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ABSTRACT 
 

The integrity of the assembly wirebond process’ 2nd bond poses a big challenge for semiconductor 
manufacturing of quad-flat no-leads (QFN) devices, particularly on multiple wires on a lead. These 
devices are vulnerable to induce or obtain broken wire at heel defect. This type of defect is an 
abnormality in the formation of the stitch, mostly a crack or fracture seen on the facade of the 
stitch. Normally, it happens when there is too much vibration or transfer of ultrasonic generator 
(USG) power combined with high bonding force on 2nd bond. In the case of leads with common 
wires, broken wire at heel could also happen through excessive USG application resulting to 
transfer of resonance on adjacent wires. This paper presents a better understanding and analysis 
done to provide an adequate and appropriate solution to broken wire at heel issue. 
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1.  INTRODUCTION 
 
The quality of wirebond depends on the 
interconnection between the wire and bond pad 
and between the wire and the carrier, which in 
this case a leadframe. Checking for the integrity 
of 2nd bond is just as important as 1st bond. 
Worthy to note that with continuing technology 
development and breakthroughs, challenges in 
wirebonding process are inevitable [1-5]. The 
paper focuses on the resolution of broken wire at 
heel occurrence encountered on both 1 mil 
Copper (Cu) wire and 2 mil Cu wire (equivalent 
to 25.4 µm and 50.8 µm, respectively) connected 
on the same lead finger. Package configuration 
shows several lead fingers with a triple wire on 
lead which includes a combination of a single 1 
mil wire and double 2 mil wire connected on a 
common lead. The main challenge when dealing 

with such configurations is how to lessen the 
effect of ultrasonic generator (USG) transfer and 
vibration during bonding. Fig. 1 shows the 
reference of lead configuration. 
 
The defect manifestation, which is the broken 
wire at heel, is an intermittent occurrence seen 
after wirebond process during the development 
stage. It is detected through visual inspection 
using high magnification scope device. Also, the 
defect manifestation is evident on both 1 mil wire 
and 2 mil wires as seen in Fig. 2. No 
commonality observed on failing pins where 
defect is occurring. 
 
Thorough analysis was performed to identify the 
potential root-cause, based on the signature of 
defect. Fig. 3 illustrates the fault-tree diagram 
done in the analysis. 

 

 
  

Fig. 1. Multiple wires on lead 
 

 
  

Fig. 2. Defect manifestation 
 

 
  

Fig. 3. Fault tree diagram 
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2. LITERATURE REVIEW 
 
After performing fault isolation and analysis, it is 
important to understand the theories and 
principles behind the process to provide an 
effective and robust solution. First thing to 
understand is the basic wirebonding principle 
and parameter application. In theory, there are 
three basic parameters needed to have an 
intermetallic connection between two metals. 
Bond power is the ultra-sonic vibration generated 
by the transducer to promote adhesion measured 
in milliamperes (mA).  Bond force is the Z-axis 
movement of the transducer used to determine 
the amount of compression measured in grams 
(g). Bond time is the period in which bond force 
and bond power is applied usually measured in 
milliseconds (ms). Fig. 4 shows the application of 
bond parameters. 
 
Another substantial information we need to 
consider ensuring good intermetallic is the type 
of bonding used. There are three (3) types of 
bonding types commonly used in the industry. 
Ultrasonic bonding is force plus ultrasonic 
vibration and is most used in wedge-to-wedge 
bonding for Aluminum (Al) wires. Fig. 5 illustrates 
the bonding types. Thermosonic bonding is force 

plus ultrasonic vibration and Heat. It is the most 
common type of bonding used widely in 
semiconductor industry. Lastly, the 
thermocompression bonding is force plus heat. 
This type of bonding is not commonly used but 
has several advantages especially for ball 
bonding. 
 
Excessive USG parameter application can 
damage the adjacent bonded wire. The idea is to 
lessen the USG as much as possible to eliminate 
the resonance during bonding which induces 
damage on the previously bonded wire 
connected on common lead.  
 
Since package configuration consists of 2 wires, 
the initial sequence was to bond 1 mil wire first 
then followed by the 2 mil wire due to the 
complexity of wire layout. Since the 1 mil wire is 
already bonded, the resulting USG from bonding 
the 2 mil wire induces damage and crack on 1 
mil wire, which is weaker by property compared 
to 2 mil wire that requires a higher setting of USG 
parameter to bond. Same scenario was observed 
for 2 mil wire. The previously bonded wire is 
unable to take the stress induced by the USG 
vibration during bonding causing it to break. 
  

  

 
 

Fig. 4. Bonding parameter application sequence 
 

 
 

Fig. 5. Different types of bonding 
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3. METHODOLOGY 
 
In this study, the target solution is to eliminate 
the resonance or vibration induced during 
bonding to avoid the occurrence of broken wire 
at heel. Zero-USG approach was evaluated 
utilizing bond time and bond force parameters 
only, applying the concept of thermo              
compression bonding. Two (2) items were 
considered to resolve the broken wire at heel 
issue. 
 

3.1 Broken Wire at Heel – 1 mil Wire 
 
To resolve the broken wire at heel issue at 1 mil 
wire, a change in bonding sequence is required. 
From bonding the 1 mil wire first, the new 
sequence will bond the 2 mil wire first, so that it 
will not be disturbed during bonding of 2 mil wire. 
Necessary adjustments and optimizations were 

also done on looping so that new sequence can 
be applied. 
 

