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Abstract

In this paper we leave the neighborhood of the singularity at the origin and turn to the singularity

at the horizon.Using nonlinear distributional geometry and Colombeau generalized functions it

seems possible to show that the horizon singularity is not only a coordinate singularity without

leaving Schwarzschild coordinates.However the Tolman formula for the total energy ET of a static

and asymptotically flat spacetime,gives ET = m, as it should be.
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1 Introduction

1.1 The Breakdown of Canonical Formalism of Riemann Geometry
for the Singular Solutions of the Einstein Field Equations

Einstein field equations were originally derived by Einstein in 1915 in respect with canonical
formalism of Riemann geometry,i.e. by using the classical sufficiently smooth metric tensor, smooth
Riemann curvature tensor, smooth Ricci tensor,smooth scalar curvature, etc.. However have soon
been found singular solutions of the Einstein field equations with singular metric tensor and singular
Riemann curvature tensor.

These singular solutions were formally accepted beyond rigorous canonical formalism of Riemannian
geometry.

Remark 1.1.Note that if some components of the Riemann curvature tensor Ri
klm (x̂) become

infinite at point x̂0 one obtains the breakdown of canonical formalism of Riemann geometry in
a sufficiently small neighborhood Ω of the point x̂0 ∈ Ω,i.e. in such neighborhood Ω Riemann
curvature tensor Ri

klm (x̂) will be changed by formula (1.7) see remark 1.2.

Remark 1.2.Let Γ be infinitesimal closed contour and let ΣΓ be the corresponding surface spanning
by Γ, see Pic.1. We assume now that: (i) christoffel symbol Γi

kl (x̂) become infinite at singular point
x̂0 by formulae

{
Γi
kl (x̂) ≍ Ξkl (x̂)

(
xi − x0i

)−δ
, δ ≥ 1

Ξkl (x̂) ∈ C∞ (ΣΓ)
(1.1)

and(ii)0 ∈ ΣΓ.Let us derive now to similarly canonical calculation [1]-[2] the general formula for the

regularized change ∆̃Ak in a vector Ai (x̂) after parallel displacement around infinitesimal closed

contour Γ. This regularized change ∆̃Ak can clearly be written in the form

∆̃Ak =Γ Φ
(
x̂− x̂0

)
δAk, (1.2)

where Φ
(
x̂− x̂0

)
=4

i=0

(
xi − x0i

)2δ
, δ ≥ 1 and where the integral is taken over the given contour

Γ. Substituting in place of δAk the canonical expression δAk = Γi
kl (x̂)Akdx

l (see [2],Eq.(85.5)) we
obtain

∆̃Ak =Γ Φ
(
x̂− x̂0

)
δAk =Γ Φ

(
x̂− x̂0

)
Γi
kl (x̂)Akdx

l , (1.3)

where

∂Ai

∂xl
= Γi

kl (x̂)Ak. (1.4)

Now applying Stokes’ theorem (see [2],Eq.(6.19)) to the integral (1.3) and considering that the
area enclosed by the contour has the infinitesimal value ∆f lm, we get
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Pic. 1. Infinitesimal closed contour Γand corresponding singular surface ΣΓ ∋
x̂0 spanning by Γ

Pic.2. Infinitesimal closed contour Γ
with a singularity at point x̂0 on Horizon and corresponding singular surface

ΣΓ ∋ x̂0

∆̃Ak =Γ Φ
(
x̂− x̂0

)
Γi
kl (x̂)Akdx

l =

=
1

2ΣΓ

[
∂
(
Γi
km (x̂)AiΦ

(
x̂− x̂0

))
∂xl

−
∂
(
Γi
kl (x̂)AiΦ

(
x̂− x̂0

))
∂xm

]
df lm ≈

≈

[
∂
(
Γi
km (x̂)AiΦ

(
x̂− x̂0

))
∂xl

−
∂
(
Γi
kl (x̂)AiΦ

(
x̂− x̂0

))
∂xm

]
∆f lm

2
=[

Φ
(
x̂− x̂0

) ∂ (Γi
km

(
x̂− x̂0

)
Ai

)
∂xl

+
(
Γi
km (x̂)Ai

) ∂Φ (x̂− x̂0
)

∂xl
−

−Φ
(
x̂− x̂0

) ∂ (Γi
kl (x̂)Ai

)
∂xm

−
(
Γi
kl (x̂)Ai

) ∂Φ (x̂− x̂0
)

∂xm

]
∆f lm

2
=[

Φ
(
x̂− x̂0

) ∂ (Γi
km (x̂)Ai

)
∂xl

− Φ
(
x̂− x̂0

) ∂ (Γi
kl (x̂)Ai

)
∂xm

−

Ai (x̂)Φ
(
x̂− x̂0

) 2δΓi
km (x̂)

xl − x0l
−Ai (x̂)Φ

(
x̂− x̂0

) 2δΓi
kl (x̂)

xm − x0m

]
∆f lm

2
.

(1.5)

Substituting the values of the derivatives (1.4) into Eq. (1.5), we get finally:
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∆̃Ak = R̃i
klm

Ai (x̂)Φ
(
x̂− x̂0

)
∆f lm

2
, (1.6)

where R̃i
klm, is a tensor of the fourth rank

R̃i
klm = Ri

klm + 2δ

[
Γi
km (x̂)

xl − x0l
− Γi

kl (x̂)

xm − x0m

]
. (1.7)

Here Rkim
i is the classical Riemann curvature tensor.That R̃i

klm is a tensor is clear from the fact

that in (1.6) the left side is a vector—the difference ∆̃Ak between the values of vectors at one and
the same point.

Remark 1.3. Note that similar result was obtained by many authors [3]-[15] by using Colombeau
nonlinear generalized functions [16]-[17].

Definition1.1. The tensor R̃i
klm is called the generalized curvature tensor or the generalized

Riemann tensor.

Definition1.2. The generalized Ricci curvature tensor R̃km is defined as

R̃km = R̃i
kim. (1.8)

Definition1.3. The generalized Ricci scalar R̃ is defined as

R̃ = gkm R̃km. 1.9)

Definition1.3. The generalized Einstein tensor G̃km is defined as

G̃km = R̃km − 1

2
gkmR̃. (1.10)

Remark 1.4. Note that in physical literature the spacetime singularity usually is defined as
location where the quantities that are used to measure the gravitational field become infinite in
a way that does not depend on the coordinate system. These quantities are the classical scalar
invariant curvatures of singular spacetime, which includes a measure of the density of matter.

Remark 1.5. In general relativity, many investigations have been derived with regard to singular
exact vacuum solutions of the Einstein equation and the singularity structure of space-time. Such
solutions have been formally derived under condition

Tν
µ(x) = 0, (1.11)

whereTν
µ(x) = 0 represent the energy-momentum densities of the gravity source. This for example

is the case for the well-known Schwarzschild solution, which is given by, in the Schwarzschild
coordinates (x0, r, θ, ϕ),

ds2 = −h (r) (dx0)2 + h−1 (r) (dr)2 + r2
[
(dθ)2 + sin2 θ(dϕ)2

]
, h (r) = 1− rs

r
, (1.12)
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where, rs is the Schwarzschild radius rs = 2GM/c2 with G,M and c being the Newton gravitational
constant, mass of the source, and the light velocity in vacuum Minkowski space-time, respectively.
The metric (1.12) describe the gravitational field produced by a point-like particle located at r = 0.

Remark 1.6. Note that when we say, on the basis of the canonical expression of the curvature
square

R̂ρσµν(r)R̂ρσµν(r) = 12r2s

[
1

r6

]
(1.13)

formally obtained from the metric (1.12), that r = 0 is a singularity of the Schwarzschild space-
time, the source is considered to be point-like and this metric is regarded as meaningful everywhere
in space-time.

Remark 1.7. From the metric (1.12), the calculation of the canonical Einstein tensor proceeds in
a straighforward manner gives for r ̸= 0

Gt
t (r) = Gr

r (r) = −h
′ (r)

r̂
− 1 + h (r)

r̂2
≡ 0 , Gθ

θ (r) = Gφ
φ (r) = −h

′′ (r)

2
− h (r)

r̂2
≡ 0, (1.14)

where h (r) = −1 + rs/r.Using Eq.(1.14) one formally obtain boundary conditions

{
Gt

t (0) , lim
r→0

Gt
t (r) = 0, Gr

r (0) , lim
r→0

Gr
r (r) = 0,

Gθ
θ (0) , lim

r→0
Gθ

θ (r) = 0, Gφ
φ (0) , lim

r→0
Gφ

φ (r) = 0.
(1.15)

However as pointed out above the canonical expression of the Einstein tensor in a sufficiently small
neighborhood Ω of the point r = 0 and must be replaced by the generalized Einstein tensor G̃km

(1.10). By simple calculation it is easy to see that

 G̃t
t (0) , lim

r→0
G̃t

t (r) = −∞, G̃r
r (0) , lim

r→0
G̃r

r (r) = −∞,

G̃θ
θ (0) , lim

r→0
G̃θ

θ (r) = −∞, G̃φ
φ (0) , lim

r→0
G̃φ

φ (r) = −∞.
(1.16)

and therefore the boundary conditions (1.15) are completely wrong. But other hand as pointed out
by many authors [3]-[15] that the canonical representation of the Einstein tensor, valid only in a
weak (distributional) sense,i.e. [10]:

Ga
b (x̂) = −8πmδa0δ

0
bδ

3 (x̂) (1.17)

and therefore again we obtain Ga
b (0) = −∞ ×

(
δa0δ

0
b

)
.Thus canonical definition of the Einstein

tensor is breakdown in rigorous mathematical sense for the Schwarzschild solution at origin r = 0.

