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Abstract

We report the discovery of a super-Earth and a sub-Neptune transiting the star HD 15337 (TOI-402,
TIC 120896927), a bright (V=9) K1 dwarf observed by the Transiting Exoplanet Survey Satellite (TESS) in
Sectors 3 and 4. We combine the TESS photometry with archival High Accuracy Radial velocity Planet Searcher
spectra to confirm the planetary nature of the transit signals and derive the masses of the two transiting planets.
With an orbital period of 4.8 days, a mass of -

+
ÅM7.51 1.01

1.09 and a radius of 1.64±0.06R⊕, HD 15337 b joins the
growing group of short-period super-Earths known to have a rocky terrestrial composition. The sub-Neptune
HD 15337 c has an orbital period of 17.2 days, a mass of -

+
Å8.11 M1.69

1.82 , and a radius of 2.39±0.12R⊕, suggesting
that the planet might be surrounded by a thick atmospheric envelope. The two planets have similar masses and lie
on opposite sides of the radius gap, and are thus an excellent testbed for planet formation and evolution theories.
Assuming that HD 15337 c hosts a hydrogen-dominated envelope, we employ a recently developed planet
atmospheric evolution algorithm in a Bayesian framework to estimate the history of the high-energy (extreme
ultraviolet and X-ray) emission of the host star. We find that at an age of 150Myr, the star possessed on average
between 3.7 and 127 times the high-energy luminosity of the current Sun.
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1. Introduction

Successfully launched in 2018 April, NASA’s Transiting
Exoplanet Survey Satellite (TESS) is making a significant step
forward in understanding the diversity of exoplanets, especially of
super-Earths (Rp=1–2R⊕) and sub-Neptunes (Rp=2–4 R⊕).
TESS is performing an all-sky photometric search for planets
transiting bright stars ( < <V6 11), so that detailed characteriza-
tions of the planets and their atmospheres can be performed
(Ricker et al. 2015). The survey is broken up into 26 sectors—
each sector being observed for ∼28 days and consisting of four
cameras with a combined field of view of 24°×96°. Candidate
alerts and full-frame images are released every month. As of 2019
March, TESS has already announced the discovery of about a
dozen transiting planets (see, e.g., Gandolfi et al. 2018; Huang
et al. 2018; Jones et al. 2018; Esposito et al. 2019; Nielsen et al.
2019; Quinn et al. 2019; Trifonov et al. 2019).

TESS has already led to the detection of “golden” systems
amenable to in-depth characterization of planetary atmo-
spheres, such as πMen, which is a bright (V=5.65) star
hosting a transiting super-Earth with a bulk density that is
consistent with either a primary, hydrogen-dominated atmos-
phere, or a secondary, probably CO2/H2O-dominated, atmos-
phere (Gandolfi et al. 2018; Huang et al. 2018). The discovery
of such systems is central for studying planetary atmospheres
via multi-wavelength transmission spectroscopy, and for
constraining the evolution models of planetary atmospheres.

TESS also enables the discovery of multi-planet systems for
which both mass and radius can be precisely measured.
Because such planets orbit the same star, differences in mean
density and atmospheric structure among planets belonging to
the same system can be ascribed mainly to differences in
planetary mass and orbital separation (see, e.g., Guenther et al.
2017; Prieto-Arranz et al. 2018). This greatly simplifies
modeling of their past evolution history, thus constraining
how these planets formed (Alibert et al. 2005; Alibert &
Benz 2017). In this respect, even more significant are multi-
planet systems in which two or more planets have similar
masses, as differences in radii would most likely be due to the
different orbital separations.

In this Letter we report the discovery of two small planets
transiting the bright (V=9) star HD 15337 (Table 1), a K1
dwarf observed by TESS in Sectors 3 and 4. We combined the
TESS photometry with archival High Accuracy Radial velocity
Planet Searcher (HARPS) radial velocities (RVs) to confirm the
planetary nature of the transit signals and derive the masses of
the two planets. This Letter is organized as follows. In
Section 2, we describe the TESS photometry and the detection
of the transit signals. In Section 3, we present the archival
HARPS spectra. The properties of the host star are reported in
Section 4. We present the frequency analysis of the HARPS
RVs in Section 5 and the data modeling in Section 6. Results,
discussions, and a summary are given in Section 7.

2. TESS Photometry

HD 15337 (TIC 120896927) was observed by TESS Camera
#2 in Sectors 3 and 4 (charge-coupled devices #3 and #4,

respectively) from 2018 September 20 to November 15, and
will not be observed further during the nominal two-year TESS
mission. Photometry was interrupted when the satellite was
re-pointed for data downlink, from BJDTDB=2458395.4
to BJDTDB=2458396.6 in Sector 3, and from BJDTDB=
2458423.5 to BJDTDB=2458424.6 in Sector 4. There is an
additional data gap in Sector 4 from BJDTDB=2458418.5 to
BJDTDB=2458421.2, which was caused by an interruption in
communications between the instrument and spacecraft.
TESS objects of interest (TOIs) are announced publicly via

