must at least use 
the first convected time derivative of the deviatoric Cauchy stress as a constitu-
tive variable with deviatoric Cauchy stress tensor as its argument tensor. Other-
wise it is not possible to show the existence of the memory modulus, hence a 
lack of relaxation physics or Rheology. That is, we must at least have (based on 
(8)) 

( ) ( )
( )

( )( )1 1 0, ; 1, 2, ,d d d
i i n= = σ σ γ σ                  (9) 

Let ( ) ; 1, 2, ,jd j m= σ  be the convected (contravariant) time derivatives of the 
deviatoric Cauchy stress tensor up to order m, then we can generalize (9) by 
choosing ( )mdσ  on a constitutive tensor and ( ) ; 0,1, , 1jd j m= −σ  as its ar-
gument tensors in addition to ( ) ; 1, 2, ,i i n= γ . Thus, we have the following. 

( ) ( )
( )

( )( ), ; 1, 2, , ; 0,1, , 1m m jd d d
i i n j m= = = − σ σ γ σ        (10) 

Using (10) we could derive a most general constitutive theory for ( )mdσ  based 
on integrity and representation theorem. Surana et al. [1] [2] [3] have given the 
general derivation of Maxwell, Oldroyd-B and Giesekus constitutive models 
based on integrity. In the present work we consider the constitutive theories for 
polymeric fluids that are commonly used in published works.  

Maxwell Constitutive model: 
This is a linear viscoelastic model. In this constitutive theory we consider 

1n =  and 1m =  and the resulting linear constitutive theory is given by [1] [2] 
[3] 

( ) ( )
( )

0 1
12d dλ η+ =σ σ γ                      (11) 

we note that since the fluid is incompressible ( )1 0tr =γ . λ  is relaxation time 
and η  is viscosity of the polymeric fluid. This model is generally used for dilute 
polymeric fluids. 

Oldroyd-B Constitutive model: 
Oldroyd-B Constitutive model is referred to as a quasilinear constitutive 

model. This model can be derived from the general constitutive theory of order 
n and m by choosing 2n =  and 1m =  and retaining the lowest degree terms 
[1] [2] [3] 

( ) ( )
( ) ( )

0 1
1 21 22 2d dλ η ηλ+ = +σ σ γ γ                (12) 
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in which 1λ  and 2λ  are relaxation and retardation times and η  is the viscosity 
of the polymeric fluid. This model is also generally used for dilute polymeric fluids. 

Giesekus Constitutive model: 
Giesekus Constitutive model is a nonlinear constitutive model. This constitu-

tive theory can be derived using 1n =  and 1m = . All terms in this constitutive 
model are the same as those in Maxwell’s model except that this model contains 
generator ( )( )20dσ  as an additional term [1] [2]. 

( ) ( )
( )

( )( )20 1 0
12d d dλλ η α

η
+ = +σ σ γ σ                 (13) 

α  is called the mobility factor. It accounts for the formation of the polymer 
colonies connections as well as their separation, i.e., it accounts for mobility of 
the polymer colonies. This model is generally considered more suitable for dense 
polymeric fluids or polymer melts. 

Unified single constitutive mathematical model for polymeric fluids: 
We note all models above are a subset of the general constitutive theory based 

on 2n =  and 1m =  with appropriate choices of generators and invariants. 
We could consider 

( ) ( )
( ) ( )

( )( )20 1 0
21 22 2d d dλλ η ηλ α

η
+ = + +σ σ γ γ σ           (14) 

From (14) we can recover Maxwell, Oldroyd-B and Giesekus constitutive models 
by appropriate selection of material coefficients and setting the others to zero, i.e., 

Maxwell model: 

2 0, 0λ α= =  

Oldroyd-B model: 

0α =  

Giesekus model: 

2 0λ =  

Complete mathematical model in 3 : 
Equations (2)-(4) and (14) constitute the complete mathematical model in 

BLM (3), constitutive equation ( )0eσ  (1) and ( )0dσ  (6), ten equations in v  (3), 
p  (1) and ( )0dσ  (6), ten variables. Hence, the mathematical model has closure. 

4. Dimensionless Form of the Mathematical Model 

We write (2)-(4) and (14) with hat (  ) on each quantity indicating they have 
their usual units or dimensions. 

( )
( ) ( )

( ) ( )
( ) ( )

( )( )

0

20 1 0
21 2

ˆˆ ˆ 0

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ 0ˆ
ˆˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2 2
ˆ

b d

d d d

D p
Dt

ρ

ρ ρ

λλ η ηλ α
η


⋅ = 




− + ⋅ − ⋅ = 



+ = + + 


v

v F δ σ

σ σ γ γ σ

∇

∇ ∇          (15) 
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Additive decomposition of ( )0σ  in (1) has been used in BLM. We choose ref-
erence quantities (with subscript (0)) and define dimensionless variables. Let 

0 0 0 0 0 0 0, , , , , ,L v t pρ τ η  be reference length, density, velocity, time, stress, pres-
sure and viscosity. Then, we define the dimensionless quantity as follows. 