1.2 The Distributional Schwarzschild Geometry

General relativity as a physical theory is governed by particular physical equations; the focus of
interest is the breakdown of physics which need not coincide with the breakdown of geometry.
It has been suggested to describe singularity at the origin as internal point of the Schwarzschild
spacetime, where the Einstein field equations are satisfied in a weak (distributional) sense [3-15,
18,19,20,21,22].
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1.2.1 The smooth regularization of the singularity at the origin

The two singular functions we will work with throughout this paper (namely the singular components

of the Schwarzschild metric) are
1

r
and

1

r − rs
, rs ≥ 0.Since

1

r
∈ L1

loc(R3), it obviously gives the

regular distribution
1

r
∈ D′(R3). By convolution with a mollifier (ρ) (x) (adapted to the symmetry

of the spacetime, i.e. chosen radially symmetric) we embed it into the Colombeau algebra G
(
R3
)

[22]:

1

r

ι→ ι

(
1

r

)
,
(
1

r

)
∗ ρε ,

(
1

r

)
ε

, ρε =
1

ε3
(ρ)
(r
ε

)
, ε ∈ (0, 1] . (1.18)

Inserting (1.18) into (1.12) we obtain a generalized Colombeau object modeling the singular Schwarzschild
spacetime [22]:


(
ds2ε
)
ε
=
(
hε (r) (dt)

2
)
ε
−
(
h−1
ε (r) (dr)2

)
ε
+ r2

[
(dθ)2 + sin2 θ(dϕ)2

]
,

hε (r) = −1 + rs

(
1

r

)
ε

, ε ∈ (0, 1] .
(1.19)

Remark 1.8.Note that under regularization (1.18) for any ε ∈ (0, 1] the metric

ds2ε = hε (r) (dt)
2 − h−1

ε (r) (dr)2 + r2
[
(dθ)2 + sin2 θ(dϕ)2

]
obviously is a classical Riemannian object and there no exists an the breakdown of canonical
formalism of Riemannian geometry for these metrics, even at origin r = 0. It has been suggested
by many authors to describe singularity at the origin as an internal point, where the Einstein field
equations are satisfied in a distributional sense [3-15, 18,19, 20,21,22]. From the Colombeau metric
(1.19) one obtain in a distributional sense [22]:

(
R2

2 (r, ε)
)
ε
=
(
R3

3

)
ε
=

(
h′
ε (r)

r
+

1 + hε (r)

r2

)
ε

= 8πm
δ (r)

r2
,(

R0
0 (r, ε)

)
ε
=
(
R1

1

)
ε
=

1

2

(
h′′
ε (r)

2
+
h′
ε (r)

r

)
ε

= −4πmδ
δ (r)

r2
.

(1.20)

Hence, the distributional Ricci tensor and the distributional curvature scalar (Rε (r))
ε
are of δ-type,

i.e. (Rε (r))
ε
= πm

δ (r)

r2
.

Remark 1.9. Note that the formulae (1.20) should be contrasted with what is the expected result
Ga

b (x) = −8πmδa0δ
0
bδ

3 (x) given by Eq.(1.17). However the equations (1.20) are obviously given
in spherical coordinates and therefore strictly speaking this is not correct, because the basis fields{
∂

∂r
,
∂

∂φ
,
∂

∂θ

}
are not globally defined. Representing distributions concentrated at the origin

requires a basis regular at the origin. Transforming the formulae for (Rij (ε))3b5 into Cartesian
coordinates associated with the spherical ones, i.e., {r, φ, θ} ↔ {xi}, we obtain, e.g., for the Einstein
tensor the expected result Ga

b (x) = −8πmδa0δ
0
bδ

3 (x) given by Eq.(1.17), see [22].
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1.2.2. The nonsmooth regularization of the singularity
at the origin
The nonsmooth regularization of the Schwarzschild singularity at the origin r = 0 is considered by
N. R. Pantoja and H. Rago in paper [10]. Pantoja non smooth regularization regularization of the
Schwarzschild singularity are

(hε (r))ε = −1 +
(rs
r
Θ(r − ε)

)
ε
, ε ∈ (0, 1] , r < rs. (1.21)

Here Θ (u) is the Heaviside function and the limit ε→ 0 is understood in a distributional sense.Equation
(1.19) with hε as given in (1.21) can be considered as an regularized version of the Schwarzschild
line element in curvature coordinates. From equation (1.21), the calculation of the distributional
Einstein tensor proceeds in a straighforward manner. By simple calculation it gives [10]:


(
Gt

t (r, ε)
)
ε
= (Gr

r (r, ε))ε = −
(
h′
ε (r)

r

)
ε

−
(
1 + hε (r)

r2

)
ε

=

= −rs
(
δ (r − ε)

r2

)
ε

= −rs
δ (r)

r2

(1.22)

and


(
Gθ

θ (r, ε)
)
ε
=
(
Gφ

φ (r, ε)
)
ε
= −

(
h′′
ε (r)

2

)
ε

−
(
hε (r)

r2

)
ε

=

rs

(
δ (r − ε)

r2

)
ε

− rs

(
ε

r2
d

dr
δ (r − ε)

)
ε

= −rs
δ (r)

r2
.

(1.23)

which is exactly the result obtained in Ref. [7] using smoothed versions of the Heaviside function
Θ(r−ε). Transforming now the formulae for (Ga

b (r, ε))ε into Cartesian coordinates associated with
the spherical ones, i.e.,
r, φ, θ} ↔ {xi}, we obtain for the generalized Einstein tensor the expected result given by Eq.(1.17)

Ga
b (x) = −8πmδa0δ

0
bδ

3 (x) , (1.24)

see Remark 1.9.

1.2.3 The smooth regularization via Horizon
The smooth regularization via Horizon is considered by J.M.Heinzle and R.Steinbauer in paper [22].

Note that
1

r − rs
/∈ L1

loc(R3). An canonical regularization is the principal value vp

(
1

r − rs

)
∈

D′(R3) which can be embedded into G
(
R3
)
[22]:

1

r − rs

vp→ vp

(
1

r − rs

)
ι→ ι

[
ρε ∗ vp

(
1

r − rs

)]
,
(

1

r − rs

)
ε

∈ G
(
R3
)
. (1.25)

Inserting now (1.25) into (1.12) we obtain a generalized Colombeau object modeling the singular
Schwarzschild spacetime [22]:

(
ds2ε
)
ε
=
(
h (r) (dt)2

)
ε
−
(
h−1
ε (r) (dr)2

)
ε
+ r2

[
(dθ)2 + sin2 θ(dϕ)2

]
,

h (r) = −1 +
rs
r
, h−1

ε (r) = −1− rs

(
1

r − rs

)
ε

, ε ∈ (0, 1] .
(1.26)
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Remark 1.10. Note that obviously Colombeau object, (1.26) is degenerate at r = rs, because h(r)
is zero at the horizon. However, this does not come as a surprise. Both h(r) and h−1(r) are positive
outside of the black hole and negative in the interior. As a consequence any smooth regularization
of h(r) (or h−1) must pass through zero somewhere and, additionally, this zero must converge to
r = rs as the regularization parameter goes to zero.

Remark 1.11.Note that due to the degeneracy of Colombeau object (1.26), even the distributional
Levi-Civitá connection obviously is not available [23].

1.2.4 The nonsmooth regularization via Gorizon
In this paper we leave the neighborhood of the singularity at the origin and turn to the singularity
at the horizon. The question we are aiming at is the following: using distributional geometry (thus
without leaving Schwarzschild coordinates), is it possible to show that the horizon singularity of
the Schwarzschild metric is not merely a coordinate singularity. In order to investigate this issue
we calculate the distributional curvature at the horizon in Schwarzschild coordinates.

The main focus of this work is a (nonlinear) superdistributional description of the Schwarzschild
spacetime. Although the nature of the Schwarzschild singularity is much “worse” than the quasi-
regular conical singularity, there are several distributional treatments in the literature [6], mainly
motivated by the following considerations: the physical interpretation of the Schwarzschild metric is
clear as long as we consider it merely as an exterior (vacuum) solution of an extended (sufficiently
large) massive spherically symmetric body. Together with the interior solution it describes the
entire spacetime. The concept of point particles—well understood in the context of linear field
theories—suggests a mathematical idealization of the underlying physics: one would like to view
the Schwarzschild solution as defined on the entire spacetime and regard it as generated by a point
mass located at the origin and acting as the gravitational source.

This of course amounts to the question of whether one can reasonably ascribe distributional
curvature quantities to the Schwarzschild singularity at the horizon.

The emphasis of the present work lies on mathematical rigor. We derive the “physically expected”
result for the distributional energy momentum tensor of the Schwarzschild geometry, i.e., T 0

0 =
8πmδ(3)(x⃗), in a conceptually satisfactory way. Additionally, we set up a unified language to
comment on the respective merits of some of the approaches taken so far. In particular, we
discuss questions of differentiable structure as well as smoothness and degeneracy problems of the
regularized metrics, and present possible refinements and workarounds.These aims are accomplished
using the framework of nonlinear supergeneralized functions (supergeneralized Colombeau algebras

G̃(R3,Σ)).Examining the Schwarzschild metric (1.12) in a neighborhood of the horizon, we see that,
whereas h(r) is smooth, h−1(r) is not even L1

loc (note that the origin is now always excluded from our
considerations; the space we are working on is R3\{0}). Thus, regularizing the Schwarzschild metric

amounts to embedding h−1 into G̃(R3,Σ) (as done in (3.2)).Obviously, (3.1) is degenerate at r = 2m,
because h(r) is zero at the horizon. However, this does not come as a surprise. Both h(r) and h−1(r)
are positive outside of the black hole and negative in the interior. As a consequence any (smooth)
regularization h+

ϵ (r) (h
−
ϵ (r)) [above (below) horizon] of h(r) must pass through small enough vicinity

O+
ϵ (2m) =

{
x⃗ ∈ R3| ∥x⃗∥ > 2m, ∥x⃗− 2m∥ 6 ϵ

}
(O−

ϵ (2m) =
{
x⃗ ∈ R3| ∥x⃗∥ < 2m, ∥x⃗− 2m∥ 6 ϵ

}
)

of zeros set O0 (2m) =
{
y⃗ ∈ R3| ∥y⃗∥ = 2m

}
somewhere and, additionally, this vicinity O+

ϵ (2m)
(O−

ϵ (2m)) must converge to O0 (2m) as the regularization parameter ϵ goes to zero.Due to the
degeneracy of (1.12), the Levi-Cività connection is not available. Consider, therefore, the following

connections Γ+l
kj (ϵ) = Γ+l

kj

[
h+
ϵ

]
∈ G̃(R3,Σ) and Γ−l

kj (ϵ) = Γ−l
kj

[
h+
ϵ

]
∈ G̃(R3,Σ) :

