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ABSTRACT 
 

The Chenopodium quinoa is poised to be a promising species for future food security and 
combating climate change because of its nutritional content and its halophytic peculiarity. This 
study focuses on the differential responses of salt-tolerant (Chadmo) and salt-sensitive (Kankolla) 
under control (CK) and 400 mM sodium chloride (NaCl) in five temporal dimensions (1/2, 1, 3, 6, 
and 24 h post-treatment time points). Morphological and physiological features assessed include 
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root/shoot dry weight ratio, relative water content (RWC), membrane stability index (MSI), total 
chlorophyll (CHL), and adaxial and abaxial epidermal bladder cells (EBC). The results indicated a 
reduction in dry biomass for both genotypes after treatment with Chadmo and Kankolla at 46.96% 
and 73.07%, respectively. Similarly, a significant reduction in the RWC with Chadmo at 16.69 % 
and Kankolla at 13.19% was detected. Under 400 mM NaCl condition and CK, Chadmo's average 
net photosynthetic rate reduced from 15.73±2.97 to 13.02±2.75 µmol CO2 m

-1
s

-1
, indicating 17.24% 

reduction while in the Kankolla, the reduction from was 13.43±4.12 to 8.34±3.16 µmol CO2 m
-1

s
-1

 
representing 37.92% decline. In addition, this study showed a significant difference (p<0.05) being 
identified on ANOVA and Tukey analyses in root/shoot dry weight ratio, RWC, membrane stability 
index (MSI), total chlorophyll (CHL), and adaxial and abaxial epidermal bladder cells (EBC). Those 
measurement criteria increased by 14.45% and 3.45% in Chadmo and Kankolla, respectively, from 
the CK to 400 mM NaCl. Using these morpho-physiological responses to salinity, Chadmo proved 
to be the better-performing genotype when exposed to 400 mM NaCl and hence identified as the 
salt-tolerant genotype. 

 

 
Keywords: Climate change; halophytes; nutrients; quinoa; resilience; salinity; salt-tolerant. 
 

1. INTRODUCTION 
 
The global population is marching towards an 
unprecedented proportion amidst the challenges 
of climate change, seemingly highly engineered 
by anthropogenic influences. Concomitantly, 
demands for food will have to be increased by 
70% to provide for the ~ 9.8 and 11.2 billion 
people by the years 2050 and 2100, respectively 
[1-3]. Salinity affects about 6% and 20% of the 
total and irrigated lands, respectively [1,4]. 
Climate change models and other anthropogenic 
factors poignantly navigate at increasing 
aggregate global soil salinization by 50% in 2050 
[1,5]. While some plants have adapted to a 
different mechanism to escape the impact of 
excess salt exposure, others remained 
susceptible and unable to continue their life 
cycle, as in the case of the glycophytes. Plants 
that survived high salinity devised the 
mechanisms of avoidance, exclusion, and 
compartmentalization of the ions that increase 
the toxicity of cells [3,6]. Halophytic plants can 
grow and produce viable seeds at ≥200 mM 
NaCl concentrations, lethal to about 99% of other 
plant species [7,8]. High salt concentrations in 
the soil or other growth media will cause 
hyperosmotic stress in roots and other structures 
[9,10]. It efficiently decreases the plant's ability to 
absorb water because of osmotic stress. Once 
absorbed, the water's ionic constituents Na

+
 and 

Cl
-
 adversely affect the metabolic activities and 

reduce photosynthetic efficiency [11-13]. 
 
Quinoa has salt bladders that have 
approximately 1000-fold more volume space 
than regular epidermal cells. Hence, it can 
potentially load and sequester more ions and 
osmolytes than adjacent cells and plants without 