( ) ( )( )
0 0 0 0

0 0

0 0 0
2

0 0 0 0

0
0

0

ˆ ˆ ˆ ˆ
, , , ,

ˆ ˆ1 ˆ , ,

we choose : characteristic kinetic energy

and

d d

t
L v t

pp
p

p v
L

t
v

ρρ
ρ

ηη
τ η

τ ρ


= = = = 



= = = 

= = 


= 


x vx v

σ σ
        (16) 

Using (16) in (15) we can obtain 

( ) 0ρ ⋅ =v∇                           (17) 

( ) ( )00 0
2 2

0 0 0 0

0b dpD p
Dt v v

τ
ρ ρ

ρ ρ
   

− − ⋅ − ⋅ =   
   

v F δ σ∇ ∇          (18) 

( ) ( )
( ) ( )

( )( )20 1 00 0 0 0 0 0
21 2

0 0 0 0 0

2 2d d dv v t DeDe De
L L
η η τ

η η α
τ τ η η

       
+ = + +       

      
σ σ γ γ σ (19) 

using 2
0 0 0 0p vτ ρ= =  and 0 0 0t L v= , (17)-(19) can be written as 

( ) 0ρ ⋅ =v∇                           (20) 

( ) ( )0 0b dD p
Dt

ρ ρ− − ⋅ − ⋅ =
v F δ σ∇ ∇                (21) 

( ) ( )
( ) ( )

( )( )20 1 02
1 2

2 2d d dDe DeReDe
Re Re
η η α

η
   + = + +          

σ σ γ γ σ     (22) 

in which 

D
Dt t

∂
= + ⋅
∂

v ∇                        (23) 

( ) ( )( ) ( ) ( )1 0 0 0 Td d d dD
Dt

= − ⋅ − ⋅L Lσ σ σ σ              (24) 

( ) ( )( ) ( ) ( )
T

2 1 1 1
D
Dt

= + ⋅ + ⋅L Lγ γ γ γ                (25) 

{ }
{ } ( )T1,

2
v

L D L L
x

 ∂
       = = +        ∂  

             (26) 

In which Re , De , and 2De  are Reynolds number and Deborah numbers de-

fined as 0 0 0

0

v L
Re

ρ
η

= , 
0

ˆ
De

t
λ

= , 2
2

0

ˆ
De

t
λ

= . 

5. Dimensionless Mathematical Model in 1  

We consider pure axial deformation in 1x  direction. For this case, the continu-
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ity equation is identically satisfied, hence does not yield any equations. For 1D in 
1  (o-x1 axis of the x-frame) we have the following 

( ) ( )

( )
( ) ( )

( )( )

( )

0 01
11 1

1 1 1

0 0
1 011 11 1

1 11
1 1

22 2
1 1 1

12 2
1 11

Let, , , , ,

2 ,

2

d d

d d
d d

v D v
x x Dt t x

vv
t x x

v v vv
t x xx

σ

σ σ
σ

∂ ∂ ∂ ∂
= = = = + 
∂ ∂ ∂ ∂ 


∂ ∂ ∂ = + − 
∂ ∂ ∂ 

 ∂ ∂ ∂ = + +   ∂ ∂ ∂∂   

L σ

σ

γ

∇

        (27) 

using (27) in BLM (21) we can obtain the following in 1  for BLM 

( )( )01 1
1 1 11

1 1 1

0b dv v pv F
t x x x

ρ ρ σ
 ∂ ∂ ∂ ∂

+ − + − = ∂ ∂ ∂ ∂ 
             (28) 

Again, using (27) in (22) we can obtain the following for the constitutive theory 
in 1   

 

( ) ( )( ) ( )( ) ( )( )

( )( )

0 0 0 01
11 11 1 11 11

1 1

22 2 201 2 1 1 1
1 112

1 1 11

2

2 2 2

d d d d

d

vDe v
t x x

v De v v v DeRev
Re x Re t x xx

σ σ σ σ

η αη σ
η

 ∂∂ ∂
+ − − ∂ ∂ ∂ 

  ∂ ∂ ∂ ∂ = + + + +  ∂ ∂ ∂ ∂∂   

   (29) 

Equation (28) and (29) constitute the dimensionless form of the mathematical  

model. In this mathematical model 1v  and ( )0
11

dσ  are dependent variables. p
x
∂
∂

 

is a specified nonzero value if the flow is pressure driven; otherwise 0p
x
∂

=
∂

. In  

the case of Maxwell model: 2 0De =  and 0α = , for Oldroyd-B model: 0α = , 
and for Giesekus model: 2 0De = . 

6. Solution of the Mathematical Model 

The mathematical model consisting of (28) and (29) is used to study deviatoric 
stress waves in Maxwell, Oldroyd-B and Giesekus polymeric fluids. The mathe-
matical model (initial value problem, IVP) consists of two nonlinear partial dif-
ferential equations in dependent variables 1v  and ( )0

11
dσ  and independent va-

riables 1x  and time t. We consider numerical solutions of (28) and (29) using 
space-time coupled finite element method in which space-time integral form is 
derived using space-time residual functional (STRF). Newton’s linear method 
with line search [21] is used to obtain solutions of the non-linear algebraic equa-
tions resulting from STRF method. 