8
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Γ+l
kj (ϵ) =

1

2
[(
(
g+ϵ
)−1

)] lm[(g+ϵ )mk,j + (g+ϵ )mj,k − (g+ϵ )kj,m],

Γ−l
kj (ϵ) =

1

2
[(
(
g−ϵ
)−1

)] lm[(g−ϵ )mk,j + (g−ϵ )mj,k − (g−ϵ )kj,m].
(1.27)

Γ+l
kj (0) ,Γ

−l
kj (0) coincides with the Levi-Cività connection on R3\{r = 2m}, as (g+0 ) = g, (g−0 ) = g

and (g+0 )−1 = g−1, (g−0 )−1 = g−1 there.Clearly,connections Γ+l
kj (ϵ) ,Γ

−l
kj (ϵ) respect the regularized

metric g±ϵ ,i.e., (g
±
ϵ )ij;k = 0. Proceeding in this manner, we obtain the nonstandard result

([
R+

ϵ

]1
1

)
ϵ
=
([

R+
ϵ

]0
0

)
ϵ
= −mΦ̃(2m),([

R−
ϵ

]1
1

)
ϵ
=
([

R−
ϵ

]0
0

)
ϵ
= mΦ̃(2m).

(1.28)

Investigating the weak limit of the angular components of the generalized Ricci tensor using the
abbreviation

Φ̃(r) =
π∫
0

sin θdθ
2π∫
0

dϕΦ(x⃗)

and let Φ(x⃗) be the function Φ(x⃗) ∈ S+
2m(R3) (Φ(x⃗) ∈ S−

2m(R3)), where by S+
2m(R3) (S−

2m(R3)) we
denote the class of all functions Φ(x⃗) with compact support such that:

(i) supp(Φ(x⃗)) ⊂ {x⃗| ∥x⃗∥ ≥ 2m} (supp(Φ(x⃗)) ⊂ {x⃗| ∥x⃗∥ ≤ 2m}) (ii) Φ̃(r) ∈ C∞ (R) . Then
for any function Φ(x⃗) ∈ S±

2m(R3) we get: w -lim
ϵ→0

[
R+

ϵ

]1
1
= w -lim

ϵ→0

[
R+

ϵ

]0
0
= m

⟨
δ̃|Φ̃
⟩
= −mΦ̃(2m),

w -lim
ϵ→0

[
R−

ϵ

]1
1
= w -lim

ϵ→0

[
R−

ϵ

]0
0
= m

⟨
δ̃|Φ̃
⟩
= mΦ̃(2m),

(1.29)

i.e., the Schwarzschild spacetime is weakly Ricci-nonflat (the origin was excluded from our considerations).
Furthermore,the Tolman formula [1],[2] for the total energy of a static and asymptotically flat
spacetime with g the determinant of the four dimensional metric and d3x the coordinate volume
element, gives

ET =
∫ (

Tr
r +Tθ

θ +Tϕ
ϕ +Tt

t

)√
−gd3x = m, (1.30)

as it should be.

The paper is organized in the following way: in section 2-6 we discuss the conceptual as well as the
mathematical prerequisites. In particular we comment on geometrical matters (differentiable
structure, coordinate invariance) and recall the basic facts of nonlinear superdistributional geometry

in the context of algebras G̃(M,Σ) of supergeneralized functions. Moreover, we derive sensible
nonsmooth regularizations of the singular functions to be used throughout the paper. Section 7 is
devoted to this approach to the problem. We present a new conceptually satisfactory method
to derive the main result. In this final section 7 we investigate the horizon and describe its
distributional curvature. Using nonlinear superdistributional geometry and supergeneralized functions
it seems possible to show that the horizon singularity is not only a coordinate singularity without
leaving Schwarzschild coordinates.

2 Generalized Colombeau Calculus

2.1 Notation and Basic Notions from Standard Colombeau Theory

We use [16],[17],[5] as standard references for the foundations and various applications of standard
Colombeau theory. We briefly recall the basic Colombeau construction. Throughout the paper Ω
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will denote an open subset of Rn. Stanfard Colombeau generalized functions on Ω are defined as
equivalence classes u = [(uε)ε] of nets of smooth functions uε ∈ C∞(Ω) (regularizations) subjected
to asymptotic norm conditions with respect to ε ∈ (0, 1] for their derivatives on compact sets.

The basic idea of classical Colombeau’s theory of nonlinear generalized functions [16],[17] is regularization
by sequences (nets) of smooth functions and the use of asymptotic estimates in terms of a regularization
parameter ε. Let (uε)ε∈(0,1] with (uε)ε ∈ C∞(M) for all ε ∈ R+,where M a separable, smooth
orientable Hausdorff manifold of dimension n.

Definition 2.1.The classical Colombeau’s algebra of generalized functions on M is defined as the
quotient:

G(M) , EM (M)/N (M) (2.1)

of the space EM (M) of sequences of moderate growth modulo the spaceN (M) of negligible sequences.
More precisely the notions of moderateness resp. negligibility are defined by the following asymptotic
estimates (where X(M) denoting the space of smooth vector fields on M):

EM (M) , {(uε)ε| ∀K (K $M) ∀k (k ∈ N) ∃N (N ∈ N)

∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M))

[
sup
p∈K

|Lξ1 . . . Lξk uε(p)| = O(ε−N ) as ε→ 0

]}
,

(2.2)


N (M) , {(uε)ε| ∀K (K $M) , ∀k (k ∈ N0) ∀q (q ∈ N)

∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M))

[
sup
p∈K

|Lξ1 . . . Lξk uε(p)| = O(εq) as ε→ 0

]}
.

(2.3)

Remark 2.1. In the definition the Landau symbol aε = O (ψ (ε)) appears, having the following
meaning: ∃C (C > 0)∃ε0 (ε0 ∈ (0, 1]) ∀ε (ε < ε0) [aε ≤ Cψ (ε)].

Definition 2.3. Elements of cal G(M) are denoted by:

u = cl[(uε)ε] , (uε)ε +N (M). (2.4)

Remark 2.2.Withcomponentwiseoperations(·,± ) G(M) is a fine sheaf of differential algebras
with respect to the Lie derivative defined by Lξu , cl[(Lξuε)ε].

The spaces of moderate resp. negligible sequences and hence the algebra itself may be characterized
locally, i.e., u ∈ G(M) iff u ◦ ψα ∈ G(ψα(Vα)) for all charts (Vα, ψα), where on the open set
ψα(Vα) ⊂ Rn in the respective estimates Lie derivatives are replaced by partial derivatives.

Remark 2.4.Smooth functions f ∈ C∞(M) are embedded into G(M) simply by the “constant”
embedding σ, i.e., σ(f) = cl[(f)ε], hence C∞(M) is a faithful subalgebra of G(M).

3 Point Values of a Generalized Functions on M . generali-
zed Numbers

Within the classical distribution theory, distributions cannot be characterized by their point values
in any way similar to classical functions. On the other hand, there is a very natural and direct way
of obtaining the point values of the elements of Colombeau’s algebra: points are simply inserted into
representatives. The objects so obtained are sequences of numbers, and as such are not the elements
in the field R or C. Instead, they are the representatives of Colombeau’s generalized numbers. We
give the exact definition of these ”numbers”.

10
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Definition 2.5.Inserting p ∈M into u ∈ G(M) yields a well defined element of the ring of constants
(also called generalized numbers) K (corresponding to K = R resp. C), defined as the set of
moderate nets of numbers ((rε)ε ∈ K(0,1] with |rε| = O(ε−N ) for some N) modulo negligible
nets (|rε| = O(εm) for each m); componentwise insertion of points of M into elements of G(M)
yields well-defined generalized numbers, i.e.,elements of the ring of constants:

K = Ec (M) /Nc (M) (2.5)

(withK=R̃ or K = C̃ for K = R or K = C), where
Ec (M) =

{
(rϵ)ϵ ∈ KI |∃n (n ∈ N)

[
|rϵ| = O

(
ϵ−n

)
as ε→ 0

]}
Nc (M) =

{
(rϵ)ϵ ∈ KI |∀m (m ∈ N) [|rϵ| = O (ϵm) as ε→ 0]

}
I = (0, 1].

(2.6)

Generalized functions on M are characterized by their generalized point values, i.e., by their values
on points in M̃c, the space of equivalence classes of compactly supported nets (pε)ε ∈ M (0,1] with
respect to the relation pε ∼ p′ε :⇔ dh(pε, p

′
ε) = O(εm) for all m, where dh denotes the distance on

M induced by any Riemannian metric.

Definition 2.6. For u ∈ G(M) and x0 ∈ M, the point value of u at the point x0, u(x0),is defined
as the class of (uε(x0))ε in K.

Definition 2.7.We say that an element r ∈ K is strictly nonzero if there exists a representative
(rε)ε and a q ∈ N such that |rε| > εq for ε sufficiently small. If r is strictly nonzero, then it is also
invertible with the inverse [(1/rε)ε]. The converse is true as well.

Treating the elements of Colombeau algebras as a generalization of classical functions, the question
arises whether the definition of point values can be extended in such a way that each element is
characterized by its values. Such an extension is indeed possible.