salt glands [6,14,15]. Moreover, its ability to 
survive at salinity levels even higher than that of 
seawater makes it incomparable and more 
suitable than some other halophytes under such 
abiotic stress [16-19]. Quinoa can exclude salts 
and physiologically adjust them to minimize their 
effects in high concentrations [7]. Jacobsen et al 
[20] observed that the quinoa yield was the 
highest at 100 to 200 mM NaCl and, after that, 
decreased. Further support to this was provided 
by Hariadi et al. [16], who recorded significant 
inhibitory effects on seed germination at 
concentrations higher than 400 mM NaCl, while 
optimal plant growth was obtained between 100 
and 200 mM NaCl with ‘Titicaca’ over a 70-day 
growth period. Gómez-Pando et al. [21] screened 
182 quinoa accessions for salt tolerance and 
found that 25% exhibited greater than a 60% 
germination at 250 mM NaCl for seven days. In a 
pot experiment, these 15 accessions were further 
tested at 300 and 340 mM NaCl. The results 
indicated that 13 accessions showed a reduction 
in growth, while two grew 1.79 to 11% higher 
than the control (CK). Morales et al. [22] also 
observed that at 300 mM NaCl, quinoa cultivars 
‘Chipaya’ and ‘Ollague’ showed a decrease in 
fresh weight, but at 450 mM NaCl, they sustained 
50 and 40% higher transpiration rates than the 
CK, respectively. 
 
Quinoa is becoming an important food crop 
because of its high nutritional composition and 
potential to grow in environmental stresses that 
would be detrimental to many other plants 
[13,23,24]. For these attributes, 2013 was 
recognized as the 'International Year of the 
Quinoa' by the Food and Agriculture 
Organisation (FAO) of the United Nations (UN) 
[23,25]. The objectives of this study were to 
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determine the morphological and physiological 
responses of two contrasting quinoa genotypes 
(salt-tolerant Chadmo and salt-sensitive 
Kankolla) used for salinity under the hydroponic 
system. 
 

2. MATERIALS AND METHODS 
 

2.1 Site of Experiment 
 
The research was done the controlled 
greenhouse environment at the Fujian 
Agriculture and Forestry University, Fuzhou, 
China 
 

2.2 Biological Materials 
 
Two contrasting genotypes (salt-tolerant and 
salt-sensitive) were used in this study. The 
United States Department of Agriculture (USDA) 
in Washington, USA, kindly provided the seeds 
[26].  

 

2.3 Experimental Setup 
 
Fresh seeds were germinated in PINDSTRUP 
substrate (dark sphagnum peat mixed with 30% 
natural, fibrous material, 50 g of micronutrients). 
At two true leaf stages (~10 days), the seedlings 
were transferred into the hydroponic system 
containing water. After one day, the Hoagland 
solution was added. Then five days later, salt 
was added incrementally (50 mM NaCl day

-1
) to 

avoid osmotic shock and damage to the root until 
the 400 mM NaCl concentration threshold of 
treatment was achieved [16,27,28]. As 
necessary, a consistent level of solution (7 L) 
was maintained by adding nutrient solution with 
the respective NaCl concentrations. The plants 
were arranged in a complete randomized block 
design in the hydroponic box, with six biological 
replicates per treatment, and grown in a 
greenhouse at 24±2

o
C with 65-70% relative 

humidity and at a 16 h light (400 u mol m
-2 

s
-1

)/8 
h dark cycle.  
 

2.4 Parameter Determined 
 
Except for the physiological parameters, stomatal 
index, and epidermal bladder cell measurements, 
which were done on the 45

th
 day. All other 

samples were harvested immediately at the end 
of the treatment (400 mM NaCl, 24

th
 day) at the 

different time points (0 (CK- untreated plants that 
were grown parallel to the treated plants),1/2, 1, 
3, 6 and 24 h post-treatment time points).  

2.4.1 Morphological and growth analysis 
 
 (a) The Epidermal Bladder Cells (EBC) and 

Stomatal Index (SI) 
 
Leaves (six leaves per plant: three young - third 
to fifth from the tip and three mature - the lowest 
three non-senescing leaves) were taken from 
three plants per treatment and CK of both 
genotypes. The leaves were sampled before 
flowering (⁓45 days), allowing for more plant 
maturity to assess the differential distribution with 
time. For EBCs, they were observed and 
photographed under an optical microscope 
(x100), after which the epidermal bladder cell 
distribution was evaluated [17,21]. For the 
stomatal index, a thin layer of transparent nail 
polish was evenly applied to both the adaxial and 
abaxial epidermal surfaces. After drying (~20 
min), the nail polish blotting film, with the 
respective epidermal imprints (~ 1 cm

2
), was 

carefully removed and placed on microscopic 
glass slides and then covered with transparent 
adhesive tape. The imprints were then carefully 
observed 100 times under a microscope, and the 
total epidermal and stomatal cells were 
determined through digital photography [17,29-
31]. The stomatal index was determined using 
the developed formula: SI (%) = Ns (Ec + Ns) x 
100, where NS is the total number of stomata in 
view, and EC is the total number of epidermal 
cells [32]. 
 