When studying evolution described by IVPs, it is beneficial to consider discre-
tization T

xtΩ  of space-time domain xtΩ  into space-time strips (Figure 1(a)), i.e.,  
Tn e
xt xt

e
Ω = Ω



 in which i
xtΩ  is the ith space-time strip. The solution is calculated  

for a space-time strip and then time marched beginning with the first space-time  
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Figure 1. Discretization of space-time domain into space-time strips, discretization of nth space-time strip into space-time ele-
ments. (a) A space-time domain T

xtΩ  and its discretization in space-time strips; (b) Discretization of nth space-time strip n
xtΩ  in 

space-time element. 
 
strip [21]. Figure 1(b) shows discretization T i

xt xt
i

Ω = Ω


 of an nth space-time  

strip n
xtΩ  using nine-node p-version hierarchical space-time elements with 

higher order global differentiability local approximation in space and time. In 
the following we present details of the STRF finite-element formulation and the 
solution procedure for nonlinear algebraic equations based on Newton’s linear 
method with line search [21]. Consider an nth space-time strip n

xtΩ . 

Let ( )1
e
hv  and ( )( )0

11

ed

h
σ  be local approximations of 1v  and ( )0

11
dσ  over a 

space-time element e
xtΩ , and let ( )1 hv  and ( )( )0

11
d

h
σ  be approximations of 1v  

and ( )0
11

dσ  over the discretization Tn
xtΩ  of the nth space-time strip n

xtΩ . Then,  

 ( ) ( ) ( )( ) ( )( )0 0
1 1 11 11and

ee d d
h h h he e

v v σ σ= =
 

              (30) 

Upon substituting ( )1 hv  and ( )( )0
11

d

h
σ  in (28) and (29), we obtain residual 

functions 1E  and 2E  (we assume absence of body forces)  

 

( )( ) ( )( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )( )

1 0
1 11

1 1

0 0 0
2 11 11 1 11

1

2
1 1 10 2

11
1 1 1

22 21 1 0
1 112

11

0

22 2

2 0

h dh

h

d d d
hh h h

h h hd

h

h h d
h h

v p
E

t x x

E De v
t x

v v vDe
x Re x Re t x

v v DeRev
xx

ρ σ

σ σ σ

ησ η

α σ
η

∂ ∂ ∂ = + − =
∂ ∂ ∂ 


 ∂ ∂ = + − ∂ ∂ 

  ∂ ∂ ∂
 − − − 
 ∂ ∂ ∂ ∂   

  ∂ ∂   + + − =  ∂∂    

  (31) 
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We define the residual functional I using 1E  and 2E  over n T
xtΩ  

( ) ( )1 2 1 1 2 2, ,I I I E E E E= + = +                      (32) 

We assume that I is differentiable in its arguments (i.e. ( )1 hv  and ( )( )0
11

d

h
σ ),  

then Iδ  is unique and 0Iδ =  is a necessary condition for an extremum of 
the residual functional I. 

( ) ( ) { } { } { }1 1 2 2 1 22 , 2 , 0I E E E E g g gδ δ δ= + = + = =          (33) 

and the extremum principle or the sufficient condition is given by 2 Iδ  [21].  

 ( ) ( ) ( ) ( )2 2 2
1 1 2 2 1 1 2 22 , 2 , 2 , 2 ,I E E E E E E E Eδ δ δ δ δ δ δ= + + +     (34) 

while ( )1 1, 0E Eδ δ > , ( )2 2, 0E Eδ δ >  1Eδ∀  and 2Eδ , this is not true for  

( )2
1 12 ,E Eδ  and ( )2

2 22 ,E Eδ  terms. Thus, (34) at this stage does not give 
unique extremum principle or sufficient condition. Let  

( ) { }
( )( ) { }

( ) ( )( ) ( )
1

0 ,
1 110

11

and , 2

e v e
v eh e d k p e

xte h hd e

h

v N
v V H k

Nσ
σ

δ
σ

σ δ

 =    ∈ ⊂ Ω ≥
 =   

  (35) 

be the local approximation of 1v  and ( )0
11

dσ  over e
xtΩ  in which { }e

vδ  and 

{ }e
σδ  are nodal degrees of freedom. V is the approximation space containing 

functions of class 1C  or higher. Let { }vδ  and { }σδ  be the degrees of freedom 
for 1v  and ( )0

11
dσ  for the discretization Tn

xtΩ  of the nth space-time strip, then  

{ } = { }e
v ve

δ δ∪ ; { } = { }e

eσ σδ δ∪ . We can write the following using (31) and (32) 

( ) ( )1 2 1 1 2 2, ,e e
xt xt

e e e e e e

e e e e
I I I E E E E

Ω Ω
= + = +∑ ∑ ∑ ∑            (36) 

in which 1
eE  and 2

eE  for e
xtΩ  can be obtained from (32) by replacing ( )1 hv  

and ( )( )0
11

d

h
σ  by ( )1

e
hv  and ( )( )0

11

ed

h
σ . Then, 

( ) ( ) { } { } { }( ){ }1 1 2 2 1 22 , 2 , 0e e e e e e

e e e e
I E E E E g g gδ δ δ δ= + = + = =∑ ∑ ∑ ∑  (37) 

in which { } { } { }T TT ,v σδ δ δ =    are the nodal degrees of freedom for Tn
xtΩ . 