Definition 2.8. Let Ω be an open subset of Rn. On a set Ω̂ :

{
Ω̂ =

{
(xε)ε ∈ ΩI |∃p (p > 0) [|xε| = O (εp)]

}
={

(xε)ε ∈ ΩI |∃p (p > 0) ∃ε0 (ε0 > 0) [|xε| ≤ εp, for 0 < ε < ε0]
} (2.7)

we introduce an equivalence relation:

(xε)ε ∼ (yε)ε ⇐⇒ ∀q (q > 0) ∀ε (ε > 0) [|xε − yε| ≤ εq, for 0 < ε < ε0] (2.8)

anddenotebyΩ̃ = Ω̂/ ∼ the set of generalized points. The set of points with compact support is

Ω̃c =
{
x̃ = cl[(xε)ε] ∈ Ω̃|∃K (K ⊂ Ω) ∃ε0 (ε0 > 0) [xε ∈ K for 0 < ε < ε0]

}
(2.9)

Definition 2.9. A generalized function u ∈ G(M) is called associated to zero, u ≈ 0 on Ω ⊆ M
in L.Schwartz sense if one (hence any) representative (uϵ)ϵ converges to zero weakly,i.e.

w - limϵ→0 uϵ = 0 (2.10)

We shall often write:

u ≈
Sch

0. (2.11)

The G(M)-module of generalized sections in vector bundles-especially the space of generalized
tensor fields T r

s (M)-is defined along the same lines using analogous asymptotic estimates with

11
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respect to the norm induced by any Riemannian metric on the respective fibers. However, it is more
convenient to use the following algebraic description of generalized tensor fields

Gr
s(M) = G(M)⊗ T r

s (M) , (2.12)

whereT r
s (M) denotes the space of smooth tensor fields and the tensor product is taken over the

module C∞(M). Hence generalized tensor fields are just given by classical ones with generalized
coefficient functions. Many concepts of classical tensor analysis carry over to the generalized setting
[16]-[17], in particular Lie derivatives with respect to both classical and generalized vector fields,
Lie brackets, exterior algebra, etc. Moreover, generalized tensor fields may also be viewed as G(M)-
multilinear maps taking generalized vector and covector fields to generalized functions, i.e., as
G(M)-modules we have

Gr
s(M) ∼= L(M)(G0

1(M)r,G1
0(M)s;G(M)). (2.13)

In particular a generalized metric is defined to be a symmetric, generalized (0, 2)-tensor field
gab = [((gϵ)ab )ϵ] (with its index independent of ε and) whose determinant det(gab) is invertible in
G(M). The latter condition is equivalent to the following notion called strictly nonzero on
compact sets: for any representative det((gϵ)ab )ϵ of det(gab) we have ∀K ⊂ M ∃m ∈ N
[infp∈K |det(gab (ϵ))| ≥ ϵm] for all ϵ small enough. This notion captures the intuitive idea of a
generalized metric to be a sequence of classical metrics approaching a singular limit in the following
sense: gab is a generalized metric iff (on every relatively compact open subset V ofM) there exists a
representative ((gϵ)ab )ϵ of gab such that for fixed ϵ (small enough)(gϵ)ab = gab (ϵ) (resp. (gϵ)ab |V )
is a classical pseudo-Riemannian metric and det(gab) is invertible in the algebra of generalized
functions. A generalized metric induces a G(M)-linear isomorphism from G1

0(M) to G0
1(M) and

the inverse metric gab , [(g−1
ab (ϵ))ϵ] is a well defined element of G2

0(M) (i.e., independent of the
representative ((gϵ)ab )ϵ). Also the generalized Levi-Civita connection as well as the generalized
Riemann-, Ricci- and Einstein tensor of a generalized metric are defined simply by the usual
coordinate formulae on the level of representatives.

4 Generalized Colombeau Calculus

We briefly recall the basic generalized Colombeau construction. Colombeau supergeneralized func-
tions on Ω ⊆ Rn, where dim (Ω) = n are defined as equivalence classes u = [(uε)ε] of nets of
smooth functions uε ∈ C∞(Ω\Σ),where dim (Σ) < n (regularizations) subjected to asymptotic
norm conditions with respect to ε ∈ (0, 1] for their derivatives on compact sets.

The basic idea of generalized Colombeau’s theory of nonlinear supergeneralized functions [16],[17]
is regularization by sequences (nets) of smooth functions and the use of asymptotic estimates in
terms of a regularization parameter ε. Let (uε)ε∈(0,1] with uε such that: (i) uε ∈ C∞(M\Σ) and
(ii) uε ∈ D′(M),for all ε ∈ (0, 1] ,where M a separable, smooth orientable Hausdorff manifold of
dimension n.

Definition 2.10.The supergeneralized Colombeau’s algebra G̃ = G̃(M,Σ) of supergeneralized
functions on M, where Σ ⊂M, dim (M) = n,dim (Σ) < n , is defined as the quotient:

G̃(M,Σ) , EM (M,Σ)/N (M,Σ) (2.14)

ofthespaceEM (M,Σ) of sequences of moderate growth modulo the space N (M,Σ) of negligible
sequences. More precisely the notions of moderateness resp. negligibility are defined by the following
asymptotic estimates (where X(M\Σ) denoting the space of smooth vector fields on M\Σ):
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EM (M,Σ) , {(uε)ε| ∀K (K $M\Σ) ∀k (k ∈ N) ∃N (N ∈ N)

∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M\Σ))
[
sup
p∈K

|Lξ1 . . . Lξk uε(p)| = O(ε−N ), ε→ 0

]
&

∀K (K $M) ∀k (k ∈ N) ∃N (N ∈ N) ∀ (f ∈ C∞(M))∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M))[∥∥Lw
ξ1
. . . Lw

ξk
uε

∥∥ =

(
sup

f∈C∞(M)

∣∣Lw
ξ1
. . . Lw

ξk
uε(f)

∣∣) = O(ε−N ), ε→ 0

]}
,

(2.15)

N (M,Σ) , {(uε)ε| ∀K (K $M\Σ) , ∀k (k ∈ N0) ∀q (q ∈ N)

∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M\Σ))
[
sup
p∈K

|Lξ1 . . . Lξk uε(p)| = O(εq), ε→ 0

]}
&

∀K (K $M) ∀k (k ∈ N) ∃N (N ∈ N) ∀ (f ∈ C∞(M))∀ξ1, . . . , ξk (ξ1, . . . , ξk ∈ X(M))[∥∥Lw
ξ1
. . . Lw

ξk
uε

∥∥ =

(
sup

f∈C∞(M)

∣∣Lw
ξ1
. . . Lw

ξk
uε(f)

∣∣) = O(εq), ε→ 0

]}
,

(2.16)

whereLw
ξk

denoting the weak Lie derivative in L.Schwartz sense.In the definition the Landau symbol
aε = O (ψ (ε)) appears, having the following meaning:
∃C (C > 0)∃ε0 (ε0 ∈ (0, 1]) ∀ε (ε < ε0) [aε ≤ Cψ (ε)] .

Definition 2.11. Elements of G̃(M,Σ) are denoted by:

u = cl[(uε)ε] , (uε)ε +N (M,Σ). (2.17)

Remark 2.5.With componentwise operations (·,± ) G̃(M,Σ) is a fine sheaf of differential algebras
with respect to the Lie derivative defined by Lξu , cl[(Lξuε)ε].

The spaces of moderate resp. negligible sequences and hence the algebra itself may be characterized
locally, i.e., u ∈ G̃(M,Σ) iff u ◦ ψα ∈ G̃(ψα(Vα)) for all charts (Vα, ψα), where on the open set
ψα(Vα) ⊂ Rn in the respective estimates Lie derivatives are replaced by partial derivatives.

The spaces of moderate resp. negligible sequences and hence the algebra itself may be characterized
locally, i.e., u ∈ G̃(M,Σ) iff u ◦ ψα ∈ G̃(ψα(Vα)) for all charts (Vα, ψα), where on the open set
ψα(Vα) ⊂ Rn in the respective estimates Lie derivatives are replaced by partial derivatives.

Remark 2.6.Smooth functions f ∈ C∞(M\Σ) are embedded into G̃(M,Σ) simply by the “constant”

embedding σ, i.e., σ(f) = cl[(f)ε], hence C∞(M\Σ) is a faithful subalgebra of G̃(M,Σ).

5 Point Values of a Supergeneralized Functions on M .
Supergeneralized Numbers

Within the classical distribution theory, distributions cannot be characterized by their point values
in any way similar to classical functions. On the other hand, there is a very natural and direct way
of obtaining the point values of the elements of Colombeau’s algebra: points are simply inserted into
representatives. The objects so obtained are sequences of numbers, and as such are not the elements
in the field R or C. Instead, they are the representatives of Colombeau’s generalized numbers. We
give the exact definition of these ”numbers”.

Definition 2.12.Inserting p ∈ M into u ∈ G̃(M,Σ) yields a well defined element of the ring of

constants (also called generalized numbers) K̃ (corresponding to K = R resp. C), defined as the
set of moderate nets of numbers ((rε)ε ∈ K(0,1] with |rε| = O(ε−N ) for some N) modulo negligible

nets (|rε| = O(εm) for each m); componentwise insertion of points of M into elements of G̃(M,Σ)
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yields well-defined generalized numbers, i.e.,elements of the ring of constants:

K̃Σ= Ec (M,Σ) /Nc (M,Σ) (2.18)

(withK̃Σ = R̃Σ or K = C̃Σ for K = R or K = C), where
Ec (M,Σ) =

{
(rϵ)ϵ ∈ KI |∃n (n ∈ N)

[
|rε| = O

(
ε−n

)
as ε→ 0

]}
,

Nc (M,Σ) =
{
(rϵ)ϵ ∈ KI |∀m (m ∈ N) [|rε| = O (εm) as ε→ 0]

}
I = (0, 1].

(2.19)

Supergeneralized functions onM are characterized by their generalized point values, i.e., by their
values on points in c, the space of equivalence classes of compactly supported nets (pε)ε ∈
(M\Σ)(0,1] with respect to the relation pε ∼ p′ε :⇔ dh(pε, p

′
ε) = O(εm) for all m, where dh denotes

the distance on M\Σ induced by any Riemannian metric.

Definition 2.13. For u ∈ G̃(M,Σ) and x0 ∈M,the point value of u at the point x0, u(x0),is defined

as the class of (uε(x0))ε in K̃.