(b) Dry biomass 
 
Dry weight (DW) was determined by apportioning 
three plants each from CK and 400 mM NaCl into 
the shoot and root. Samples were weighed and 
then wrapped with aluminum foil and oven-dried 
at 105

o
C for 19 min, followed by 80

o
C for 24 h. 

After constant mass was achieved, samples 
were removed, and the dry weight of the shoot 
and root were measured. Leaf samples were 
digested to quantify magnesium (Mg

2+
), calcium 

(Ca
2+

), sodium (Na
+
), and potassium (K

+
) [33-35]. 

 

2.4.2 Physiological analysis 
 

(a) Relative water content (RWC)  
 

Leaves were harvested from midday for relative 
water content, and the fresh weight (FW) was 
measured. Leaves were floated in ddH2O for 4 h 
and then reweighed to determine the turgid 
weight (TW) after being sapped with a paper 
towel to remove the surface water. Next, dry 
weight (DW) was determined: Samples were 
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weighed and then wrapped with aluminum foil 
and oven-dried at 105

o
C for 19 min, followed by 

80
o
C for 24 h. After constant mass was 

achieved, samples were removed, and the dry 
weight of the samples was measured. The RWC 
was determined with the following formula: 
RWC=(TFW-DW/TW-DW)x100 [33,36-38]. 

 
(b) Membrane stability index (MSI) 
 
Leaves were harvested from each plant during 
the midday period and washed with tap H2O 
once. Then the leaves were washed twice with 
dH2O and finally once with ddH2O to remove 
surface salts and contaminants. Leaves were 
then sapped with a paper towel to remove 
excess water, then discs (8mm) were cut with a 
cork borer, weighed (~0.1g) in each set, and 
placed into two separate 15 mL falcon tubes to 
which 10 mL of ddH2O was added. One set of 
tubes was placed in a water bath at 40

o
C for 30 

minutes. At the same time, the other was placed 
in another at 100

o
C for 15 minutes. After heating, 

both sets of tubes were allowed to cool, and then 
the leaf leachates' electrical conductivity (EC) 
was determined using an Extech Instruments, 
ExStik11 EC/Sal/TDS meter. The membrane 
stability index (MSI) was then determined by 
applying the formula: MSI = 1- (C1/C2) x 100, 
where C1 and C2 = Electrical conductivity of leaf 
leachate at 40 and 100

 o
C, respectively [36-39]. 

 
(c) Assimilatory pigments contents 
 
Chlorophyll and carotenoid were estimated via 
the non-maceration method. Leaf samples (20 
mg) (were immersed in 10 mL of dimethyl 
sulphoxide (DMSO) at 65

o
C for 4 h and then 

cooled [40,41]. Absorbance was read 
spectrophotometrically at 645, 663, and 470 nm 
with DMSO as the blank, chlorophyll [42], and 
carotenoid [43] were quantified. 

 
(d) Leaf-level gas exchange 
 
The LICOR 6800 Portable Photosynthesis 
System (LiCor instrument, Inc., NE, USA) was 
used to measure the net photosynthesis, 
transpiration rate, intercellular carbon dioxide, 
and stomatal conductance. That measurement in 
three randomly selected fully expanded leaves at 
three measurements per leaf for each treatment 
for each plant (~45 days). Measurements were 
taken at ambient CO2 concentration (380 μmol 
mol

−1
), light exposure (400 μmol m

−2
s

−1
), relative 

humidity controlled at ⁓65%, and leaf chamber 
temperature stable at 24

o
C. The lights in the 

glasshouse were kept on for about 4 h before 
and during the measurement period (10:00-14:00 
h) to maintain a relatively stable light level to give 
consistency in measurements [44,45].  
 