the TESS data alerts web portal37 at the Massachusetts Institute
of Technology. TOIs 402.01 (HD 15337 b) and 402.02
(HD 15337 c) were announced on 2019 January 16 and 31,
respectively, in association with the HD 15337 photometry.
The TESS pixel data and light curves produced by the Science
Processing Operations Center (SPOC; Jenkins et al. 2016) at
NASA Ames Research Center were subsequently made
publicly available via the Mikulski Archive for Space
Telescopes (MAST).38 We iteratively searched the SPOC light
curves for transit signals using the Box-least-squares algorithm
(BLS; Kovács et al. 2002), after fitting and removing stellar
variability using a cubic spline with knots every 1.0 day. We
recovered two signals corresponding to the TOIs, but no other
significant signals were detected. We also tried removing
variability using the wavelet-based filter routines VARLET and
PHALET, but it did not change the BLS results; we are thus
confident that the two signals are robustly detected and are not
the result of data artifacts resulting from the choice of
variability model or residual instrumental systematic signals.
The SPOC light curves are produced using automatically

selected optimal photometric apertures. We also produced light
curves from the TESS pixel data using a series of apertures
(Gandolfi et al. 2018; Esposito et al. 2019), and found that
apertures larger than the SPOC aperture shown in Figure 1
minimized the 6.5 hr combined differential photometric preci-
sion noise metric (Christiansen et al. 2012). However, the
transit signals recovered from these light curves were slightly
less significant, which we attributed to the improvement in light
curve quality afforded by the Presearch Data Conditioning
(Smith et al. 2012; Stumpe et al. 2012) pipeline used by the
SPOC, which corrects for common-mode systematic noise; for
this reason, we opted to analyze the SPOC light curves for the
remainder of the analysis in this Letter.
To investigate the possibility of diluting flux from stars other

than HD 15337, we visually inspected archival images and
compared Gaia DR2 (Gaia Collaboration et al. 2018) source
positions with the SPOC photometric apertures. We used the
coordinates of HD 15337 from the TESS Input Catalog39

(Stassun et al. 2018b) to retrieve Gaia DR2 sources using a
search radius of 3′. In an archival image taken in 1955 from the
First Palomar Sky Survey (POSS1-E)40, HD 15337 is offset
from its current position by ∼14″ due to proper motion, but this

37 https://tess.mit.edu/alerts
38 https://mast.stsci.edu
39 Available athttps://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html.
40 Available athttp://archive.stsci.edu/cgi-bin/dss_form.
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is not sufficient to completely rule out chance alignment with a
background source; however, such an alignment with a bright
source is highly unlikely. Assuming the TESS point-spread
function can be approximated by a two-dimensional Gaussian
profile with an FWHM of ∼25″, we found that 98.9% (98.5%)
of the flux from HD 15337 is within the Sector 3 (Sector 4)
SPOC aperture. Approximating the TESS bandpass with the
Gaia GRP bandpass, the transit signals from HD 15337 should
be diluted by less than 0.01% in both apertures; HD 15337 is
the only star bright enough to be the source of the transit
signals. Two other Gaia DR2 sources (5068777809825770112
and 5068777745400963584) also contribute flux, but they are
too faint to yield significant dilution ( »G 19 magRP ). Figure 1

shows the archival image, along with Gaia DR2 source
positions and the Sector 4 SPOC photometric aperture.

3. HARPS Spectroscopic Observations

HD 15337 was observed between 2003 December 15 and
2017 September 6 UT with the HARPS spectrograph
(R≈ 115,000, Mayor et al. 2003) mounted at the European
Southern Observatory (ESO)-3.6 m telescope, as part of the
observing programs 072.C-0488, 183.C-0972, 192.C-0852,
196.C-1006, and 198.C-0836. We retrieved the publicly
available reduced spectra from the ESO archive, along with
the cross-correlation function (CCF) and its bisector, computed
from the dedicated HARPS pipeline using a K5 numerical
mask (Baranne et al. 1996). On 2015 June, the HARPS fiber
bundle was upgraded and a new set of octagonal fibers, with
improved mode-scrambling capabilities, were installed (Lo
Curto et al. 2015). To account for the RV offset caused by the
instrument refurbishment, we treated the HARPS RVs taken
before/after 2015 June as two different data sets. Tables 2 and
3 list the HARPS RVs taken with the old and new fiber bundle,
along with the RV uncertainties, the FWHM and bisector span
(BIS) of the CCF, the exposure times, and the signal-to-noise
ratio (S/N) per pixel at 5500Å. Time stamps are given
in barycentric Julian Date in the barycentric dynamical
time (BJD TDB). We rejected two data points—marked with
asterisks in Tables 2 and 3—because of poor S/N ratio
(BJDTDB=2455246.519846) or systematics (BJDTDB=
2457641.794439).

4. Stellar Fundamental Parameters

4.1. Spectroscopic Parameters

We co-added the HARPS spectra obtained with the old and
new fiber bundle separately to get two combined spectra with
S/N per pixel at 5500Å of 590 (old fiber) and 490 (new fiber).
We derived the spectroscopic parameters of HD 15337 from
the co-added HARPS spectra using Spectroscopy Made Easy

Figure 1. 5′ × 5′ 103aE emulsion image taken in 1955 from the First Palomar
Sky Survey (POSS1-E), with the Sector 4 SPOC photometric aperture
overplotted in blue (TESS pixel size is 21″), and the positions of Gaia DR2
sources (J2015.5) within 2′ of HD 15337 indicated by circles. HD 15337 is in
red, nearby sources contributing more than 1% of their flux to the aperture are
in orange, and other sources are in green; the Sector 3 aperture is slightly bigger
but yields similarly low levels of photometric dilution (see Section 2). Due to
the proper motion of HD 15337, there is a ∼14″ offset between its Gaia
position and its position in the image.