Definition 2.14.We say that an element r ∈ K̃ is strictly nonzero if there exists a representative
(rε)ε and a q ∈ N such that |rε| > εq for ε sufficiently small. If r is strictly nonzero, then it is also
invertible with the inverse [(1/rε)ε]. The converse is true as well.

Treating the elements of Colombeau algebras as a generalization of classical functions, the question
arises whether the definition of point values can be extended in such a way that each element is
characterized by its values. Such an extension is indeed possible.

Definition 2.15. Let Ω be an open subset of Rn\Σ. On a set Ω̂Σ :

 Ω̂Σ =
{
(xε)ε ∈ (Ω\Σ)I |∃p (p > 0) [|xε| = O (εp)]

}
={

(xε)ε ∈ (Ω\Σ)I |∃p (p > 0)∃ε0 (ε0 > 0) [|xε| ≤ εp, for 0 < ε < ε0]
} (2.20)

we introduce an equivalence relation:

(xε)ε ∼ (yε)ε ⇐⇒ ∀q (q > 0) ∀ε (ε > 0) [|xε − yε| ≤ εq, for 0 < ε < ε0] (2.21)

and denote by Ω̃Σ = Ω̂Σ/ ∼ the set of supergeneralized points. The set of points with compact
support is

Ω̃Σ,c =
{
x̃ = cl[(xε)ε] ∈ Ω̃Σ|∃K (K ⊂ Ω\Σ) ∃ε0 (ε0 > 0) [xε ∈ K for 0 < ε < ε0]

}
(2.22)

Definition 2.16. A supergeneralized function u∈ G̃(M,Σ) is called associated to zero, u ≈ 0 on
Ω ⊆M in L. Schwartz’s sense if one (hence any) representative (uε)ε converges to zero weakly,i.e.

w - limε→0 uε = 0 (2.23)

We shall often write :

u ≈
Sch

0. (2.24)

Definition 2.17.The G̃(M,Σ)-module of supergeneralized sections in vector bundles- especially the
space of generalized tensor fields T r

s (M\Σ) defined along the same lines using analogous asymptotic
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estimates with respect to the norm induced by any Riemannian metric on the respective fibers.
However, it is more convenient to use the following algebraic description of generalized tensor fields

G̃r
s(M,Σ) = G̃(M,Σ)⊗ T r

s (M\Σ) , (2.25)

where T r
s (M\Σ) denotes the space of smooth tensor fields and the tensor product is taken over the

module C∞(M\Σ). Hence generalized tensor fields are just given by classical ones with generalized
coefficient functions. Many concepts of classical tensor analysis carry over to the generalized setting
[21-23], in particular Lie derivatives with respect to both classical and generalized vector fields, Lie

brackets, exterior algebra, etc. Moreover, generalized tensor fields may also be viewed as G̃(M,Σ)-
multilinear maps taking generalized vector and covector fields to generalized functions, i.e., as
G̃(M,Σ)-modules we have

G̃r
s(M,Σ) ∼= L(M)(G̃0

1(M,Σ)r, G̃1
0(M,Σ)s; G̃(M,Σ)). (2.26)

In particular a supergeneralized metric is defined to be a symmetric, supergeneralized (0,2)−
tensorfieldgab = [((gε)ab )ε] (with its index independent of ε and) whose determinant det(gab) is

invertible in G̃(M\Σ). The latter condition is equivalent to the following notion called strictly
nonzero on compact sets: for any representative det((gε)ab )ε of det(gab) we have ∀K ⊂M\Σ ∃m ∈
N [infp∈K |det(gab (ε))| ≥ εq] for all ε small enough. This notion captures the intuitive idea of a
generalized metric to be a sequence of classical metrics approaching a singular limit in the following
sense: gab is a generalized metric iff (on every relatively compact open subset V ofM) there exists a
representative ((gε)ab )ε of gab such that for fixed ε (small enough)(gε)ab = gab (ε) (resp. (gε)ab |V )
is a classical pseudo-Riemannian metric and det(gab) is invertible in the algebra of generalized

functions. A generalized metric induces a G̃(M,Σ)-linear isomorphism from G̃1
0(M,Σ) to G̃0

1(M,Σ)

and the inverse metric gab , [(g−1
ab (ε))ε] is a well defined element of G̃2

0(M,Σ) (i.e., independent
of the representative ((gε)ab )ε). Also the supergeneralized Levi-Civita connection as well as the
supergeneralized Riemann, Ricci and Einstein tensor of a supergeneralized metric are defined simply
by the usual coordinate formulae on the level of representatives.

6 Superdistributional General Relativity

We briefly summarize the basics of superdistributional general relativity, as a preliminary to latter
discussion.In the classical theory of gravitation one is led to consider the Einstein field equations
which are, in general, quasilinear partial differential equations involving second order derivatives
for the metric tensor. Hence, continuity of the first fundamental form is expected and at most,
discontinuities in the second fundamental form, the coordinate independent statements appropriate
to consider 3-surfaces of discontinuity in the spacetime manifolfd of General Relativity.

In standard general relativity, the space-time is assumed to be a four-dimensional differentiable
manifoldM endowed with the Lorentzian metric ds2 = gµνdx

µdxν (µ, ν = 0, 1, 2, 3).At each point p
of space-timeM , the metric can be diagonalized as ds2p = ηµν(dX

µ)p(dX
ν)p with ηµν , (−1, 1, 1, 1),

by choosing the coordinate system {Xµ;µ = 0, 1, 2, 3} appropriately.

In superdistributional general relativity the space-time is assumed to be a four- dimensional different-
iable manifoldM\Σ, where dim (M) = 4,dim (Σ) 6 3 endowed with the Lorentzian supergeneralized
metric (

ds2ϵ
)
ϵ
= (gµν (ϵ) dx

µdxν)ϵ ;µ, ν = 0, 1, 2, 3). (2.27)

At each point p ∈M\Σ, the metric can be diagonalized as(
ds2p (ϵ)

)
ϵ
= (ηµν(dX

µ
ϵ )p(dX

ν
ϵ )p)ϵ with ηµν , (−1, 1, 1, 1), (2.28)
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by choosing the generalized coordinate system {(Xµ
ϵ )ϵ ;µ = 0, 1, 2, 3} appropriately.

The classical smooth curvature tensor is given by

Rρ
σµν , ∂µ

{
ρ

σ ν

}
− ∂ν

{
ρ

σ µ

}
+
{

ρ
λ µ

}{
λ

σ ν

}
−
{

ρ
λ ν

}{
λ

σ µ

}
(2.29)

with
{

ρ
σ ν

}
being the smooth Christoffel symbol.The supergeneralized nonsmooth curvature tensor

is given by (Rρ
σµν (ϵ))ϵ , ∂µ

({
ρ

σ ν

}
ϵ

)
ϵ
− ∂ν

({
ρ

σ µ

}
ϵ

)
ϵ
+
({

ρ
λ µ

}
ϵ

)
ϵ

({
λ

σ ν

}
ϵ

)
ϵ
−

−
({

ρ
λ ν

}
ϵ

)
ϵ

({
λ

σ µ

}
ϵ

)
ϵ

(2.30)

with
({

ρ
σ ν

}
ϵ

)
ϵ
being the supergeneralized Christoffel symbol.The fundamental classical action

integral I is

I =
∫
(
L̄G + LM )d4x, (2.31)

where LM is the Lagrangian density of a gravitational source and L̄G is the gravitational Lagrangian
density given by

L̄G =
1

2κ
G . (2.32)

Here κ is the Einstein gravitational constant κ = 8πG/c4 and G is defined by

G =
√
−ggµν

({
λ

µ ρ

}{
ρ

ν λ

}
−
{

λ
µ ν

}{
ρ

λ ρ

})
(2.33)

with g = det(gµν). There exists the relation

√
−gR = G+ ∂µDµ , (2.34)

with

Dµ = −
√
−g
(
gµν

{
λ

ν λ

}
− gνλ

{
µ

ν λ

})
. (2.35)

Thus the supergeneralized fundamental action integral (Iϵ)ϵ is

(Iϵ)ϵ =
1

c

∫
(
(
L̄G (ϵ)

)
ϵ
+ (LM (ϵ))ϵ)d

4x , (2.36)

where (LM (ϵ))ϵ is the supergeneralized Lagrangian density of a gravitational source and
(
L̄G (ϵ)

)
ϵ

is the supergeneralized gravitational Lagrangian density given by(
L̄G (ϵ)

)
ϵ
=

1

2κ
(Gϵ)ϵ . (2.37)

Hereκ is the Einstein gravitational constant κ = 8πG/c4 and (Gϵ)ϵ is defined by

(Gϵ)ϵ =
√

− (gϵ)ϵ (g
µν
ϵ )ϵ

(({
λ

µ ρ

}
ϵ

) ({
ρ

ν λ

}
ϵ

)
−
({

λ
µ ν

}
ϵ

)({
ρ

λ ρ

}
ϵ

))
(2.38)

with gϵ = det [(gµν (ϵ))ϵ]. There exists the relation√
− (gϵ)ϵ (Rϵ)ϵ = (Gϵ)ϵ + ∂µ (Dµ

ϵ )ϵ , (2.39)
with
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(Dµ
ϵ )ϵ = −

√
− (gϵ)ϵ

(
(gµνϵ )ϵ

({
λ

ν λ

}
ϵ

)
ϵ
−
(
gνλϵ
)
ϵ

({
µ

ν λ

}
ϵ

)
ϵ

)
. (2.40)

Also, we have defined the classical scalar curvature by

R = Rµ
µ (2.41)

with the smooth Ricci tensor

Rµν = Rλ
µλν . (2.42)

From the action I, the classical Einstein equation

Gµ
ν = Rµ

ν − 1

2
δµ

νR = κTµ
ν , (2.43)

follows, where Tµ
ν is defined by

Tµ
ν =

T̃µ
ν

√
−g

(2.44)

with

T̃ ν
µ , 2gµλ

δLM

δgλν
(2.45)

being the energy-momentum density of the classical gravity source. Thus we have defined the
supergeneralized scalar curvature by