Since the mathematical model consists of nonlinear partial differential equations, 
{ }( ){ }g δ  in (37) is a nonlinear function of { }δ . We consider Newton’s linear 

method with line search to find a solution { }δ  that satisfies { } 0I gδ = =  (in 
(37)). Let { }0δ  be an assumed (known) solution, then 

{ }( ){ }0 0g δ ≠                           (38) 

Let { }δ∆  be a correction to { }0δ  such that 

{ } { } { }0δ δ δ= + ∆                         (39) 

which satisfies (37), i.e. 

{ }( ){ } { } { }( ){ }0 0g gδ δ δ= + ∆ =                  (40) 

Expanding { }( ){ }g δ  in Taylor series about { }0δ  and retaining only up to li-
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near terms in { }δ∆ .  

 { }( ){ } { } { }( ){ } { }( ){ } { }
{ } { }

{ }
0

0 0 0
g

g g g
δ

δ δ δ δ δ
δ

 ∂
= + ∆ + ∆ = 

∂  
    (41) 

{ } { }
{ } { }

{ }( ){ }
0

1

0

g
g

δ

δ δ
δ

−
 ∂

∴ ∆ = −  
∂  

                  (42) 

We note that 

{ }
{ } { }

{ }
{ } { }

{ }0
0 0

2g I
I

δ
δ δ

δ
δ

δ δ
   ∂ ∂

 = =     ∂ ∂      
                (43) 

Surana [21] [24] have shown that 2 Iδ  in (34) can be approximated by 

( ) ( )2
1 1 2 2 1 22 , 2 , 0 andI E E E E E Eδ δ δ δ δ δ δ+ > ∀          (44) 

Thus, now we have an extremum principle. Approximation (44) has no influ-
ence on the STRF that ends with 0Iδ = . It merely alters the slope of the tan-
gent plane to the hypersurface 0Iδ =  at { }0δ  during Newton’s linear method. 
Rather than using (39) to obtain the updated solution, we choose  

 { } { } { } { }( ) { }( )0 0, 0 2, such that I Iδ δ α δ α δ δ= + ∆ < < ≤        (45) 

This is referred to as line search. This helps in accelerating the convergence of 
Newton’s Linear method. It is well known that in all iterative methods one must 
choose a starting or initial solution. For Newton’s linear method to work well, 
this choice must be in a close neighborhood of the correct solution. In all nu-
merical studies presented in this paper, { }0 0δ =  (null) has been used for all 
degrees of freedom that are not part of the boundary conditions and initial con-
ditions. This choice has worked well in all numerical studies. 

7. Summary of Main Steps in Newton’s Linear Method with  
Line Search 

1) choose { }0δ .  
2) calculate { }( ){ }0g δ  If ig ≤ ∆ , a preset tolerance of zero, then { }0δ  is 

the solution, skip remaining steps, otherwise follow remaining steps.  
3) calculate 2 Iδ    using (44).  
4) calculate { }δ∆  using (42).  
5) updated solution { }δ  is given by { } { } { }0δ δ α δ= + ∆ .  
6) set { } { }0δ δ=  and go to step 2.  

8. Model Problems 

In this section we present studies to demonstrate existence of deviatoric stress 
waves and study their propagation, reflection, transmission, and interaction us-
ing model problems in 1 . We consider incompressible Maxwell, Oldroyd-B, 
and Giesekus viscoelastic fluids. Assumptions used in deriving CBL and the 
constitutive theories remain valid in these studies as well. 
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Figure 2(a) show a polymeric fluid column of uniform cross-section and of 
length L. Left end ( 1 0x = ) is considered impermeable and the right end ( 1x L= ) 
is subjected to a wave of ( )0

11
dσ  of duration 2 t∆  (Figure 2(d)). If we assume 

that all points on a given cross-section move in the 1x  direction by the same 
amount, then we can idealize the column of Figure 2(a) by a line representation 
shown in Figure 2(b). Figure 2(c) shows a space-time finite element discretiza-
tion 1 T

xtΩ  of the first space-time strip 1
xtΩ  using nine-node p-version hierar-

chical space-time finite elements [21] [24]. Boundary conditions (BCs) and ini-
tial conditions (ICs) are also shown in Figure 2(c). A compressive ( )0

11
dσ  is ap-

plied at 1x L=  (shown in Figure 2(d)). 