2.5 Statistical Analysis 
 

The experiment was conducted in a completely 
randomized block design with three biological 
replicates per treatment. The data were 
subjected to analysis of variance test (ANOVA) 
and Tukey posthoc analyses expressed as the 
mean of the three replicates (mean±SD), and 
significance among treatments and varieties for 
morphological and physiological significance was 
checked at p<0.05 and p<0.01. The Statistical 
Package for Social Sciences (Version 21 for 
Windows, SPSS Inc., New York, NY, USA) and 
Minitab Statistical Software (Version 19 for 
Windows, Pennsylvania, USA) were used to 
perform the analysis. 
 

3. RESULTS 
 

3.1 Epidermal Bladder Cells (EBC) 
 

Chadmo displayed a numerical increase in the 
epidermal bladder cells in both the adaxial and 
abaxial surfaces at 400 mM NaCl compared with 
the CK (Fig. 1 (a)). However, no significant 
difference (p<0.05) was found between the 
adaxial and abaxial surfaces. EBC average 
increase between the CK and 400 mM NaCl 
Chadmo was from 62.30±18.9 to 68.90 ±16.40 
cells mm

-2
 representing a 10.59% increase. 

Adaxially, the maximum and minimum EBCs in 
the treated Chadmo were 81 and 5 cells mm

-2,
 

while for the CK, they were 77 and 9 cells mm
-2

, 
respectively. On the abaxial surface, the 
maximum and minimum EBCs observed for the 
treated and CK Chadmo were 66, 81, 5, and 8 
cells mm

-2
, respectively. On the adaxial surface 

on Chadmo, EBCs increased from 31.75±15.89 
to 33.10±22.73 cells mm

-2
,
 
while for the abaxial 

surface, the increase was from 31.25±18.9 to 
35.80 ±16.40 cells mm

-2
, representing 14.46 and 

4.25% increase, respectively.  
 

As with Chadmo, Kankolla also indicated 
increased EBCs on both the adaxial and abaxial 
surfaces, with no significant (p<0.05) difference 
in CK and treated. The adaxial surface increase 
was found to be 36.51±11.34 to 37.76±13.44 
cells mm

-2
. In comparison, on the abaxial 

surface, the increase was from 36.20±11.97
 
to 

39.13±12.63 cells mm
-2

. The increase in EBCs in 
the Kankolla was 3.45 and 8.10% in the adaxial 
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and abaxial surfaces, respectively. The 
maximum and minimum EBCs in the adaxial 
surface in the CK and treated were 58, 62, 17, 
and 12 cells mm

-2
; for the abaxial surface, they 

were 66, 61, 13, and 19 cells mm
-2

, respectively 
(Fig. 1 (b)). 
 

3.2 Stomatal Index 
 
The stomatal density and index displayed a 
decreasing pattern in both Chadmo and Kankolla 
from CK to 400 mM NaCl treatment. In Chadmo, 
stomatal density decreased from 199.98±26.88 
mm

-2 
to 179.33±17.69 mm

-2 
on adaxial surface 

and 243.74±27.26 mm
-2 

to 224.04±26.80 mm
-2 

on 
abaxial surface from CK to the treated Chadmo. 
This decrease represented 10.33 and 8.08% 
between the CK and treated Chadmo in adaxial 
and abaxial surfaces (Fig. 2 (a)). A similar trend 
was observed in the stomatal indices of both the 
adaxial and abaxial surfaces of Chadmo. In the 
stomatal index, the decrease was from 16.06 to 
13.61%

 
and 15.91 to 14.68%

 
in adaxial and 

abaxial surfaces in CK and treated Chadmo, 
respectively. All the decreases from the CK to 
treated have been noted to have a significant 
difference at p<0.05 in ANOVA and Tukey 
analyses (Fig. 2 (b)). 