(Rϵ)ϵ = (Rµ
µ (ϵ))ϵ (2.46)

with the supergeneralized Ricci tensor

(Rµν (ϵ))ϵ =
(
Rλ

µλν (ϵ)
)
ϵ
. (2.47)

From the action (Iϵ)ϵ , the generalized Einstein equation

(Gµ
ν (ϵ))ϵ = (Rµ

ν (ϵ))ϵ −
1

2
δµ

ν (Rϵ)ϵ = κ (Tµ
ν (ϵ))ϵ , (2.48)

follows, where (Tµ
ν (ϵ))ϵ is defined by

(Tµ
ν (ϵ))ϵ =

(
T̃µ

ν (ϵ)
)
ϵ√

− (gϵ)ϵ
(2.49)

with (
T̃ ν

µ (ϵ)
)
ϵ
, 2 (gµλ (ϵ))ϵ

δ (LM (ϵ))ϵ
δ (gλν (ϵ))ϵ

(2.50)

being the supergeneralized energy-momentum density of the supergeneralized gravity source.The
classical energy-momentum pseudo-tensor density t̃ ν

µ of the gravitational field is defined by

t̃ ν
µ = δµ

ν L̄G − ∂L̄G

∂gστ,ν
gστ,µ (2.51)

with gστ,ν = ∂gστ/∂x
ν .The supergeneralized energy-momentum pseudo-tensor density t̃ ν

µ of the
gravitational field is defined by(

t̃ ν
µ (ϵ)

)
ϵ
= δµ

ν
(
L̄G (ϵ)

)
ϵ
−
(
∂L̄G (ϵ)

∂gστ,ν (ϵ)

)
ϵ

(gστ,µ (ϵ))ϵ (2.52)

with (gστ,ν (ϵ))ϵ = (∂gστ (ϵ) /∂x
ν)ϵ.

7 Distributional Schwarzschild Geometry from Non-smooth
Regularization via Horizon

In this last section we leave the neighborhood of the singularity at the origin and turn to the
singularity at the horizon. The question we are aiming at is the following: using distributional
geometry (thus without leaving Schwarzschild coordinates), is it possible to show that the horizon
singularity of the Schwarzschild metric is not merely only a coordinate singularity. In order
to investigate this issue we calculate the distributional curvature at horizon (in Schwarzschild
coordinates). In the usual Schwarzschild coordinates (t, r > 0, θ, ϕ) the metric takes the form
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the{
ds2 = h(r)dt2 − h(r)−1dr2 + r2dΩ2,

h(r) = −1 +
2m

r
.

(3.1)

Following the above discussion we consider the singular metric coefficient h(r) as an element of
D′(R3) and embed it into (G(R3)) by replacement

r − 2m 7−→
√

(r − 2m)2 + ϵ2.

Note that, accordingly, we have fixed the differentiable structure of the manifold: the Cartesian
coordinates associated with the spherical Schwarzschild coordinates in (3.1) are extended through
the origin. We have above r > 2m (below (r 6 2m)) horizon

h(r) =

{
−r − 2m

r
if r > 2m

0 if r 6 2m

}
7−→

(
h+
ϵ (r)

)
ϵ
=

−

√
(r − 2m)2 + ϵ2

r


ϵ

,

where
(
h+
ϵ (r)

)
ϵ

∈ G̃(R3, B+ (2m,R)), B+ (2m,R) =
{
x ∈ R3|2m 6 ∥x∥ 6 R

}
.

h−1(r) =

{
− r

r − 2m
, r > 2m

∞, r = 2m

}
7−→

(
h+
ϵ

)−1
(r) =

h−(r) =

{
−r − 2m

r
if r 6 2m

0 if r ≥ 2m

}
7−→ h−

ϵ (r) =

=


√

(2m− r)2 + ϵ2

r


ϵ

∈ G̃(R3, B− (0, 2m)) ,

where B− (0, 2m) =
{
x ∈ R3|0 < ∥x∥ 6 2m

}{
− r

r − 2m
, r < 2m

∞, r = 2m

}
7−→

(
h−
ϵ

)−1
(r) =

=

 r√
(r − 2m)2 + ϵ2


ϵ

∈ G̃(R3, B− (0, 2m))

(3.2)

Inserting (3.2) into (3.1) we obtain a generalized object modeling the singular Schwarzschild metric
above (below) gorizon, i.e.,

(
ds+2

ϵ

)
ϵ
=
(
h+
ϵ (r)dt

2
)
ϵ
−
([
h+
ϵ (r)

]−1
dr2
)
ϵ
+ r2dΩ2 ,(

ds−2
ϵ

)
ϵ
=
(
h−
ϵ (r)dt

2
)
ϵ
−
([
h−
ϵ (r)

]−1
dr2
)
ϵ
+ r2dΩ2

(3.3)

The generalized Ricci tensor above horizon
[
R+
]β
α
may now be calculated componentwise using the

classical formulae
([

R+
ϵ

]0
0

)
ϵ
=
([

R+
ϵ

]1
1

)
ϵ
=

1

2

((
h+′′
ϵ

)
ϵ
+

2

r

(
h+′
ϵ

)
ϵ

)
([

R+
ϵ

]2
2

)
ϵ
=
([

R+
ϵ

]3
3

)
ϵ
=

(
h+′
ϵ

)
ϵ

r
+

1 +
(
h+
ϵ

)
ϵ

r2
.

(3.4)

From (3.2) we obtain
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h+′
ϵ (r) = − r − 2m

r
[
(r − 2m)2 + ϵ2

]1/2 +

[
(r − 2m)2 + ϵ2

]1/2
r2

,

r
(
h+′
ϵ

)
ϵ
+ 1 +

(
h+
ϵ

)
ϵ
=

r

{
− r − 2m

r
[
(r − 2m)2 + ϵ2

]1/2 +

[
(r − 2m)2 + ϵ2

]1/2
r2

}
+ 1−

√
(r − 2m)2 + ϵ2

r
=

− r − 2m[
(r − 2m)2 + ϵ2

]1/2 +

[
(r − 2m)2 + ϵ2

]1/2
r

+ 1−

√
(r − 2m)2 + ϵ2

r
=

− r − 2m[
(r − 2m)2 + ϵ2

]1/2 + 1.

h′′
ϵ (r) = −

(
r − 2m

r
[
(r − 2m)2 + ϵ2

]1/2
)′

+

([
(r − 2m)2 + ϵ2

]1/2
r2

)′

=

= − 1

r
[
(r − 2m)2 + ϵ2

]1/2 +
(r − 2m)2

r
[
(r − 2m)2 + ϵ2

]3/2 +
r − 2m

r2
[
(r − 2m)2 + ϵ2

]1/2+
+

r − 2m

r2
[
(r − 2m)2 + ϵ2

]1/2 −
2
[
(r − 2m)2 + ϵ2

]1/2
r3

.

r2
(
h+′′
ϵ

)
ϵ
+ 2r

(
h+′
ϵ

)
ϵ
=

r2

{
− 1

r
[
(r − 2m)2 + ϵ2

]1/2 +
(r − 2m)2

r
[
(r − 2m)2 + ϵ2

]3/2 +
r − 2m

r2
[
(r − 2m)2 + ϵ2

]1/2+
+

r − 2m

r2
[
(r − 2m)2 + ϵ2

]1/2 −
2
[
(r − 2m)2 + ϵ2

]1/2
r3

}
+

+2r

{
− r − 2m

r
[
(r − 2m)2 + ϵ2

]1/2 +

[
(r − 2m)2 + ϵ2

]1/2
r2

}
=

− r[
(r − 2m)2 + ϵ2

]1/2 +
r (r − 2m)2[

(r − 2m)2 + ϵ2
]3/2 +

r − 2m[
(r − 2m)2 + ϵ2

]1/2+
+

r − 2m[
(r − 2m)2 + ϵ2

]1/2 −
2
[
(r − 2m)2 + ϵ2

]1/2
r

+

− 2 (r − 2m)[
(r − 2m)2 + ϵ2

]1/2 +
2
[
(r − 2m)2 + ϵ2

]1/2
r

=

− r[
(r − 2m)2 + ϵ2

]1/2 +
r (r − 2m)2[

(r − 2m)2 + ϵ2
]3/2 .

(3.5)

Investigating the weak limit of the angular components of the Ricci tensor (using the abbreviation

Φ̃(r) =
π∫
0

sin θdθ
2π∫
0

dϕΦ(x)

and let Φ(x⃗) be the function Φ(x⃗) ∈ S+
2m(R3), where by S+

2m(R3) we denote the class of all functions
Φ(x) with compact support such that:

(i)supp(Φ(x⃗))) ⊂ {x⃗| ∥x⃗∥ ≥ 2m} (ii) Φ̃(r) ∈ C∞ (R) .

Then for any function Φ(x⃗) ∈ S2m(R3) we get:

19



Foukzon; BJMCS, 11(1), 1-28, 2015; Article no.BJMCS.16961

∫
K

([
R+

ϵ

]2
2

)
ϵ
Φ(x⃗) d3x =

∫
K

([
R+

ϵ

]3
3

)
ϵ
Φ(x⃗) d3x =

R∫
2m

(
r
(
h+′
ϵ

)
ϵ
+ 1 +

(
h+
ϵ

)
ϵ

)
Φ̃(r)dr =

R∫
2m

{
− r − 2m[

(r − 2m)2 + ϵ2
]1/2

}
Φ̃(r)dr +

R∫
2m

Φ̃(r)dr.