Table 1
Main Identifiers, Coordinates, Proper Motion, Parallax, Distance, and Optical

and Infrared Magnitudes of HD 15337

Parameter Value Source

Main Identifiers
HD 15337
HIP 11433 Hipparcos
TIC 120896927 TICa

TOI 402 TESS Alerts
Gaia DR2 5068777809824976256 Gaia DR2b

Equatorial Coordinates
R.A. (J2000.0) 02h 27m 28 3781 Gaia DR2b

Decl. (J2000.0) −27° 38′ 06 7417 Gaia DR2b

Proper Motion, Parallax, and Distance
m da cos (mas yr−1) −73.590±0.057 Gaia DR2b

md (mas yr−1) −211.614±0.082 Gaia DR2b

Parallax (mas) 22.285±0.035 Gaia DR2b

Distance (pc) 44.874±0.070 Gaia DR2b

Magnitudes
BT 10.170±0.027 Tycho-2c

VT 9.184±0.018 Tycho-2c

B 10.009±0.090 APASSd

V 9.096±0.017 APASSd

g 9.852±0.493 APASSd

r 8.847±0.016 APASSd

i 8.655±0.054 APASSd

u 11.756±0.075 Strömgrene

v 10.526±0.046 Strömgrene

b 9.598±0.032 Strömgrene

y 9.088±0.030 Strömgrene

G 8.8560±0.0002 Gaia DR2b

GBP 9.3194±0.0011 Gaia DR2b

GRP 8.2708±0.0016 Gaia DR2b

J 7.553±0.019 2MASSf

H 7.215±0.034 2MASSf

Ks 7.044±0.018 2MASSf

W1(3.35 μm) 6.918±0.054 ALLWISEg

W2(4.6 μm) 7.048±0.020 ALLWISEg

W3(11.6 μm) 7.015±0.017 ALLWISEg

W4(22.1 μm) 6.916±0.072 ALLWISEg

Notes.
a TESS Input Catalog (TIC; Stassun et al. 2018b).
b Gaia Data Release 2 (DR2; Gaia Collaboration et al. 2018).
c Tycho-2 catalog (Høg et al. 2000).
d AAVSO Photometric All-Sky Survey (APASS; Henden et al. 2015).
e Strömgren-Crawford buvby photometry catalog (Paunzen 2015).
f Two-micron All Sky Survey (2MASS; Cutri et al. 2003).
g Wide-field Infrared Survey Explorer catalog (WISE; Cutri 2013).
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(SME), a spectral analysis tool that calculates synthetic spectra
and fits them to high-resolution observed spectra using a c2

minimizing procedure. The analysis was performed with the
non-local thermodynamic equilibrium (non-LTE) SME version
5.2.2, along with MARCS model atmospheres (Gustafsson
et al. 2008).

We estimated a microturbulent velocity of vmic=0.80±
0.10km s−1 from the empirical calibration equations for Sun-like
stars from Bruntt et al. (2010). The effective temperature Teff was
measured fitting the wings of the aH and bH lines, as well as the
Na I doublet at 5890 and 5896Å (Fuhrmann et al. 1993; Axer
et al. 1994; Fuhrmann et al. 1994, 1997b, 1997a). The surface
gravity log gå was determined from the wings of the Ca Iλ 6102,
λ 6122, λ 6162Å triplet, and the Ca I λ 6439Å line, as well as
from the Mg Iλ 5167, λ 5173, λ 5184Å triplet. We measured the
iron abundance [Fe/H], the macroturbulent velocity vmac, and the
projected rotational velocity v sin iå by simultaneously fitting the
unblended iron lines in the spectral region 5880–6600Å.

Our analyses applied to the two stacked HARPS spectra
provided consistent results, well within the uncertainties. The
final adopted values are listed in Table 4. We derived an
effective temperature of Teff=5125±50K, surface gravity
log gå=4.40±0.10(cgs), and an iron abundance relative to
solar of [Fe/H]=0.15±0.08dex. We also measured a
calcium abundance of [Ca/H]=0.16±0.05dex and a
sodium abundance of [Na/H]=0.27±0.09dex. We found
a macroturbulent velocity of vmac=3.0±1.0 km s−1 in
agreement with the value predicted from the empirical

equations of Doyle et al. (2014). The projected rotational
velocity was found to be v sin iå=1.0±1.0km s−1.

4.2. Stellar Mass, Radius, Age, and Interstellar Extinction

We performed an analysis of the broadband spectral energy
distribution (SED) together with the DR2 (Gaia Collaboration
et al. 2018) parallax in order to determine an empirical
measurement of the stellar radius, following the procedures
described in Stassun & Torres (2016), Stassun et al. (2017), and
Stassun et al. (2018a). We retrieved the BT and VT magnitudes
from Tycho-2 catalog (Høg et al. 2000), the Strömgren ubvy
magnitudes from Paunzen (2015), the BVgri magnitudes
from APASS (Henden et al. 2015), the JHKS magnitudes from
2MASS (Cutri et al. 2003), the W1–W4 magnitudes from
ALLWISE (Cutri 2013), and the G magnitude from Gaia DR2
(Gaia Collaboration et al. 2018). Together, the available
photometry spans the full stellar SED over the wavelength
range 0.35–22μm (Table 1 and Figure 2). In addition, we
retrieved the near-ultraviolet (NUV) flux from Galaxy Evol-
ution Explorer (GALEX) survey (Bianchi et al. 2011) in order
to assess the level of chromosphericactivity,ifany.
We performed a fit using Kurucz stellar atmosphere models