( )
( )

( ) ( )
( )

( )
( )

0
0 11

11

0
0 0 11

11 11

0
0 11

11

0; 0 at 0.0

; 0 at

0; 0 at 2

d
d

d
d d

d
d

t
t

t t
t

t t
t

σ
σ

σ
σ σ

σ
σ

∂
= = = 

∂ 
∂ = − = = ∆ 

∂ 
∂

= = ≥ ∆ 
∂ 

                 (46) 

 

 

Figure 2. 1D fluid domain, idealization of 1D fluid domain, discretization of first space-time 
strip with space-time finite elements and applied disturbance. (a) Polymeric fluid domain; (b) 
Mathematical idealization of fluid domain; (c) Disretization of first space-time strip using 10 
space-time p-version finite elements; (d) Deviatoric stress ( ( )0

11
dσ ) pulse of duration 2Δt. 
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We consider the following material coefficients for Maxwell, Oldroyd-B and 
Giesekus fluids. 

Maxwell model:  

 

3 3
1 0

0 0 0 0 0
2

0 0 0 0 0

ˆˆ ˆ868 kg m , 0.1 s, 3.0 Pa s, 868 kg m ,
0.02 m, 0.05 m s, 0.4 s,

3.0 Pa s, 2.17 Pa

L v t L v

p v

ρ λ η ρ

η τ ρ

= = = ⋅ =

= = = =

= ⋅ = = =

        (47) 

Oldroyd-B model:  

 

3
1 2

3
0 0 0 0 0 0

2
0 0 0 0 0

ˆ ˆˆ ˆ868 kg m , 0.1 s, 3.0 Pa s, 0.001 s,

868 kg m , 0.02 m, 0.05 m s, 0.4 s,

3.0 Pa s, 2.17 Pa

L v t L v

p v

ρ λ η λ

ρ

η τ ρ

= = = ⋅ =

= = = = =

= ⋅ = = =

      (48) 

Giesekus model:  

 

3

3
0 0 0 0 0 0

2
0 0 0 0 0

ˆˆ ˆ ˆ800 kg m , 0.06 s, 1.426 Pa s, 0.15,

800 kg m , 0.02 m, 0.05 m s, 0.4 s,

1.426 Pa s, 2.0 Pa

L v t L v

p v

ρ λ η α

ρ

η τ ρ

= = = ⋅ =

= = = = =

= ⋅ = = =

      (49) 

In all numerical studies we consider T e
xt xt

e
Ω = Ω



, a uniform discretization of  

[ ] [ ]0,1 0,xt tΩ = × ∆  domain for the first and the subsequent space-time strips of 
same spatial length using space-time p-version hierarchical elements with higher 
order global differentiability in space and time. Since the mathematical models 
are a system of first order PDEs in space and time, the approximation space 

( ),k p
xtV H⊂ Ω  with 2k =  in space and time (equal order) in minimally con-

forming approximation space. We choose 1k =  in space and time, i.e., local 
approximations of class 1C  in space and time. This ensures that all space-time 
integrals over Tn

xtΩ  of the nth space-time strip are in Riemann sense. Equal de-
gree approximation are considered, thus p p pξ η= = . We consider 3p ≥ . In 
all numerical studies, p-convergence studies are conducted for the first space-time 
strip to determine p-levels for which the integrated sum of squares of the resi-
dual functional I is ( )810O −  or lower to ensure that the computed solution is 
converged. These p-levels suffice subsequent space-time strips as well in yielding 
similar values of residual functional I. This ensures time accuracy of the entire 
evolution for model problem solutions presented in the following.  

8.1. Existence, Propagation, and Reflection of Deviatoric Stress  
Waves 

A schematic of the compressive deviatoric stress wave of peak value 0.01 applied 
over 0 2t t≤ ≤ ∆  at 1.0x L= =  as shown in Figure 1(d). We consider  

0.01t∆ = . Evolutions are computed for Maxwell, Oldroyd-B and Giesekus vis-
coelastic fluent continua. For all three fluids, a p-level of 11 is found to produce 
sufficient I values of the order of ( )810O −  or lower for each space-time strip. 

8.1.1. Maxwell Fluid 
We perform computations of evolution using Maxwell fluid properties show in (47). 
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Figure 3 and Figure 4 show plots of ( )0
11

dσ  versus distance x for 0 41t t≤ ≤ ∆ . 
At t t= ∆  and 2t t= ∆ , a half and full wave are observed in the spatial domain 
confirming existence of the deviatoric stress wave. As time elapses, the wave 
propagates to the left. At 3t t= ∆ , the full wave has propagated to the left with 
amplitude decay and some (minor) base elongation. At 19t t= ∆ , the stress wave 
reaches the impermeable boundary at 0x = . We observe measurable amplitude 
decay for the wave at 19t t= ∆ . Reflection from the impermeable boundary begins 
 

 

Figure 3. Time evolution of deviatoric stress ( ( )0
11

dσ ) in Maxwell fluid. 
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Figure 4. Continued time evolution of deviatoric stress ( ( )0
11

dσ ) in Maxwell fluid. 

 
at 20t t= ∆  and is completed at 21t t= ∆ . The reflected wave at 21t t= ∆  
propagates to the right ( 22t t= ∆ , 23t t= ∆ ) and reaches the free boundary at 
the right at 38t t= ∆  with substantially reduced amplitude but without mea-
surable base elongation. The reflection process from the free boundary occurs 
between 39t t= ∆  and 40t t= ∆ . At 40t t= ∆ , we have a reflected tensile wave 
that propagates to the left ( 41t t= ∆ ). 