(3.6)

By replacement r − 2m = u, from (3.6) we obtain

∫
K

([
R+

ϵ

]2
2

)
ϵ
Φ(x) d3x =

∫
K

([
R+

ϵ

]3
3

)
ϵ
Φ(x) d3x =

R−2m∫
0

uΦ̃(u+ 2m)du

(u2 + ϵ2)1/2
+

R−2m∫
0

Φ̃(u+ 2m)du. (3.7)

By replacement u = ϵη, from (3.7) we obtain the expression
I+3 (ϵ) =

∫
K

([
R+

ϵ

]3
3

)
ϵ
Φ(x) d3x = I+2 (ϵ) =

∫
K

([
R+

ϵ

]2
2

)
ϵ
Φ(x⃗) d3x =

= ϵ×

 R−2m
ϵ∫
0

ηΦ̃(ϵη + 2m)dη

(η2 + 1)1/2
−

R−2m
ϵ∫
0

Φ̃(ϵη + 2m)dη

 .
(3.8)

From Eq.(3.8) we obtain

I+3 (ϵ) = I+2 (ϵ) = −ϵ Φ̃(2m)

0!

R−2m
ϵ∫
0

[
η

(η2 + 1)1/2
− 1

]
dη+

− ϵ
2

1!

R−2m
ϵ∫
0

[
η

(η2 + 1)1/2
− 1

]
Φ̃(1)(ξ)ηdη =

−ϵΦ̃(2m)

√(R− 2m

ϵ

)2

+ 1− 1− R− 2m

ϵ

+

− ϵ
2

1

R−2m
ϵ∫
0

[
η

(η2 + 1)1/2
− 1

]
Φ̃(1)(ξ)ηdη,

(3.9)

where we have expressed the function Φ̃(ϵη + 2m) as Φ̃(ϵη + 2m) =
∑n−1

l=0

Φ(l)(2m)

l!
(ϵη)l +

1

n!
(ϵη)nΦ(n)(ξ) ,

ξ , θϵη + 2m , 1 > θ > 0 , n = 1
(3.10)

with Φ̃(l)(ξ) , dlΦ̃/dξl. Equations (3.9)-(3.10) gives

lim
ϵ→0

I+3 (ϵ) = lim
ϵ→0

I+2 (ϵ) =

lim
ϵ→0

−ϵΦ̃(2m)

√(R− 2m

ϵ

)2

+ 1− 1− R− 2m

ϵ

+

+lim
ϵ→0

− ϵ
2

1

R−2m
ϵ∫
0

[
η

(η2 + 1)1/2
− 1

]
Φ̃(1)(ξ)ηdη

 = 0

(3.11)

Thus in S ′
2m

(
B+

R (2m)
)
⊂ S ′

2m

(
R3
)
⊂ D′(R3), where B+ (2m,R) =

{
x ∈ R3|2m 6 ∥x∥ 6 R

}
from

Eq.(3.11) we obtain
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 w − lim
ϵ→0

[
R+

ϵ

]3
3
= lim

ϵ→0
I+3 (ϵ) = 0,

w − lim
ϵ→0

[
R+

ϵ

]2
2
= lim

ϵ→0
I+2 (ϵ) = 0.

(3.12)

For
([

R+
ϵ

]1
1

)
ϵ
,
([

R+
ϵ

]0
0

)
ϵ
we get:



2
∫
K

([
R+

ϵ

]1
1

)
ϵ
Φ(x) d3x = 2

∫
K

([
R+

ϵ

]0
0

)
ϵ
Φ(x) d3x =

R∫
2m

(
r2
(
h+′′
ϵ

)
ϵ
+ 2r

(
h+′
ϵ

)
ϵ

)
Φ̃(r)dr =

=
R∫

2m

{
− r[

(r − 2m)2 + ϵ2
]1/2 +

r (r − 2m)2[
(r − 2m)2 + ϵ2

]3/2
}
Φ̃(r)dr.

(3.13)

By replacement r − 2m = u, from (3.13) we obtain

I+1 (ϵ) = 2
∫
K

([
R+

ϵ

]1
1

)
ϵ
Φ(x) d3x = I+2 (ϵ) = 2

∫
K

([
R+

ϵ

]0
0

)
ϵ
Φ(x) d3x

=
R∫

2m

(
r2
(
h+′′
ϵ

)
ϵ
+ 2r

(
h+′
ϵ

)
ϵ

)
Φ̃(r)dr =

=
R−2m∫

0

{
− u+ 2m

(u2 + ϵ2)1/2
+
u2 (u+ 2m)

(u2 + ϵ2)3/2

}
Φ̃(u+ 2m)du.

(3.14)

By replacement u = ϵη, from (3.14) we obtain

2
∫
K

([
R+

ϵ

]1
1

)
ϵ
Φ(x) d3x = 2

∫
K

([
R+

ϵ

]0
0

)
ϵ
Φ(x) d3x =

=
R∫

2m

(
r2
(
h+′′
ϵ

)
ϵ
+ 2r

(
h+′
ϵ

)
ϵ

)
Φ̃(r)dr =

= ϵ

R−2m
ϵ∫
0

{
− ϵη + 2m

(ϵ2η2 + ϵ2)1/2
+
ϵ2η2 (ϵη + 2m)

(ϵ2η2 + ϵ2)3/2

}
Φ̃(ϵη + 2m)dη−

−
R−2m

ϵ∫
0

ϵ2ηΦ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)1/2
− 2m

R−2m
ϵ∫
0

ϵΦ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)1/2
+

R−2m
ϵ∫
0

ϵ4η3Φ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)3/2
+ 2m

R−2m
ϵ∫
0

ϵ3η2Φ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)3/2
−

ϵ

− R−2m
ϵ∫
0

ηΦ̃(ϵη + 2m)dη

(η2 + 1)1/2
+

R−2m
ϵ∫
0

η3Φ̃(ϵη + 2m)dη

(η2 + 1)3/2

+

2m

− R−2m
ϵ∫
0

Φ̃(ϵη + 2m)dη

(η2 + 1)1/2
+

R−2m
ϵ∫
0

η2Φ̃(ϵη + 2m)dη

(η2 + 1)3/2

 .

(3.15)

From Eq.(3.15) we obtain
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I+0 (ϵ) = I+1 (ϵ) = 2m
Φ̃(2m)

0!

R−2m
ϵ∫
0

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
dη+

+
ϵ

1!

R−2m
ϵ∫
0

Φ̃(1)(ξ)

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
ηdη+

+
ϵΦ̃(2m)

0!

R−2m
ϵ∫
0

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
dη+

+
ϵ2

1!

R−2m
ϵ∫
0

Φ̃(1)(ξ)

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
ηdη,

(3.16)

where we have expressed the function Φ̃(ϵη + 2m) as

Φ̃(ϵη + 2m) =
∑n−1

l=0

Φαβ(l)(2m)

l!
(ϵη)l +

1

n!
(ϵη)nΦαβ(n)(ξ) ,

ξ , θϵη + 2m , 1 > θ > 0 , n = 1
(3.17)

with Φ̃(l)(ξ) , dlΦ̃/dξl.Equation (3.17) gives

w -lim
ϵ→0

I+0 (ϵ) = w -lim
ϵ→0

I+1 (ϵ) =

2mΦ̃(2m)lim
ϵ→0


R−2m

ϵ∫
0

[
− 1

(η2 + 1)1/2
+

η2

(η2 + 1)3/2

]
dη

 =

2mΦ̃(2m) lim
s→∞

[
s∫
0

η2dη

(η2 + 1)3/2
−

s∫
0

dη

(η2 + 1)1/2

]
=

= −2mΦ̃(2m).

(3.18)

where use is made of the relation

lim
s→∞

[
s∫
0

η2dη

(η2 + 1)3/2
−

s∫
0

dη

(u2 + 1)1/2

]
= −1 (3.19)

Thus in S ′
2m

(
B+ (2m,R)

)
⊂ S ′

2m(R3) we obtain

w -lim
ϵ→0

[
R+

ϵ

]1
1
= w -lim

ϵ→0

[
R+

ϵ

]0
0
= −mΦ̃(2m). (3.20)

The supergeneralized Ricci tensor below horizon
[
R−

ϵ

]β
α
=
[
R−

ϵ

]β
α
may now be calculated componentwise

using the classical formulae
([

R−
ϵ

]0
0

)
ϵ
=
([

R−
ϵ

]1
1

)
ϵ
=

1

2

((
h−′′
ϵ

)
ϵ
+

2

r

(
h−′
ϵ

)
ϵ

)
,([

R−
ϵ

]2
2

)
ϵ
=
([

R−
ϵ

]3
3

)
ϵ
=

(
h−′
ϵ

)
ϵ

r
+

1 +
(
h−
ϵ

)
ϵ

r2
.

(3.21)

From (3.2) we obtain
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h(r) = −r − 2m

r
7−→ h−

ϵ (r) =


√

(2m− r)2 + ϵ2

r

 = −h+
ϵ (r), r < 2m.

h−′
ϵ (r) = −h+′

ϵ (r) =
r − 2m

r
[
(r − 2m)2 + ϵ2

]1/2 −
[
(r − 2m)2 + ϵ2

]1/2
r2

,

r
(
h−′
ϵ

)
ϵ
+ 1 +

(
h−
ϵ

)
ϵ
= −r

(
h+′
ϵ

)
ϵ
+ 1−

(
h+
ϵ

)
ϵ
=

r − 2m[
(r − 2m)2 + ϵ2

]1/2 + 1.

h−′′
ϵ (r) = −h+′′

ϵ (r) =

− r − 2m

r2
[
(r − 2m)2 + ϵ2

]1/2 +
2
[
(r − 2m)2 + ϵ2

]1/2
r3

.

r2
(
h−′′
ϵ

)
ϵ
+ 2r

(
h−′
ϵ

)
ϵ
= −r2

(
h+′′
ϵ

)
ϵ
− 2r

(
h+′
ϵ

)
ϵ
=

r[
(r − 2m)2 + ϵ2

]1/2 − r (r − 2m)2[
(r − 2m)2 + ϵ2

]3/2 .