(Castelli & Kurucz 2003), with the fitted parameters being the
effective temperature Teff and iron abundance [Fe/H], as well
as the interstellar extinction Av, which we restricted to the
maximum line-of-sight value from the dust maps of Schlegel
et al. (1998). The broadband SED is largely insensitive to the
surface gravity (log gå), thus we simply adopted the value from
the initial spectroscopic analysis presented in the previous

Table 2
HARPS RV Measurements of HD 15337 Acquired with the Old Fiber Bundle

BJDTDB
a RV ±σ BIS FWHM Texp S/Nb

−2450000 (km s−1) (km s−1) (km s−1) (km s−1) (s)

2988.663700 −3.8208 0.0010 0.0013 6.1330 900 70.8
3270.822311 −3.8260 0.0008 0.0015 6.1353 900 93.7
3785.541537 −3.8234 0.0007 0.0010 6.1471 900 101.7
4422.673842 −3.8155 0.0006 0.0059 6.1571 900 108.1
4424.646720 −3.8111 0.0007 0.0037 6.1531 900 97.7

Notes.
a Barycentric Julian dates are given in barycentric dynamical time.
b S/N per pixel at 550 nm.
c Outlier not included in the analysis.

(This table is available in its entirety in machine-readable form.)

Table 3
HARPS RV Measurements of HD 15337 Acquired with the New Fiber Bundle

BJDTDB
a RV ±σ BIS FWHM Texp S/Nb

−2450000 (km s−1) (km s−1) (km s−1) (km s−1) (s)

7291.826359 −3.7848 0.0008 0.0273 6.2102 900 88.1
7292.799439 −3.7889 0.0007 0.0246 6.2141 900 95.6
7299.843584 −3.7988 0.0007 0.0229 6.1968 900 106.2
7303.879389 −3.7973 0.0013 0.0184 6.1985 900 60.3
7353.698805 −3.7959 0.0008 0.0209 6.2081 900 97.6

Notes.
a Barycentric Julian dates are given in barycentric dynamical time.
b S/N per pixel at 550 nm.
c Outlier not included in the analysis.

(This table is available in its entirety in machine-readable form.)
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Table 4
HD 15337 System Parameters

Parameter Priora Derived Value

Stellar Parameters
Star mass Må (Me) L 0.90±0.03
Star radius Rå (Re) L 0.856±0.017
Effective temperature Teff (K) L 5125±50
Surface gravityb log gå (cgs) L 4.53±0.02
Surface gravityc log gå (cgs) L 4.40±0.10
Iron abundance [Fe/H] (dex) L 0.15±0.10
Sodium abundance [Na/H] (dex) L 0.27±0.09
Calcium abundance [Ca/H] (dex) L 0.16±0.05
Projected rotational velocity v sin iå (km s−1) L 1.0±1.0
Age (Gyr) L 5.1±0.8
Interstellar extinction Av L 0.02±0.02

Model Parameters of HD 15337 b
Orbital period Porb,b (days) [ ]4.7552, 4.7572 4.75615±0.00017

Transit epoch T0,b ( –BJD 2 450 000TDB ) [ ]8411.4526, 8411.4706 -
+8411.46156 0.00119

0.00094

Scaled semimajor axis a Rb [ ]13.11, 0.17 -
+13.11 0.15

0.16

Planet-to-star radius ratio R Rb [ ]0, 0.1 -
+0.01761 0.00058

0.00055

Impact parameter bb [ ]0, 1 -
+0.33 0.14

0.09

we sinb ,b  -[ ]1, 1 -
+0.22 0.11

0.09

we cosb ,b  -[ ]1, 1 -
+0.12 0.18

0.14

RV semi-amplitude variation Kb ( -m s 1) [ ]0, 10 -
+3.08 0.41

0.44

Model Parameters of HD 15337 c
Orbital period Porb,c (days) [ ]17.1676, 17.1876 17.1784±0.0016

Transit epoch T0,c (BJD -TDB 2 450 000) [ ]8414.5416, 8414.5616 8414.5501±0.0015

Scaled semimajor axis a Rc [ ]31.68, 0.70 31.87±0.70
Planet-to-star radius ratio R Rc [ ]0, 0.1 0.0256±0.0011
Impact parameter bc [ ]0, 1 -

+0.87 0.02
0.01

we sinc ,c  -[ ]1, 1 - -
+0.08 0.15

0.16

we cosc ,c  -[ ]1, 1 -
+0.12 0.17

0.15

RV semi-amplitude variation Kc ( -m s 1) [ ]0, 10 -
+2.16 0.45

0.48

Additional Model Parameters
Parameterized limb-darkening coefficient q1 [ ]0.43, 0.1 0.37±0.08
Parameterized limb-darkening coefficient q2 [ ]0.19, 0.1 0.25±0.11
Systemic velocity gHS1 (km s−1) [-4.0,- ]3.6 −3.8174±0.0027

Systemic velocity gHS2 (km s−1) [-4.0,- ]3.6 −3.7977±0.0012

RV jitter term sHS1 ( -m s 1) [ ]0, 100 -
+2.19 0.30

0.36

RV jitter term sHS2 ( -m s 1) [ ]0, 100 -
+2.89 0.43

0.58

Stellar rotation period (Prot) days [ ]36.4, 36.6 36.528±0.022
Linear RV term - -m s d1 1  -[ ]0.1, 0.1 −0.0057×0.0017
Quadratic RV term - -m s d1 1  -[ ]0.1, 0.1 −13.3±2.6×10−7

