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Abstract 
 

This paper solves a stochastic three-level decision maker’s model. This approach uses stochastic 
parameters in the objective function to solve a three level quadratic programming problem. The 
probabilistic nature of the objective functions is converted to an equivalence deterministic one and then a 
fuzzy programming technique will be used in each level to optimize its problem separately; implementing 
tolerance membership concept is used to generate Pareto optimal solution for these problems. Finally, the 
main results developed will be clarified by a numerical example in this paper. 

 

Keywords: Stochastic programming; fuzzy programming; three level. 
 
AMS 2010: 90C15; 90C70; 90C99. 
 

1 Introduction 
 
In the field of mathematical programming (MP), decentralized planning problems with multiple decision 
makers DMs were solved in a hierarchical decision making organization through developing multilevel 
programming (MLP) techniques. In a DM hierarchical organization, decision power is excuted sequentialy 
from higher to lower levels, where each unit or department independently optimizes its own benefit, through 
a conflicting environment of the other units actions. Government agencies, profit or nonprofit organizations, 
manufacturing plants, and logistic companies are all hierarchical organizations in which MLPP could be 
encountered [1,2,3,4,5,6]. 
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Fuzzy programming approaches applys tolerance membership concept to reach a fuzzy max-min decision 
model eventually generating Pareto optimal (satisfactory) solution for a three level programming problem. 
This implies that the lower level decision makers LLDM has to optimize their objective functions tolerating 
the preference of the upper level decision makers ULDM that was described by membership functions of 
fuzzy-set theory. The solution search is to be continued and membership functions are to be redefined if it 
didn’t satisfy the ULDM preferences [2,6,7,8,9,10,11]. 
 
Decision problems of chance-constrained or stochastic optimization is applied when variables of an 
optimization model are defined in probabilistic quanatities instead of deterministic ones. Recently, there has 
been increasing importance for multiobjective stochastic optimization in solving real-life practical decision 
problems such as economics, water resource management, healthcare, transportation, agriculture, energy 
systems [12,13,14,15]. 
 
In Pramanik et al. [5] dealt with a chance constrained linear plus linear fractional bi-level programming 
problem through a fuzzy goal programming approach. In this paper some simple and easy techniques are 
used to solve the problem like the technique used in [5,14,16], converting the constraints probabilistic nature 
to equivalence deterministic constraints, using simplex method to give each decision maker’s problem the 
best and the worst individual solution, the fuzzy set theory to formulate the previous results to membership 
function, and the tolerance concept to develop Tchebycheff problem generating Pareto optimal solution for 
our problem. 
 
The paper is organized as follows: section 2 covers the problem formulation and solution concept of the 
model of three level quadratic programming problem with stochastic parameters in the objective function. 
converting the probabilistic nature of the stochastic nature in the objective functions to equivalence 
deterministic objective functions will be provided in section 3.The following section presents Fuzzy 
approach to solve  the three level quadratic programming problem with stochastic parameters in the 
objective function. A numerical example to clarify the results will be discussed in section 5. The conclusion 
of this research is offered together with suggestions for future research directions in the final section. 
 

2 Problem Formulation and Solution Concept 
 
Let )3,2,1(,  jRx n

j be a vector variable indicating the first decision level choice, the second decision 

level choice, and the third decision level choice, .
3
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Let )3,2,1(,:  iRRF iNn
i be the first level objective function, the second   level   objective function, 

and the third level objective function respectively. Let the FLDM (First Level Decision Maker), SLDM 

(Second Level Decision Maker), and TLDM (Third Level Decision Maker) have 1N , 2N  and 3N
objective function, respectively. 
 
Therefore, the three–level quadratic programming problem with stochastic parameters in the objective 
(TLQPSP) problem may be formulated as follows: 
 
[First Level] 

  

 max��
��(�) = �� +
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����,                                                                                                             (1) 

 

Where 32,xx solves 
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Where 3x solves 

 
[Third Level] 
 

 max��
��(�) = �� +

�

�
����,                                                                                                             (3) 

 
Subject to  
 

  .,, 321 Gxxx                                                                                                                                 (4) 

 
Where  

G { ij

n

j
iji

n dxcxgRx  
1

)(: , ),...,2,1( ni  , 0,, 321 xxx }.                                 (5) 

 
Where ��, �� and �� are the objective functions with stochastic parameters of the first level decision maker 
(FLDM), second level decision maker (SLDM), and third level decision maker (TLDM), �  is � × � are real 
matrices contain random stochastic coefficients and � is (1 × �) matrix, the vector of decision variables � is 
n-vector partitioned between the three planners. 
 
Definition 1. 
 

For any    GxxxxGx  321111 ,, given by FLDM and    GxxxxGx  321222 ,,  

given by SLDM, if the decision-making variable    GxxxxGx  321333 ,,  is the optimal 

solution of the TLDM, then  321 ,, xxx  is the feasible solution of TLQP problem with stochastic 

parameters. 
 
Definition 2. 
 

If  *
3

*
2

*
1 ,, xxx  is a feasible solution of the TLQP problem with stochastic parameters; no other feasible 

solution   Gxxx 321 ,, exists; so  *
3

*
2

*
1 ,, xxx is the optimal solution of the TLQP problem with stochastic 

parameters. 
 