(3.22)

Investigating the weak limit of the angular components of the Ricci tensor (using the abbreviation

Φ̃(r) =
π∫
0

sin θdθ
2π∫
0

dϕΦ(x⃗) where Φ(x⃗)C∞ (R3
)
,Φ(x) is a function with compact support K of the

class such that K ⊆ B− (0, 2m) =
{
x ∈ R3|0 6 ∥x∥ 6 2m

}
we get:∫

K

(
[R=

ϵ ]
2
2

)
ϵ
Φ(x⃗) d3x =

∫
K

(
[R=

ϵ ]
3
3

)
ϵ
Φ(x⃗) d3x =

2m∫
0

(
r
(
h−′
ϵ

)
ϵ
+ 1 +

(
h−
ϵ

)
ϵ

)
Φ̃(r)dr =

2m∫
0

{
r − 2m[

(r − 2m)2 + ϵ2
]1/2

}
Φ̃(r)dr +

2m∫
0

Φ̃(r)dr.

(3.23)

By replacement r − 2m = u, from Eq.(3.23) we obtain
∫
K

([
R−

ϵ

]2
2

)
ϵ
Φ(x) d3x =

∫
K

(
[R=

ϵ ]
3
3

)
ϵ
Φ(x) d3x =

0∫
−2m

uΦ̃(u+ 2m)du

(u2 + ϵ2)1/2
+

0∫
−2m

Φ̃(u+ 2m)du.
(3.24)

By replacement u = ϵη, from (3.23) we obtain

I−3 (ϵ) =
∫
K

([
R−

ϵ

]3
3

)
ϵ
Φ(x) d3x = I−2 (ϵ) =

∫
K

([
R−

ϵ

]2
2

)
ϵ
Φ(x⃗) d3x=

ϵ×

 0∫
− 2m

ϵ

ηΦ̃(ϵη + 2m)dη

(η2 + 1)1/2
+

0∫
− 2m

ϵ

Φ̃(ϵη + 2m)dη

 ,
(3.25)

which is calculated to give
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I−3 (ϵ) = I−2 (ϵ) = ϵ
Φ̃(2m)

0!

0∫
− 2m

ϵ

[
η

(η2 + 1)1/2
+ 1

]
dη+

+
ϵ2

1!

0∫
− 2m

ϵ

[
η

(η2 + 1)1/2
+ 1

]
Φ̃(1)(ξ)ηdη =

ϵΦ̃(2m)

1−√(2m

ϵ

)2

+ 1 +
2m

ϵ

+

+
ϵ2

1

0∫
− 2m

ϵ

[
η

(η2 + 1)1/2
+ 1

]
Φ̃(1)(ξ)ηdη,

(3.26)

where we have expressed the function Φ̃(ϵη + 2m) as Φ̃(ϵη + 2m) =
∑n−1

l=0

Φ(l)(2m)

l!
(ϵη)l +

1

n!
(ϵη)nΦ(n)(ξ) ,

ξ , θϵη + 2m , 1 > θ > 0 , n = 1
(3.27)

with Φ̃(l) , dlΦ̃/drl. Equation (3.27) gives

lim
ϵ→0

I−3 (ϵ) = lim
ϵ→0

I−2 (ϵ) =

lim
ϵ→0

ϵΦ̃(2m)

1−√(2m

ϵ

)2

+ 1 +
2m

ϵ

+

+lim
ϵ→0

 ϵ2

2

0∫
− 2m

ϵ

[
η

(η2 + 1)1/2
+ 1

]
Φ̃(1)(ξ)ηdη

 = 0.

(3.28)

Thus in S ′
2m

(
B−

R (2m)
)
⊂ S ′

2m(R3), where B− (0, 2m) =
{
x ∈ R3|0 6 ∥x∥ 6 2m

}
from Eq.(3.28)

we obtain w − lim
ϵ→0

[
R−

ϵ

]3
3
= lim

ϵ→0
I−3 (ϵ) = 0.

w − lim
ϵ→0

[
R−

ϵ

]2
2
= lim

ϵ→0
I−2 (ϵ) = 0.

(3.29)

For
([

R−
ϵ

]1
1

)
ϵ
,
([

R−
ϵ

]0
0

)
ϵ
we get:

2
∫
K

([
R−

ϵ

]1
1

)
ϵ
Φ(x) d3x = 2

∫
K

([
R−

ϵ

]0
0

)
ϵ
Φ(x) d3x =

2m∫
0

(
r2
(
h−′′
ϵ

)
ϵ
+ 2r

(
h−′
ϵ

)
ϵ

)
Φ̃(r)dr =

=
2m∫
0

{
r[

(r − 2m)2 + ϵ2
]1/2 − r (r − 2m)2[

(r − 2m)2 + ϵ2
]3/2

}
Φ̃(r)dr.

(3.30)

By replacement r − 2m = u, from (3.30) we obtain

I+1 (ϵ) = 2
([

R−
ϵ

]1
1

)
ϵ
Φ(x) d3x = I+2 (ϵ) = 2

([
R−

ϵ

]0
0

)
ϵ
Φ(x) d3x

=
2m∫
0

(
r2
(
h−′′
ϵ

)
ϵ
+ 2r

(
h−′
ϵ

)
ϵ

)
Φ̃(r)dr =

=
0∫

−2m

{
u+ 2m

(u2 + ϵ2)1/2
− u2 (u+ 2m)

(u2 + ϵ2)3/2

}
Φ̃(u+ 2m)du.

(3.31)
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By replacement u = ϵη, from (3.31) we obtain

2
∫
K

([
R−

ϵ

]1
1

)
ϵ
Φ(x) d3x = 2

∫
K

([
R−

ϵ

]0
0

)
ϵ
Φ(x) d3x =

0∫
− 2m

ϵ

(
r2
(
h−′′
ϵ

)
ϵ
+ 2r

(
h−′
ϵ

)
ϵ

)
Φ̃(r)dr =

= ϵ
0∫

− 2m
ϵ

{
ϵη + 2m

(ϵ2η2 + ϵ2)1/2
− ϵ2η2 (ϵη + 2m)

(ϵ2η2 + ϵ2)3/2

}
Φ̃(ϵη + 2m)dη−

0∫
− 2m

ϵ

ϵ2ηΦ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)1/2
+ 2m

0∫
− 2m

ϵ

ϵΦ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)1/2
−

−
0∫

− 2m
ϵ

ϵ4η3Φ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)3/2
− 2m

0∫
− 2m

ϵ

ϵ3η2Φ̃(ϵη + 2m)dη

(ϵ2η2 + ϵ2)3/2
=

ϵ
0∫

− 2m
ϵ

ηΦ̃(ϵη + 2m)dη

(η2 + 1)1/2
−

0∫
− 2m

ϵ

η3Φ̃(ϵη + 2m)dη

(η2 + 1)3/2
+

+2m

 0∫
− 2m

ϵ

Φ̃(ϵη + 2m)dη

(η2 + 1)1/2
−

0∫
− 2m

ϵ

η2Φ̃(ϵη + 2m)dη

(η2 + 1)3/2

 .

(3.32)

which is calculated to give

I−0 (ϵ) = I−1 (ϵ) = 2m
Φ̃(2m)

0!
ϵl

0∫
− 2m

ϵ

[
1

(η2 + 1)1/2
− η2

(η2 + 1)3/2

]
dη+

+
ϵ

1!

2m
ϵ∫
0

Φ̃(1)(ξ)

[
1

(η2 + 1)1/2
− η2

(η2 + 1)3/2

]
ηdη +O

(
ϵ2
)
.

(3.33)

where we have expressed the function Φ̃(ϵη + 2m) as

Φ̃(ϵη + 2m) =
∑n−1

l=0

Φαβ(l)(2m)

l!
(ϵη)l +

1

n!
(ϵη)nΦαβ(n)(ξ) ,

ξ , θϵη + 2m , 1 > θ > 0 , n = 1
(3.34)

with Φ̃(l)(ξ) , dlΦ̃/dξl.Equation (3.34) gives

lim
ϵ→0

I−0 (ϵ) = lim
ϵ→0

I−1 (ϵ) =

2mlim
ϵ→0

 Φ̃(2m)

0!

0∫
− 2m

ϵ

[
1

(η2 + 1)1/2
− η2

(η2 + 1)3/2

]
dη

 =

2mΦ̃(2m)lim
s→0

[∫ 0

−s

dη

(η2 + 1)1/2
−
∫ 0

−s

η2dη

(η2 + 1)3/2

]
=

= 2mΦ̃(2m).

(3.35)

where use is made of the relation

lim
s→∞

[
0∫

−s

dη

(u2 + 1)1/2
−

0∫
−s

η2dη

(η2 + 1)3/2

]
= 1. (3.36)

Thus in S ′
2m

(
B− (0, 2m)) ⊂ S ′

2m(R3) we obtain

w -lim
ϵ→0

[
R−

ϵ

]1
1
= w -lim

ϵ→0

[
R−

ϵ

]0
0
= mΦ̃(2m). (3.37)
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Using Egs. (3.12),(3.20),(3.29),(3.37) we obtain∫ [(
T+r

r +T+θ
θ +T+ϕ

ϕ +T+t
t

)
+
(
T−r

r +T−θ
θ +T−ϕ

ϕ +T−t
t

)]√
−gd3x = 0 (3.38)

Thus the Tolman formula [1],[2] for the total energy of a static and asymptotically flat spacetime
with g the determinant of the four dimensional metric and d3x the coordinate volume element, gives

ET =
∫ (

Tr
r +Tθ

θ +Tϕ
ϕ +Tt

t

)√
−gd3x = m, (3.39)

8 Conclusions and Remarks

We have shown that a succesfull approach for dealing with curvature tensor valued distribution is
to first imposes admissiible the nondegeneracy conditions on the metric tensor, and then take its
derivatives in the sense of classical distributions in space S ′

2m(R3).

The distributional meaning is then equivalent to the junction condition formalism. Afterwards,
through appropiate limiting procedures, it is then possible to obtain well behaved distributional
tensors with support on submanifolds of d ≤ 3, as we have shown for the energy-momentum
tensors associated with the Schwarzschild spacetimes. The above procedure provides us with what is
expected on physical grounds. However, it should be mentioned that the use of new supergeneralized
functions (supergeneralized Colombeau algebras G̃(R3,Σ)). in order to obtain superdistributional
curvatures, may renders a more rigorous setting for discussing situations like the ones considered
in this paper.
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