The study confirms existence, propagation, and reflection of deviatoric stress 
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waves in the Maxwell fluid. Amplitude decay of the stress wave due to viscous 
dissipation is clearly observed as the evolution proceeds in time. We do not ob-
serve measurable base elongation of the deviatoric stress wave during propagation. 

8.1.2. Oldroyd-B Fluid 
Studies similar to the Maxwell fluid are performed for Oldroyd-B fluid using the 
fluid properties listed in (48). The same discretization and p-levels are used for 
solutions of 1C  as is the case of Maxwell fluid. Figure 5 and Figure 6 show  
 

 

Figure 5. Time evolution of deviatoric stress ( ( )0
11

dσ ) in Oldroyd-B fluid. 
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Figure 6. Continued time evolution of deviatoric stress ( ( )0
11

dσ ) in Oldroyd-B fluid. 

 
plots of ( )0

11
dσ  versus x for various values of t ( 0 48t t≤ ≤ ∆ ). At t t= ∆ , we ob-

serve a half wave in the spatial domain with peak value same as the peak value of 
the applied wave. At 2t t= ∆ , we observe a full wave in the spatial domain but 
with significantly reduced peak due to dissipation. At 3t t= ∆ , the full wave 
propagates further towards the left. At 14t t= ∆ , the stress wave is at the im-
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permeable boundary at 0x = . We observe significant amplitude decay and base 
elongation. At 20t t= ∆ , reflection occurs. The reflected wave with significantly 
reduced peak and elongated base is shown at 21t t= ∆ . Further propagation of 
the reflected wave to the right, reflection from the free boundary, and the re-
flected tensile wave and its propagation to the left for 31 48t t t∆ ≤ ≤ ∆  is shown 
in Figure 6. Due to significant amplitude decay and base elongation for  
20 48t t t∆ ≤ ≤ ∆ , scales for ( )0

11
dσ  are changed for better resolution. 

The study confirms existence, propagation, and reflection of deviatoric stress 
waves in the Oldroyd-B fluid. The Oldroyd-B fluid constitutive theory contains 
second convected time derivative of Green’s strain tensor, ( )2γ , (not present in 
Maxwell model) responsible for excessive base elongation. 

8.1.3. Giesekus Fluid 
We consider Giesekus fluid with properties given in (49). We use the same dis-
cretization as in Maxwell and Oldroyd-B fluids with the same p-levels to com-
pute evolution for 0 44t t≤ ≤ ∆ . We discuss results in the following. 

Figure 7 and Figure 8 show plots of ( )0
11

dσ  versus x for different values of t 
( 0 44t t≤ ≤ ∆ ). The results are very similar to Maxwell model presented in Sec-
tion 8.1.1. At t t= ∆  and 2t t= ∆ , we observe half and full stress waves in the 
spatial domain. The wave propagates to the left with amplitude decay but with-
out significant base elongation. At 20t t= ∆ , the wave reaches the impermeable 
boundary (at 0x = ). Wave reflection occurs for 21 , 22t t t= ∆ ∆ , and 23 t∆ . 
The reflected wave propagates to the right ( 23t t= ∆ , 24t t= ∆ ) and reaches the 
free boundary (at 1.0x = ) at 41t t= ∆ . The reflected tensile wave ( 43t t= ∆ ) 
propagates to the left. 

This study also confirms existence, propagation, and reflection of the devia-
toric stress wave in the Giesekus fluid. The wave evolution shows significant 
amplitude decay but almost non-visible base elongation. This behavior is similar 
to Maxwell fluid. 

8.2. Deviatoric Stress Wave Speeds 

As discussed earlier in polymeric fluids the dynamic stiffness is a function of 
viscosity and relaxation time. Higher viscosity and lower relaxation time result 
in higher stiffness, hence higher speed of propagation of deviatoric stress waves. 
The purpose of the studies in this section is to determine and report wave speeds 
for Maxwell, Oldroyd-B and Giesekus fluids as a function of viscosity and relax-
ation time. 

For a chosen value of viscosity and relaxation time, we determine evolution 
for an applied deviatoric stress wave (as in Section 8.1). For a given time 1t , the 
peak of the wave is located in spatial domain 1x . Evolution is continued and the 
peak of the wave is relocated at time 2 1t t> , then the wave speed is simply  

1

2 1
d

xS
t t
∆

=
−

                          (50) 
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Figure 7. Time evolution of deviatoric stress ( ( )0
11

dσ ) in Giesekus fluid. 

 
where 1x∆  is the distance traveled by the wave during the time 2 1t t− . Since for 
a fixed η  and λ  the wave speed is constant, this procedure of calculating 
wave speed works quite accurate. 