Derived Parameters of HD 15337 b
Planet mass Mb ( ÅM ) L -

+7.51 1.01
1.09

Planet radius Rb (R⊕) L 1.64±0.06
Planet mean density rb ( -g cm 3) L -

+9.30 1.58
1.81

Semimajor axis of the planetary orbit ab (au) L 0.0522±0.0012
Orbit eccentricity eb L 0.09±0.05
Argument of periastron of stellar orbit w ,b (deg) L -

+62 32
42

Orbit inclination ib (deg) L -
+88.5 0.4

0.6

Equilibrium temperature ( )d Teq,b (K) L 1001±11.5

Transit duration t14,b (hr) L 2.49±0.06

Derived Parameters of HD 15337 c
Planet mass Mc (M⊕) L -

+8.11 1.69
1.82

Planet radius Rc (R⊕) L 2.39±0.12
Planet mean density rc ( -g cm 3) L -

+3.23 0.72
0.90

Semimajor axis of the planetary orbit ac (au) L 0.1268±0.0038
Orbit eccentricity ec L -

+0.05 0.04
0.06

Argument of periastron of stellar orbit w ,c (deg) L -
+329 64

69

Orbit inclination ic (deg) L -
+88.5 0.1

0.2

Equilibrium temperatured Teq,c (K) L 642±10

Transit duration t14,c (hr) L -
+2.25 0.11

0.20

Notes.
a [ ]a b, refers to uniform priors between a and b; [ ]a b, to Gaussian priors with mean a and standard deviation b.
b From spectroscopy and evolutionary tracks.
c From spectroscopy.
d Assuming zero albedo and uniformredistributionofheat.
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subsection. The resulting fit (Figure 2) gives a reduced c2 of
2.3 (excluding the GALEX NUV flux, which is consistent with
a modest level of chromospheric activity). The best-fitting
effective temperature and iron content are Teff =5130±50K
and = -

+[ ]Fe H 0.1 dex0.1
0.2 , respectively, in excellent agreement

with the spectroscopic values (Section 4.1 and Table 4). We
found that the reddening of HD 15337 is consistent with zero
(Av=0.02± 0.02 mag), as expected given the relatively
short distance to the star (∼45 pc). Integrating the unreddened
model SED gives a bolometric flux at Earth of =Fbol

 ´ - -7.29 0.08 10 erg s cm9 2. Taking the Fbol and Teff

together with the Gaia DR2 parallax, adjusted by +0.08 mas
to account for the systematic offset reported by Stassun
& Torres (2018), gives the stellar radius as Rå=0.856±
0.017 Re. Finally, estimating the stellar mass from the
empirical relations of Torres et al. (2010) and a 6% error from
the empirical relation itself gives a stellar mass of
Må=0.91±0.06Me.

We can refine the stellar mass estimate by taking advantage of
the observed chromospheric activity, which can constrain the age
of the star via empirical relations. For example, taking the
chromospheric activity indicator, ¢ = - Rlog 4.916 0.038HK
from Gomes da Silva et al. (2014) and applying the empirical
relations of Mamajek & Hillenbrand (2008), gives a predicted age
of 5.1±0.8Gyr. As shown in Figure 3, according to the Yonsei–
Yale stellar evolutionary models (Yi et al. 2001; Spada et al.
2013), this age is most compatible with a stellar mass of
Må=0.90±0.03Me and [Fe/H]=0.25 dex, which with the
empirically determined stellar radius implies a stellar
log gå=4.53±0.02 (cgs). This is in good agreement with the
spectroscopic value of log gå=4.40±0.10 (cgs).

Other combinations of stellar mass and metallicity are
compatible with the observed effective temperature and radius
(Figure 3); however, they require ages that are incompatible
with that predicted by the chromospheric ¢RHK emission.
Finally, we can further corroborate the activity-based age
estimate by also using empirical relations to predict the stellar
rotation period from the activity. For example, the empirical
relation between ¢RHK and rotation period from Mamajek &
Hillenbrand (2008) predicts a rotation period for this star of
≈42days, which is compatible with the observed rotation

period derived from the HARPS RVs and activity indicators
(Prot=36.5 days; see the following section).

5. Frequency Analysis of the HARPS Measurements

We performed a frequency analysis of the HARPS time-
series to search for the Doppler reflex motion induced by the
two transiting planets discovered by TESS. We accounted for
the RV offset between the two different set-ups of the
instrument (old and new fiber bundle) using the value of
19.7 -m s 1 derived from the joint analysis presented in
Section 6, which is in good agreement with the expected
offset for a slowly rotating K1 V star such as HD 15337 (Lo
Curto et al. 2015).
The offset-corrected HARPS RVs are displayed in Figure 4

(upper panel), along with the time-series of the FWHM (middle
panel) and bisector span (BIS; lower panel). The generalized
Lomb–Scargle (GLS) periodogram (Zechmeister & Kürster
2009) of the combined RV data shows significant power at
frequencies lower than the inverse of the temporal baseline of
the HARPS observations, which is visible as a quadratic trend
in the upper panel of Figure 4. A similar trend is observed in
the FWHM obtained with the old fiber bundle (middle panel,
blue circles), suggesting that the RV trend might be due
to long-term stellar variability (e.g., magnetic cycles).41