 
Kankolla's alterations in stomatal density in 
response to the treatment were more 
pronounced than Chadmo's. The decrease from 
the adaxial and abaxial was 211.29±34.90

 
to 

118.25±39.65 mm
-2 

and 270±54.09 to 
84.05±27.75 mm

-2 
from the CK to treated plants 

representing 40.03 and 68.98% decrease (Fig. 2 
(c)). Similarly, the stomatal index declined from 
12.38 to 10.96% and 14.92 to 8.33% from the CK 
to 400 mM NaCl in the adaxial and abaxial 
surfaces, respectively. This decrease in the 
stomatal index was 11.46 and 44.28% between 
the adaxial and abaxial surfaces between the CK 
and treated Kankolla, respectively (Fig. 2 (d)). In 
addition, ANOVA and post hoc Tukey analyses 
identified significant differences in the stomatal 
density and stomatal index in the CK and the 
treated plants at the adaxial and abaxial surfaces 
(Fig. 2 (d)). 
 

3.3 Biomass – Root/Shoot Ratio 
 
The shoot/root dry weight ratio was similar for the 
Chadmo and Kankolla genotypes at the CK, 
having 8.43 and 8.54, respectively. However, 
after treatment, both indicated a significant 
reduction to 4.47 and 2.3, representing 46.96% 
and 73.07% in Chadmo and Kankolla, 
respectively (Fig. 3). The analysis of variance 
identified no significant difference (p<0.05) 
between the CKs of the two genotypes. 
However, a significant difference (p<0.05) was 
noted between the CK and 400 mM NaCl 
treatment for both genotypes. Moreover, a 
significant difference (p<0.05) was also   
observed between the treated plants for both 
genotypes. 
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Fig. 1. Epidermal bladder cells (ECBs) distribution in (a) Chadmo and (b) Kankolla at CK and 
treated (400 mM NaCl) in the adaxial and abaxial surfaces. Mean ± SD (n=60). Different letters 

indicate a significant difference at p<0.05 in Chadmo and Kankolla, respectively 
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Fig. 2. (a) Stomatal density on Chadmo, (b) stomatal index on Chadmo, (c) stomatal density on 
Kankolla, and (d) stomatal index on Kankolla on CK and treated (400 mM NaCl) in the adaxial 
and abaxial surfaces. Means ± SD (n=60). Different letters indicate a significant difference at 

p<0.05 in Chadmo and Kankolla, respectively 
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Fig. 3. Response of Chadmo and Kankolla to CK and 400 mM NaCl in root/shoot. Mean ± SD 
(n=3). Different letters indicate a significant difference at p<0.05 in Chadmo and Kankolla, 

respectively 
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3.4 Relative Water Content (RWC) 
 

Chadmo had a higher RWC in control with 
98.21%, and the treated plants with 81.56%. For 
the Kankolla, the RWC for control was 82.25%, 
and for the treated, it was 71.40%. 
Comparatively, there was a higher reduction in 
the plants' RWC from the control to treated 
conditions in the Chadmo and Kankolla 
genotypes, with 16.69 and 13.19%, respectively. 
Significant differences were observed in Chadmo 
and Kankolla between the CK and 400 mM NaCl, 
respectively (Fig. 4). 

 

3.5 Membrane Stability Index (MSI) 
 

In both genotypes, MSI decreased with salinity 
stress at treated conditions. Notably, the MSI for 
the Chadmo was higher under control and 
treated at 85.49 and 55.16%, respectively. As a 
comparison, the Kankolla at the control and 
treatment was 80.40 and 40.99%, respectively. 
For MSI between control and treatment for the 
Chadmo and Kankolla, there was a 35.48 and 
49.01% reduction, respectively (Fig. 5). MSI 
between genotypes was not significant (p<0.01) 
at the level of the control while under treatment, 
the Kankolla being ~ 10% lower than the 
Chadmo. On the contrary, a significant difference 
was observed (p<0.01) between the two 

genotypes under treatment, with the Chadmo 
having about 15% higher than the Kankolla. 