Figures 9(a)-(c) show graphs of wave speed dS  as a function of viscosity η   
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Figure 8. Continued time evolution of deviatoric stress ( ( )0
11

dσ ) in Giesekus fluid. 

 
for three different values of relaxation time λ  for Maxwell, Oldroyd-B and 
Giesekus fluids. Since Maxwell and Oldroyd-B constitutive models are for dilute 
polymeric fluids, the same values of λ  are used in Figure 9(a) and Figure 9(b) 
so that wave speeds can be compared between the two. 
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Figure 9. Wave speed of ( )0
11

dσ  for Maxwell, Oldroyd-B and Giesekus fluids as a function 
of viscosity and relaxation time. (a) Deviatoric stress wave speed for Maxwell fluid; (b) 
Deviatoric stress wave speed for Oldroyd-B fluid; (c) Deviatoric stress wave speed for 
Giesekus fluid. 
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From the results presented in Figure 9 we clearly observe increasing wave 
speed for increasing viscosity and for decreasing relaxation time in all three fluids. 
Wave speeds in case of Oldroyd-B fluids are slightly higher than Maxwell fluid 
for the same values of η  and λ . In Giesekus fluid the wave speeds are much 
higher than in the case of Maxwell or Oldroyd-B fluids, this of course is due to 
much higher viscosity of the Giesekus fluid compared to Maxwell and Ol-
droyd-B fluids. 

8.3. Deviatoric Stress Wave Propagation, Reflection,  
Transmission, and Interaction in the Presence of Bimaterial  
Interface 

In this study we consider a dimensionless spatial domain of two units with bi-
material interface located at the middle of the domain. We consider Maxwell 
fluid to present two studies. We consider a twenty space-time element uniform 
discretization in both studies. 

Case (a): In the first study, 1 2η η> , where 1η  and 2η  are viscosities of the 
fluids to the right (material 1M ) and the fluid to the left (material 2M ) of the 
bimaterial interface. We choose 1 9η =  and 2 3η = .  

Case (b): In the second study we consider 1 3η =  for 1M  and 2 9η =  for 

2M .  
In both studies, a compressive deviatoric stress wave of duration 2 t∆  with 

peak value of 0.01 is applied at the free boundary ( 1 2.0x = ). The left boundary 
at 1 0.0x =  is assumed impermeable. Evolution in both studies is calculated 
using 0.01t∆ =  with 11p pξ η= = . In both cases for each time strip, I of 

( )810O −  or lower is achieved indicating good accuracy of the computed evolu-
tion.  

8.3.1. Discussion of Results: Case (a) 
We discuss results for case (a) shown in Figure 10 and Figure 11 first. At 2t t= ∆ , 
the deviatoric stress wave is completely in the spatial domain. At 12t t= ∆ , the 
wave is at the bimaterial interface located at 1.0x = . At 13t t= ∆ , a part of the 
compressive stress wave transmits and a part of it reflects as a tensile wave. Both 
are moving at different speeds to the left and to the right of the bimaterial inter-
face. At 22t t= ∆ , the tensile wave to the right of the interface reaches the free 
boundary first as it is moving faster than the transmitted compressive wave in 
material 2M . At 30t t= ∆ , the compressive wave in material 2M  reaches the 
impermeable boundary at 1 0.0x =  and reflects as a compressive wave that 
propagates to the right. The reflected compressive wave from the free boundary 
continues to move towards the bimaterial interface. At 33t t= ∆ , the wave in 
material 1M  reaches the interface and goes through transmission and reflection 
( 35t t= ∆ ). The reflected tensile wave in 1M  propagates towards the free boun-
dary, the transmitted compressive wave interacts with the wave in material 2M  
( 41t t= ∆ ). At 42t t= ∆ , the two interacting wave are coincident, but assume 
their own identity at 43t t= ∆  and continue propagating in the same direction  
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Figure 10. Wave interaction between two Maxwell fluids of viscosities η1 and η2 where η1 > η2. 
 
( 44t t= ∆ ) as they were before they became coincident. In the meantime, the 
wave in 1M  continues to propagate towards the free end. 
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Figure 11. Continued wave interaction between two Maxwell fluids of viscosities η1 and η2 where η1 > η2. 

8.3.2. Discussion of Results: Case (b) 
Details of the evolution from this study are shown in Figure 12 and Figure 13. 
Since 1 2η η< , the wave propagates slower in medium 1M  compared to medium  
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Figure 12. Wave interaction between two Maxwell fluids of viscosities η1 and η2 where η1 < η2. 
 