Alternatively, the RV trend might be induced by a long period
orbiting companion, while the long-term variation of the
FWHM might be ascribable to the steady instrument
de-focusing observed between 2004 and 2015 (Lo Curto
et al. 2015).
The upper panel of Figure 5 shows the GLS periodogram of the

combined HARPS RVs, following the subtraction of the best-
fitting quadratic trend (cfr. Figure 4). The peaks with the highest
power are found at the orbital frequencies of the two transiting
planets ( fc=0.058 c/d and fb=0.210 c/d), with false-alarm
probabilities42 (FAPs) of ≈1% and RV semi-amplitude of about
2.0–2.5 -m s 1. The periodogram of the RV residuals after
subtracting the signal of the outer planet (Figure 5, second
panel), shows a significant peak (FAP< 0.1%) at the frequency
of the inner planet. The two peaks have no counterparts in the
periodograms of the activity indicators43 (FWHM and BIS;
Figure 5, fourth and fifth panels), suggesting that the signals are
induced by two orbiting planets with periods of 4.8 and
17.2 days. Finally, the GLS periodogram of the RV residuals
after subtracting the quadratic trend and the signals of the two
planets (Figure 5, third panel) displays a peak with a
FAP< 0.1% at ∼36.5 days, which is also significantly detected
in the periodogram of the FWHM (fourth panel). We
interpreted the 36.5 days signal as the rotation period of the
star, which agrees with the value expected from the ¢RHK
activity indicator (Section 4.2).

6. Joint Analysis

We performed a joint analysis of the TESS light curve
(Section 2) and RV measurements (Section 3) using the
software suite pyaneti, which allows for parameter

Figure 2. SED of HD 15337. Red symbols represent the observed photometric
measurements, where the horizontal bars represent the effective width of the
passband. Blue symbols are the model fluxes from the best-fit Kurucz
atmosphere model (black).

41 We note that the FWHM and BIS offsets between the two instrument set-
ups are unknown.
42 The FAP was derived using the bootstrap method described in (Kuerster
et al. 1997).
43 We combined the activity indicators from the two HARPS fibers by
subtracting the best-fitting second-order polynomials shown in Figure 4.
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estimation from posterior distributions calculated using Markov
chain Monte Carlo (MCMC) methods.
We removed stellar variability from the TESS light curves

using a cubic spline with knots spaced every 1.5 days. We then
extracted ∼8 hours of TESS photometry centered on each of the
nine (HD 15337 b) and three (HD 15337 c) transits observed by
TESS during Sectors 3 and 4. As described in Section 3, we
rejected two HARPS RVs and used the remaining 85 Doppler
measurements, while accounting for an RV offset between the
two different HARPS set-ups.
The RV model includes a linear and a quadratic term, to

account for the long-term variation described in Section 5, as
well as two Keplerians, to account for the Doppler reflex
motion induced by HD 15337 b and HD 15337 c. The RV
stellar signal at the star’s rotation period was modeled as an
additional coherent sine-like curve whose period was con-
strained with a uniform prior centered at Prot=36.5 days and
having a width of 0.2 days, as derived from the FWHM of the
peak detected in the periodogram of the HARPS FWHMs. For
the phase and amplitude of the activity signal we adopted
uniform priors. While this simple model might not fully
reproduce the periodic and quasi-periodic variations induced by
evolving active regions carried around by stellar rotation, it has
proven to be effective in accounting for the stellar signal of
active and moderately active stars (e.g., Pepe et al. 2013;
Gandolfi et al. 2017; Barragán et al. 2018; Prieto-Arranz et al.
2018). Any variation not properly modeled by the coherent
sine-curve, and/or any instrumental noise not included in the
nominal RV uncertainties, were accounted for by fitting two
RV jitter terms for the two HARPS set-ups.
We modeled the TESS transit light curves using the limb-

darkened quadratic model of Mandel & Agol (2002). For the
limb-darkening coefficients, we set Gaussian priors using the
values derived by Claret (2017) for the TESS passband. We
imposed conservative error bars of 0.1 on both the linear and
quadratic limb-darkening terms. For the eccentricity and
argument of periastron we adopted the parametrization
proposed by Anderson et al. (2011). A preliminary analysis
showed that the transit light curve poorly constrains the scaled
semimajor axis (a/Rå). We therefore set a Gaussian prior on
a/Rå using Kepler’s third law, the orbital period, and the
derived stellar mass and radius (Section 4.2). We imposed
uniform priors for the remaining fitted parameters. Details of
the fitted parameters and prior ranges are given in Table 4. We
used 500 independent Markov chains initialized randomly
inside the prior ranges. Once all chains converged, we used the
last 5000 iterations and saved the chain states every 10
iterations. This approach generates a posterior distribution of
250,000 points for each fitted parameter. Table 4 lists the
inferred planetary parameters. They are defined as the median
and 68% region of the credible interval of the posterior
distributions for each fitted parameter. The transit and RV
curves are shown in Figure 6 and Figure 7, along with the best-
fitting models.
We also experimented with Gaussian Processes (GPs) to

model the correlated RV noise associated with stellar activity.
GPs model stochastic processes with a parametric description
of the covariance matrix. GP regression has proven to be
successful in modeling the effect of stellar activity for
several other exoplanetary systems (see, e.g., Haywood et al.
2014; Grunblatt et al. 2015; López-Morales et al. 2016;

Figure 3. Hertzsprung–Russell Diagram for HD15337 based on the observed
effective temperature and bolometric luminosity, the latter computed directly
from Fbol and the Gaia parallax-based distance. Each panel compares the
observed properties of the star to evolutionary tracks from the Yonsei–Yale
models (Yi et al. 2001; Spada et al. 2013) for different permitted combinations
of stellar mass and metallicity. Blue points with labels represent the model ages
in Gyr. The central panel represents the case most compatible with all of the
available data, including the stellar age of ≈5.1Gyr as determined from the
observed chromospheric activity and stellar rotation period (see the text).