 

3.6 Assimilatory Pigment Content 
 
Total chlorophyll and carotenoid contents 
displayed a similar pattern in both genotypes for 
the CK and 400 mM NaCl; a decreasing trend 
with increasing salt concentration was observed. 
The chlorophyll content was 35.64±1.61 and 
29.96 ±4.79 mgg

-1
 and 35.35±1.00 and 

21.62±2.16 mgg
-1

 for Chadmo and Kankolla at 
the CK and 400 mM NaCl (Fig. 6 (a)). Total 
chlorophyll decreased slightly by 12. 86% 
between the CK and 400 mM NaCl for the 
Chadmo, representing no significant difference 
(p<0.05). However, a 30% decrease was 
observed between the CK and 400 mM NaCl for 
the Kankolla, indicating a significant difference 
(p<0.05). Besides, a significant difference 
(p<0.05) was observed for both Chadmo and 
Kankolla genotypes under 400 mM NaCl. For 
carotenoid, Chadmo had 2.69±0.21 and 
2.03±0.38 mgg

-1
, Kankolla had 2.61±0.33 and 

1.15±0.11 mgg
-1

 at the CK and 400 mM NaCl, 
respectively (Fig. 6 (b)). Moreover, the decrease 
in carotenoid for the Chadmo between CK and 
400 mM NaCl was 49.24%, while for the 
Kankolla; it was 57.97%. 
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Fig. 4. Response of Chadmo and Kankolla to 400 mM NaCl and control: Relative Water Content 
(RWC). Mean ± SD (n=3). Different letters indicate a significant difference at p<0.05 in Chadmo 

and Kankolla, respectively 
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Fig. 5. Response of Kankolla and salt-tolerant in membrane stability index to CK and 400 mM 
NaCl. Means ± SD (n=3). Different letters indicate a significant difference at p<0.05 in Chadmo 

and Kankolla, respectively 
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Fig. 6. Response of Chadmo and Kankolla to 400 mM NaCl and control in contents of (a) total 

chlorophyll and (b) carotenoid. Means ± SD (n=4). Different letters indicate a significant 
difference at p<0.05 in Chadmo and Kankolla, respectively 

 

3.7 Leaf-level gas exchange 
 
The net photosynthesis (Pn), transpiration rate, 
stomatal conductance, and intercellular carbon 
dioxide measurements exhibited metabolism-
reduction imposed by salt stress in both 
genotypes. While both genotypes displayed 
phenotypes of halophytic plants with reduced 
metabolic functions and attenuation in plant 
height, the Kankolla genotypes exhibited a higher 
percentage of reduction, displayed in chlorotic 
leaf spots and slight leaf curling (Fig. 7 (a)). 

Under 400 mM NaCl condition and CK, 
Chadmo's average net photosynthetic rate 
reduced from 15.73±2.97 to 13.02±2.75 µmol 
CO2 m

-1
s

-1
, indicating 17.24% reduction while in 

the Kankolla, the reduction from was 13.43±4.12 
to 8.34±3.16 µmol CO2 m

-1
s

-1
 representing 

37.92% decline (Fig. 8 (a)). Similarly, the 
transpiration rate reducing from CK and 400 mM 
NaCl treatment in Chadmo and Kankolla 
genotypes from 0.0068±0.001 to 0.0032±0.001 

µmol of CO₂ m
-2

 s
-1

 and 0.0056±0.002 and 

0.00323±0.001 µmol of CO₂ m
-2

 s
-1

, respectively 
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(Fig. 8 (b)). Concerning stomatal conductance, 
the Chadmo had a higher exchange (1.16±0.55 
µmol H2O m

-1
s

-1
) than Kankolla (1.06±0.88 µmol 

H2O m
-1

s
-1

). Moreover, this was reduced in the 
Chadmo and Kankolla to 0.41±0.22 and 
0.14±0.17 µmol H2O m

-1
s

-1
,
 
representing 64.73 

and 86.18% decline, respectively (Fig. 8 (c)). 
Intercellular carbon dioxide measurement 
indicated a decrease from the CK to 400 mM 
NaCl, with the Chadmo and Kankolla genotypes 
exhibiting a reduction from 343.54±19.92 to 
305.71±28.82 CO2 µmol mol⁻

1
 and 341.08±26.43 

and 279.59±60.37 CO2 µmol mol⁻
1 

representing 
11.01 and 18.02%, respectively (Fig. 8 (d)). In 
addition, significant differences were identified by 
ANOVA analysis (p <0.05) in the net 
photosynthesis, transpiration rate, stomatal 
conductance, and intercellular carbon dioxide 
between the control and treatment. 
 