3.2 Parameter DOE – 2 mil Wire 
 

During parameter screening, the value of USG 
parameter was set to zero (0). Two factors were 
considered and optimized during screening. Fig. 
6 shows the statistical analysis. 
 

Based on the screening, the team were able to 
derive workable and optimum parameters using 
bond time and bond force only. Following the 
screening process with   Low-Mid-High (L-M-H) 
validation and checking the responses up to 20% 
from LL settings and 20% from HH to further 
verify the robustness of the defined parameters. 
Several units were also bonded to check for the 
performance in terms of non-stick on lead 
(NSOL) and short tail occurrence. Table 1 shows 
the validation table. 

 

 
 

Fig. 6.  Statistical analysis 
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Table 1. L-M-H parameter validation table 
 

Leg Bond Time (ms) Bond Force (g) 

1 L-20% L-20% 
2 L-10% L-10% 
3 L L 
4 N N 
5 H H 
6 L+10% L+10% 
7 L+20% L+20% 

      

3.3 Bond Temperature Increase 
 

Since temperature is one of the key ingredients 
to have an effective thermocompression bonding, 
it was also considered during the 
experimentation. To improve the adhesion 

strength and quality of the 2nd bond, it is 
essential to increase the bond temperature as 
well. Bond temperature was increased by 50 °C 
to provide a better intermetallic connection and a 
more stable process. 

 

4. RESULTS AND DISCUSSION 
 
Based on the parameter screening, stitch pull 
and wire pull test results were able to meet the 
minimum requirements. No NSOL and short tail 
assist or error encountered during screening. 
After arriving at the final parameters, L-M-H 
validation were performed including responses 
20% from LL up to 20% from HH, and all data 
passed the wire pull and stitch pull response. 
Table 2 shows the data and results. 

 
Table 2. Wirebonding process validation results 

 

Response Requirement -20% -10% LL NN HH +10% +20% 

Wire Pull 
Test 

Min > 17 g NSOL 54.05 54.35 54.31 51.93 55.67 53.02 
Max 82.05 74.56 75.54 73.91 76.06 77.67 
Ave 66.09 62.76 64.19 63.91 65.35 65.04 
Stdev  6.52 5.11 4.79 5.19 5.06 5.56 
CpK > 1.67 2.51 2.99 3.29 3.02 3.18 2.88 
Break 
Mode 

Lifted  
Ball % 

0 0 0 0 0 0 

Break at 
Neck % 

0 0 0 0 0 0 

Break at 
Span% 

95 87 97 90 82 85 

Break at 
Heel% 

5 13 3 10 18 15 

Lifted 
Stitch% 

0 0 0 0 0 0 

Sample Size Readings 40 
Stitch Pull 
Test 

Min > 17 g NSOL 37.49 36.75 34.19 31.44 30.42 29.5 
Max 51.62 51.7 47.47 44.04 47.68 51.53 
Ave 44.56 43.62 40.33 39.04 38.95 39.9 
Stdev  3.21 4.29 3.33 3.33 3.15 4.75 
CpK > 1.67 2.87 2.07 2.34 2.21 2.33 1.61 
Break 
Mode 

Lifted Ball 
% 

0 0 0 0 0 0 

Break at 
Neck % 

0 0 0 0 0 0 

Break at 
Span% 

3 0 0 3 0 0 

Break at 
Heel% 

97 100 100 97 100 100 

Lifted 
Stitch% 

0 0 0 0 0 0 

Sample Size Readings 40 
Remarks Failed Passed Passed Passed Passed Passed Failed 

CpK 
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Table 3. Stitch formation and break mode 
 

 -10%LL LL NN HH +10%HH 

Stitch 
Formation 

     

Stitch Pull 
Break 
Mode 

     
 

Several units were also bonded to check for 
NSOL and short tail occurrence and none was 
encountered. Observed good stitch formation on 
bonded units as shown in Table 3. 

 

Qualification lots were released after definition of 
final parameter and all qualification lots passed 
reliability tests requirements.  Since then, the 
device is running in mass production using the 
defined parameter settings validated on several 
machines with good wirebond performance and 
no customer complaint. 
 

5. CONCLUSION AND RECOMMENDA- 
TIONS 

 

The study was able to resolve the broken wire at 
heel issue through the design of experiments 
(DOE) using thermocompression bonding 
concept. Optimizing the bond temperature 
together with the parameters and performing 
DOE resulted to a robust process satisfying the 
demand in production. Moreover, package 
requirements were met in terms of reliability 
response, resulting to overall customer 
satisfaction. 
 

Thermocompression ball bonding is an effective 
way of resolving broken wire at heel issue 
especially when dealing with thick wires such as 
the 2 mil Cu wire. Proper parameter setting 
coupled with optimum bond temperature can 
help to eliminate broken wire at heel occurrence. 
Though it is important to increase the bond 
temperature, it is important as well to know the 
device requirement especially die specification 
and temperature tolerance so as not to induce 
damage or potential malfunction on the device.  
Works and learnings discussed in [5-11] are 
helpful to further improve the QFN package 
assembly manufacturing focused on the 
wirebonding process. 
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