Figure 4. Offset-corrected HARPS RVs of HD 15337 (upper panel), and
FWHM and BIS of the cross-correlation function (middle and lower panels).
The blue circles and red diamonds mark the measurements acquired with the
old and new fiber bundle, respectively. The thick lines mark the best-fitting
parabolic curves to the data (see the text).
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Barragán et al. 2018). To this aim, we modified the code
pyaneti in order to include a GP algorithm coupled to the
MCMC method. We implemented the GP approach proposed
by Rajpaul et al. (2015). Briefly, this framework assumes that
the star-induced RV variations and activity indicators can be
modeled by the same underlying GP and its derivative. This
allows the GP to disentangle the RV activity component from
the planetary signals.

We assumed that the stellar activity can be modeled by the
quasi-periodic kernel described by Rajpaul et al. (2015). We
modeled together the HARPS RV, BIS, and FWHM time-
series and we treated RV and BIS as being described by the GP
and its first derivative, while for FWHM we assumed that it is
only described by the GP. The fitted hyper-parameters are then
Vc, Vr, Bc, Br, Lc, as defined by Rajpaul et al. (2015), to account

for the GP amplitudes of the RV, BIS, and FWHM signals, the
period of the activity signal PGP, the inverse of the harmonic
complexity lp, and the long term evolution timescale le. We
coupled this GP approach with the joint modeling described in
the previous paragraphs of the present section (omitting the
extra coherent signal).
As for the planetary signals, we imposed the same priors

listed in Table 4. For the hyper-parameters, we used uniform
priors, except for PGP, for which we imposed a Gaussian prior
with mean 36.5 days and standard deviation of 0.2 day. We
used 250 chains to explore the parameter space. We created the
posterior distributions with 500 iterations of converged chains,
which generated a posterior distribution with 250,000 points
for each parameters.

Figure 5. GLS periodograms of (1) the combined HARPS RV measurements, following the subtraction of the quadratic trend (first panel); (2) the RV residuals after
subtracting the signal of HD 15337 c (second panel); (3) the RV residuals after subtracting the signal of HD 15337 b and c (third panel); (4) the FWHM of the cross-
correlation function (fourth panel); (5) the bisector span (BIS) of the cross-correlation function (fifth panel). The dashed horizontal lines mark the FAP at 0.1%, 1%
and 5%. The frequencies of the two transiting planets, as well as of the signal at 36.5 days, are marked with vertical arrows.
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For planets b and c we derived an RV semi-amplitude of
-
+ -2.71 m s0.51

0.54 1 and -
+ -2.06 m s0.58

0.64 1, respectively, which are in
very good agreement with the values reported in Table 4. The
other planetary and orbital parameters are also consistent with
the values presented in Table 4. For the GP hyper-parameters,
we found =  -V 0.55 0.23 m sc

1, = -
+ -V 70 m sr 21

27 1, =Bc

-
+ -9.4 m s2.9

3.4 1, = -
+ -B 64 m sr 25

20 1, =  -L 5.4 2.2 m sc
1 =PGP

36.5 0.2 d, l = -
+4217 de 685

624 , and l = -
+1086p 394

501. The
relatively large values of the scale parameters in the GP, i.e.,
le and lp, indicate that the stellar activity behaves like a
sinusoidal signal (with slight corrections).

7. Discussion and Conclusions

The innermost transiting planet HD 15337 b ( =Porb,b

4.8 days) has a mass of = -
+

ÅM M7.51b 1.01
1.09 and a radius of

Rb=1.64±0.06R⊕, yielding a mean density of r =b

-
+ -9.30 g cm1.58

1.81 3. Figure 8 displays the position of HD15337 b
on the mass–radius diagram compared to the sub-sample of small
transiting planets (  ÅR R3p ) whose masses and radii have been
derived with a precision better than 25%. Theoretical models from
Zeng et al. (2016) are overplotted using different lines and colors.
Given the precision of our mass determination (∼14%), we

Figure 6. Folded transit light curves of HD 15337 b (left panel) and HD 15337 c (middle panel), based on nine and three single transits observed by TESS. The best-
fitting transit models are overplotted with thick black lines. The TESS data points are shown with gray circles, whereas the 10 minutes binned data are displayed with
red circles.

Figure 7. Upper panel: HARPS RV measurements vs. time, following the subtraction of the systemic velocities derived for the old (blue circles) and new (red
diamonds) instrument set-up. Lower panels: phase-folded RV curves of HD 15337 b (left), HD 15337 c (middle) and stellar signal at 36.5 days (right). The best-fitting
Keplerian and sine models are overplotted with thick black lines. The vertical gray lines mark the error bars including the RV jitter.
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conclude that HD 15337 b is a rocky terrestrial planet with a
composition consisting of ∼50% silicate and ∼50% iron.

For HD 15337 c ( =P 17.2 daysorb,c ), we obtained a mass of
= -

+
ÅM 8.11 Mc 1.69

1.82 and a radius of Rc=2.39±0.12R⊕,
yielding a mean density of r = -

+ -3.23 g cmc 0.72
0.90 3. Therefore,

HD 15337 b and c have similar masses, but the radius of
HD 15337 c is ∼1.5 times larger than the radius of
HD 15337 b. The lower bulk density of HD 15337 c suggests
that the planet is likely composed by a rocky core surrounded
either by a considerable amount of water, or by a light,
hydrogen-dominated envelope. In the case of a water-rich
planet, the amount of water and high planetary equilibrium
temperature would imply the presence of a steam atmosphere,
which would be strongly hydrogen dominated in its upper
layer, as a consequence of water dissociation and the low mass
of hydrogen. It is therefore plausible to assume that
HD 15337 c hosts a hydrogen-dominated atmosphere, at least
in its upper part.