2M . This completely changes the propagation, transmission, reflection and in-
teraction details of the waves during evolution. At 2t t= ∆ , the wave enters the 
spatial domain and propagates to the left toward the bimaterial interface located 
at 1 1.0x = . Transmission and reflection of the incident wave at 1 1.0x =  is seen 
at 21t t= ∆ . At 22t t= ∆ , we see the transmitted wave propagating toward the  
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Figure 13. Wave interaction between two Maxwell fluids of viscosities η1 and η2 where η1 < η2. 
 
impermeable boundary located at 1 0.0x =  and the reflected wave propagates 
towards the free boundary located at 1 2.0x = . At 30t t= ∆ , the transmitted 
wave reaches the impermeable boundary at 1 0.0x =  and the reflected wave 
continues to propagate towards the free boundary. At 37t t= ∆ , the reflected 
wave from the boundary at 1 0.0x =  is propagating toward the interface and the 
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wave in 1M  approaches the free boundary located at 1 2.0x = . At 43t t= ∆ , a 
part of the wave in 2M  is transmitted in 1M  as a compressive wave and the 
other part is reflected back in 2M  as a tensile wave at the interface, while the 
tensile wave in 1M  continues to propagate toward the interface. At 49t t= ∆ , 
the tensile and compressive waves are about to coincide resulting in a compres-
sive wave with smaller peak value than the original compressive wave ( 50t t= ∆ ). 
At 51t t= ∆ , the two coincident waves (at 50t t= ∆ ) separate into the original 
waves and propagate as shown for 52t t= ∆ . 

Both Studies in case (a) and case (b) show existence, propagation, transmis-
sion, reflection and interaction of the deviatoric stress waves in the polymeric 
incompressible fluids. Viscosities 1η  and 2η  are suitably chosen to demon-
strate the influence of two different wave speed in the wave physics interaction 
during evolution. 

9. Summary and Conclusions  

In this paper we have demonstrated and presented existence, propagation, ref-
lection, transmission, and interaction of deviatoric stress waves in incompressi-
ble polymeric fluids using Maxwell, Oldroyd-B, and Giesekus polymeric fluids. 
The constitutive models [1] [2] [3] for these fluids are based on CCM and have 
been derived using entropy inequality and representation theorem [4]-[20]. In 
the following we present a summary of the work and draw some conclusions.  

1) Polymeric fluid viscosity and relaxation time are identified as the main 
sources of “dynamic stiffness” in polymeric fluids. In a stationary column of po-
lymeric fluid, the stiffness is absent.  

2) Resistance offered due to viscous drag to the stretching or uncoiling of long 
chain polymer molecules in the direction of the flow (or disturbance) is similar 
to the extension of a one dimensional spring and is one of the sources of dy-
namic stiffness in polymeric fluids. Since this process only exists when the po-
lymer molecules are in motion, the stiffness is dynamic. Polymeric fluids with 
higher viscosity have higher dynamic stiffness. That is, the dynamic stiffness of a 
polymeric fluid is proportional to polymeric fluid viscosity.  

3) The second source of dynamic stiffness in polymeric fluids is the relaxtion 
time. A polymeric fluid with higher relaxation time takes a longer time to come 
back to the relaxed (unstressed) state upon cessation of disturbance, implying 
reduced resistive forces during the relaxation process, hence reducing dynamic 
stiffness. On the other hand, a polymeric fluid with smaller relaxation time re-
sumes the unstressed or relaxed state quicker upon cessation of disturbance. 
This process naturally corresponds to higher resistive forces during relaxation, 
hence increased dynamic stiffness. Thus, dynamic stiffness of a polymeric fluid 
is inversely proportional to the relaxation time.  

4) Since the polymer fluid mass is kept fixed or constant, the increased dy-
namic stiffness corresponds to faster speed of propagation of deviatoric stress 
waves. Likewise, reduced dynamic stiffness results in slower speed of propaga-
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tion of deviatoric stress waves in polymeric fluids.  
5) Based on (2)-(4), we conclude the higher viscosity of the polymeric fluid 

and lower relaxation time result in higher speeds of propagation of deviatoric 
stress waves. Likewise, lower viscosity of polymeric fluid and higher relaxation 
time results in lower speeds of deviatoric stress waves in polymeric fluids.  

6) Model problem studies are presented using Maxwell, Oldroyd-B and Gie-
sekus polymeric fluids to show existence, propagation, reflection, transmission 
and interaction of deviatoric stress waves in a single polymeric fluid as well as a 
medium containing two different polymeric fluids with bimaterial interface. In 
all cases, converged solutions reported in the paper are free of any oscillations 
and the residual functional (I) values of the order of O (10−8) or lower are 
achieved during the entire evolution for each space-time strip confirming good 
accuracy of the reported solutions.  

7) Results presented for the deviatoric stress waves speed as a function of po-
lymeric fluid viscosity for different values of the relaxation time confirm that 
wave speed is proportional to polymeric fluid viscosity but inversely proportion-
al to the relaxation time.  

8) The work presented in this paper is fundamental science, and, to our 
knowledge, constitute a new discovery related to the dynamics of the polymeric 
fluid physics.  

9) Accuracy of the deviatoric stress wave solution, i.e., the base elongation and 
the amplitude decay during the propagation and the accuracy of the speed of the 
wave propagation are dependent on the accuracy of the material properties of 
the polymeric fluid. The finite element results reported in this paper are virtually 
dispersion free, and the residual functional (I) values are O (10−8) or lower en-
sured accurate solutions of the partial differential equations constituting the 
mathematical model. The choice of the minimally conforming space (k = 2) en-
sures that the space-time integrals over the space-time discretization of a 
space-time strips are Riemann, thus confirming accuracy of computation of the 
residual functional I, the overall measure of solution accuracy.  
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