4. DISCUSSION 
 
Reduction in dry biomass is common among 
plants under saline conditions and displayed 
further reduction as salinity increases up to the 
point of survival [7,46,47]. This study posited that 
even though the Chadmo is deemed a more salt-

tolerant genotype, salinity does impact the plant. 
In contrast, the plant survived; it is not completely 
void of the effects on its general physiology, 
which can eventually propel a reduction in dry 
biomass. Both genotypes showed a significant 
(p<0.05) decrease in the root/shoot dry biomass 
ratio between the CK and 400 mM NaCl, which 
indicates the effect salinity has on plant growth 
and development [19,48]. Shabala et al. [15] 
identified a 50% reduction in biomass in the 
quinoa cv 3706 grown in 400 mM NaCl 
compared with the control. Besides, Ruiz et al 
[49] observed a 60-70% root-to-shoot fresh 
weight ratio in the landraces Villarrica and 49 

grown in 300 mM NaCl compared with the CK, 
while Gómez-Pando et al. [21] identified a 
decrease in leaf and root dry mass per plant by 
81.13 and 80% in accessions 154 and 19 
respectively in 300 mM NaCl relative to the 
control. Interestingly, no significant difference 
(p<0.05) was observed in total plant dry weight 
across the treatments in BO78 grown in 150 to 
750 mM NaCl as compared with the control [17]. 
Hariadi et al. [16] contended that both shoot and 
root fresh weight decreased significantly by 20 
and 50%, respectively, relative to the control in 
quinoa cv 5206. 

 

 
 

Fig. 7. Phenotypic response to salinity in Kankolla (a) treated – curling and chlorotic leaves  
(b) control and salt-tolerant - Chadmo (c) treated (d) control 
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Fig. 8. Physiological responses of Chadmo and Kankolla to CK and 400 mM NaCl (a) net 
photosynthesis (b) transpiration rate (c) stomatal conductance, and (c) intercellular CO2. 
Means ± SD (n=6). Different letters indicate a significant difference at p<0.05 in Chadmo  

and Kankolla, respectively 
 
Measuring relative water content in plants 
subjected to salinity stress is physiologically 
relevant to determine their tolerance level. 
Previous studies have outlined that under saline 
conditions, it adjusts their osmotic potential to 
maintain turgor pressure, increasing water 
content, particularly in the leaf [50,51]. On the 
contrary, in this study, both varieties showed that 
RWC decreased significantly (p<0.05), with salt-
tolerant Chadmo reducing by 17.44% and salt-
sensitive Kankolla by 10.85% from the control to 
400 mM NaCl. Plants curtail water loss by 
developing cutinized epidermal layer and 
facilitating stomatal closure in conjunction with 
accumulated ABA in the chloroplast and guard 
cells [13,52-54]. Plant injury is another resultant 
effect of a highly salinized environment, and it 
can be in many forms, such as injury to roots, 

stem, and leaf cells. Therefore, plants responded 
by developing more robust membrane systems 
to avoid such damaging effects. Hence, one of 
the features to assess salinity tolerance is the 
level of injury experienced by the membrane 
through membrane stability index or electrolyte 
leakage, which measures the cell membrane 
injury caused by environmental stress [55-57]. 
Comparatively, plants with reduced membrane 
stability index have a higher tolerance level for 
abiotic stress such as salinity and have been 
employed to screen for salinity tolerance in 
plants [58]. In this study, we observed a 
significant difference (p<0.01) between salt-
tolerant Chadmo and salt-sensitive Kankolla, with 
the latter having 13.53% MSI more than salt-
tolerant Chadmo. No significant difference was 
observed between the controls of the two 
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varieties at p<0.001. Previous studies have also 
related a reduction in MSI to plant salinity 
tolerance [35,56,59-62]. 
 