As in other systems hosting two close-in sub-Neptune-mass
planets (e.g., HD 3167 Gandolfi et al. 2017), the radii of
HD 15337 b and c lie on opposite sides of the radius gap
(Fulton et al. 2017; Van Eylen et al. 2018), with the closer-in
planet having a higher bulk density, similar to other close-in
systems with measured planetary masses (e.g., HD 3167, K2-
109, GJ 9827; Gandolfi et al. 2017; Guenther et al. 2017;
Prieto-Arranz et al. 2018). This gap is believed to be caused by
atmospheric escape (Owen &Wu 2017; Jin &Mordasini 2018),
which is stronger for closer-in planets. Within this picture,
HD 15337 b would probably have lost its primary, hydrogen-
dominated atmosphere and now hosts a secondary atmosphere
possibly resulting from out-gassing of a solidifying magma
ocean, while HD 15337 c is likely to still partly retain the
primordial hydrogen-dominated envelope. This is consistent
with Van Eylen et al. (2018), who measured the location and
slope of the radius gap as a function of orbital period and
matched it to models suggesting a homogeneous terrestrial core
composition.

To first order, the radii of HD 15337 b and c depend on the
present-day properties of their atmospheres, which are
intimately related to the amount of high-energy (X-ray and
extreme ultraviolet; l < 91.2 nm) stellar radiation received
since the dispersal of the protoplanetary nebula, and thus also

to the stellar rotation history. The evolution of the stellar
rotation rate does not follow a unique path because stars of the
same mass and metallicity can have significantly different
rotation rates up to about 1 Gyr (e.g., Mamajek & Hillenbrand
2008; Johnstone et al. 2015; Tu et al. 2015). For older stars, it
is therefore not possible to infer their past high-energy emission
from their measured stellar properties. Starting from the
assumption that HD 15337 c hosted a hydrogen-dominated
atmosphere with solar metallicity throughout its entire evol-
ution, we derived the history of the stellar rotation and high-
energy emission by modeling the atmospheric evolution of
HD 15337 c. To this end, we employed the atmospheric
evolution algorithm described by Kubyshkina et al. (2018)
and further developed by Kubyshkina et al. (2019), which is
based on a Bayesian approach, fitting the currently observed
planetary radius and combining the planetary evolution model
with the MCMC open-source algorithm of Cubillos et al.
(2017). The planetary atmospheric evolution model, system
parameters (i.e., planetary mass, planetary radius, orbital
separation, current stellar rotation period, stellar age, stellar
mass; Table 4) were then used to compute the posterior
distribution for the stellar rotation rate at any given age via
MCMC. We assumed Gaussian priors determined by the
measured system parameters and their uncertainties.
Figure 9 shows the obtained posterior distribution for the

rotation period HD 15337 at an age of 150Myr in comparison
with the distribution derived from measurements of open
cluster stars of the same age (Johnstone et al. 2015). Our results
indicate that HD 15337, when it was young, was likely to be a
moderate rotator, with a high-energy emission at 150Myr
ranging between 3.7 and 127 times the current solar emission,
further excluding that the star was a very fast/slow rotator. We
further employed the result shown in Figure 9 to estimate the
past atmospheric evolution of a possible hydrogen-dominated
atmosphere of HD 15337 b. Accounting for all uncertainties on
the system parameters and on the derived history of the stellar
rotation period, we obtained that HD 15337 b has completely
lost its primary atmosphere, assuming it held one, within

Figure 8. Mass–radius diagram for low-mass (Mp<12M⊕), small
(Rp<3 R⊕) planets with mass–radius measurements better than 25%
(fromhttp://www.astro.keele.ac.uk/jkt/tepcat/; Southworth 2011). Composi-
tion models from Zeng et al. (2016) are displayed with different lines and
colors. The solid blue and red circles mark the position of HD 15337 b and HD
15337 c, respectively.

Figure 9.MCMC posterior distributions for the stellar rotation period at an age
of 150 Myr obtained from the modeling of HD 15337 c. The shaded areas
correspond to the 68% region of the credible interval of the posterior
distribution. The black histogram shows the distribution of stellar rotation
periods measured for open cluster stars with an age of 150 Myr (from
Johnstone et al. 2015).
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300Myr, in agreement with the currently observed mean
density.

The position of HD 15337 c in the mass–radius diagram
(Figure 8) indicates that the planet may be hosting a massive
hydrogen-dominated envelope or a smaller secondary atmos-
phere. As primary atmospheres are easily subject to escape,
knowing the current composition of the envelope of
HD 15337 c would provide a strong constraint on atmospheric
evolution models. In this respect, this planet is similar to
πMen c (Gandolfi et al. 2018; Huang et al. 2018); furthermore,
as for πMen, the close distance to the system and brightness of
the host star would enable high-quality transmission spectrosc-
opy spanning from far-ultraviolet to infrared wavelengths. Of
particular interest would be probes of an extended, escaping
atmosphere. Spectral lines sensitive to various levels of
extended atmospheres include H I, C II, and O I resonance
lines in the ultraviolet, aH in the optical, and He I in the near-
infrared. This suite of lines would provide a comprehensive
picture of the upper atmosphere of the planet, thus constraining
atmospheric escape and evolution models.
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