3 Converting Probabilistic Nature of the objective functions to 
Equivalence Deterministic Objective Functions 

 
The basic idea in this section is to convert the probabilistic nature of the objective function to equivalence 
deterministic objective function. Using: 
 
 

[14].   (6) 
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Where )( r
jbE = mean of 

r
jb  and )(2 r

jb = variance of, and 
rk1 , 

rk2  are non-negative constants whose 

values indicate the relative importance of the mean and the standard deviation of the variable

r
jb

 for 

maximization. If 
rk1 = 

rk2 =1, it is an indication that equal importance is given to the maximization of the 

mean as well as the standard deviation of
r
jb . 

 
So the TLQP problem can be written as: 
 
[First Level] 

  

 max��
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solves 

 
[Second Level] 
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Where 3x
 
solves 

 
[Third Level] 
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Subject to  
 

  .,, 321 Gxxx                                                                                                                              (10) 

 
Where  
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4 Fuzzy Approach of the Three Level Quadratic Programming Problem 
with Stochastic Parameters in the Objective Function 

 
To solve the three–level quadratic programming problem with stochastic parameters in the objective 
function, one first convert the probabilistic nature of the objective functions to equivalence deterministic 
objective functions, after that gets the satisfactory solution that is acceptable to FLDM, and then every leader 
gives his decision variable and goal with some leeway to the his follower for him/her to seek the optimal 
solution.  
 

4.1 FLDM Problem  
 

First, the FLDM solves (7) subject to G , by applying the simplex method. The individual best solution 

 *
1F  and individual worst solution  1F   of (7) subject to G are: 
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)(1
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1 xFMaxF
Gx

 , )()( 11 xFMinxF
Gx

                                                                                 (12) 

 
Goals and tolerances can then be reasonably set for individual solution and the differences of the best and 
worst solutions, respectively. This data can then be formulated as the following membership function of 
fuzzy set theory [8]: 
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4.2 SLDM Problem 
 

In the same way, the SLDM independently solves (8) subject to G , by applying the simplex method. The 

individual best solution  *
2F  and individual worst solution  1F   of (8) subject to G are: 

 

)(2
*

2 xFMaxF
Gx

 , )()( 22 xFMinxF
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This information can then be formulated as the following membership function: 
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4.3 TLDM Problem 
 

In the same way, the TLDM independently solves (9) subject to G , by applying the simplex method. The 

individual best solution  *
3F  and individual worst solution  3F   of (9) subject to G  are: 
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This information can then be formulated as the following membership function: 
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Now the solution of the three decision makers are disclosed. However, three solutions are usually different 
because of nature between three levels objective functions. The two level leaders know that using the 

optimal decisions,
SF xx 21 , as a control factor for the TLDM are not practical. It is more reasonable to have 

some tolerance that gives the TLDM an extent feasible region to search for his/her optimal solution, and 
reduce searching time or interactions. 
 

In this way, the range of decision variable of the FLDM, SLDM with maximum tolerance 21, tt  and the 

following membership function specify 
SF xx 21 , as: 
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                            (19) 

 
Finally, in order to generate the satisfactory solution, which is also the optimal solution with overall 
satisfaction for all decision - makers, the Tchebycheff problem can be solved as the following [17]: 
 

,Max                                                                                                                                             (20) 
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,0, 21 tt

 
 

            
 .1,0

 
 

Where  is the overall satisfaction, and I is the column vector with all elements equal to 1s.  
 

5 Numerical Example  
 
To demonstrate the solution for TLQSPP, let us consider the following example: 
 
[First Level] 
 

              
    2
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2
2

2
11

,
111 22,

11
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Where 2x solves 

 
[Second Level] 
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Where 3x solves 

 
[Third Level] 
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Suppose that bi, (i=1,2,3) is normally distributed random parameters with the following means and variances, 
E(b1)=3,  E(b2)=5, E(b3)=3,VAR(b1)=4,VAR(b2)=16,VAR(b3)=4 . 
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1. In the first the probability nature of the objective functions will be converted to equivalent 
deterministic nature. 

2. Secondly, reformulate the problem in to deterministic form as following: 
 
[First Level] 
 

              

  2
3

2
2

2
1

,
111 27,

1
1

xxxMaxbxFMax
xx

 , 

 

Where 2x solves 

 
[Second Level] 
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Where 3x solves 

 

[Third Level]    
 

 
 
 

 
subject to 
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First, the FLDM solves his/her problem as follows: 
 
Find individual best and worst solutions by solving the FLDM problem using simplex method as

1183*
1 F , and 0)(1  xF . 

 

Second, the SLDM solves his/her problem as follows: 5.722*
2 F , and 0)(2  xF . 

 

Third, the TLDM solves his/her problem as follows: 04.186*
3 F , and

0)(3  xF
. 

 
Finally 
 

1. Assume the FLDM control decision 
F

x1 is around (0) with tolerance 1. 

2. Assume the SLDM control decision 
S

x2  is around (8.97) with the tolerance 2. 
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Max , 
 
Subject to 
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,970.1022  x  
 

,97.622  x  
 

 1,0 . 
 

Whose compromise solution is   )3,26.8,02.13(,, 321 xxx and 67.0 (overall satisfaction for all 
decision maker's) and the objective function value are F1= 927.829,   F2=90.247 , F3= 213.78 . 
 

6 Summary and Concluding Remarks 
 
A fuzzy approach were presented for solving a three-level decision maker’s model. This approach used 
stochastic parameters in the objective function to solve a three level quadratic programming problem. The 
probabilistic nature of the objective functions were converted to an equivalence deterministic one and then a 
fuzzy programming technique used in each level to generate Pareto optimal solution for these problems.  
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