Total chlorophyll and carotenoid contents 
decreased more at 400 NaCl than in the CK. 
Moreover, the reduction between the control and 
400 mM NaCl in salt-sensitive Chadmo was 
insignificant, while for salt-sensitive Kankolla, a 
significant difference was identified by ANOVA at 
p<0.05. Leaf chlorosis, white spots/appearance, 
and leaf rolling were also observed in treated 
salt-sensitive Kankolla, providing further 
evidence that salinity impacts the biosynthesis of 
chlorophyll or is destructive post-synthesis 
[17,63-67]. Ruffino et al [68] reported a decrease 
in total chlorophyll in salt-treated as compared 
with the CK in quinoa cultivar Sajama seedlings 
over 21 days. They concluded that total 
chlorophyll decreased by 40.2, 25.5, and 38.9% 
after 6, 12, and 21 days of 250 mM NaCl 
compared with the CK. They posited that 
Chlorophyll a had b significant difference while 
total  chlorophyll had no significant differences in 
reduction between the CK and 250 mM NaCl. 
Similarly, carotenoid contents in Sajama 
decreased between the CK and 250 mM NaCl by 
20.8, 27.01, and 11.5% after 6, 12, and 21 days, 
respectively. Other studies corroborate our 
results, that while no significant difference was 
identified, in some instances, chlorophylls a and 
b concentrations and carotenoids were lower in 
the saline conditions than CK [64,66,67]. Other 
studies corroborated in that while no significant 
difference was identified, in some instances, 
chlorophylls a and b concentrations and 
carotenoid were lower in the saline conditions 
than t control [63,64,66,67,69-71]. Accordingly, 
other evidence of reduced chlorophyll and 
carotenoid contents resulting from salinity was 
noted in wheat [37,72,73], Salvinia molesta and 
Pistia stratiotes [74], pea [56,75], mangrove [76], 
bean [77,78], cotton [79], oats [28] and olive 
saplings [80]. 
 

Salinity influences photosynthesis, transpiration 
rate, reduces stomatal opening, and decreases 
intercellular carbon dioxide; these influence plant 
productivity and eventually lead to lower biomass 
at higher saline concentrations. Both genotypes 
displayed reduced net photosynthesis, stomatal 
conductance, transpiration rate, and intercellular 
CO2 at 400 mM NaCl than the CK. This finding 
can be corroborated by numerous other studies 
involving other plants [16,22,76,81-84]. Sanchez 
et al. [8] reported significant changes in stomatal 
conductance and no significant difference in 

photosynthesis in the quinoa cultivar ‘Real’ when 
exposed to low salinity (3.85 gL

-1
) and high 

salinity (8.05gL
-1

) over five weeks. Significant 
differences were observed in the reduction of net 
photosynthesis (59.39±10.79 to 17.13±2.53 µmol 
CO2 m

-1
s

-1
), transpiration rates (16.05±4.51 to 

2.8±0.76 µmol of CO₂ m
-2

 s
-1

), stomatal 
conductance) (4.84±1.05±to 0.63 µmol H2O m

-1
s

-

1
, taken as the inverse of stomatal resistance) 

and intercellular CO2 (0.60±0.05 to 0.18±0.13 
CO2 µmol mol⁻

1
) the quinoa cultivar ‘Hualhuas’ 

between the CK and 500 mM NaCl after six 
weeks of treatment [85]. 
 

5. CONCLUSION 
 

In conclusion, our results indicated that salinity 
influences several responses in both Chadmo 
and Kankolla towards plant acclimation. The 
observed effects were attributed to phenotypic 
plasticity towards salinity. They exhibited 
significant differences between Chadmo and 
Kankolla in shoot/root biomass, membrane 
stability index, and relative water content, which 
were significantly lower in Kankolla. Similarly, 
significant differences were observed in                  
the net photosynthesis, stomatal conductance, 
transpiration rate, and intercellular carbon 
dioxide. These differences are symptomatic 
responses to plant salinity. Moreover, as 
differentially expressed, these traits in both 
genotypes confirmed that Chadmo responded 
more favorably to salinity than Kankolla. Besides, 
the leaf curling, white tip, and chlorosis in treated 
Kankolla provided further evidence of 
susceptibility to salinity. This study is important to 
identify a genotype that is tolerant to salinity. 
Furthermore, this genotype can be genetically 
engineered to improve adaptation to the saline 
environment and bolster agronomic traits and 
resilience in other crop plants. That is 
compellingly urgent as more of our arable lands 
are becoming salinized. 
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