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Abstract

We investigate the misalignment of the circumbinary disk around the binary HD 98800 BaBb with eccentricity
e;0.8. Kennedy et al. observed the disk to be either at an inclination of 48° or polar aligned to the binary orbital
plane. Their simulations showed that alignment from 48° to a polar configuration can take place on a shorter
timescale than the age of this system. We perform hydrodynamical numerical simulations in order to estimate the
cavity size carved by the eccentric binary for different disk inclinations as an independent check of polar
alignment. Resonance theory suggests that torques on the inner parts of a polar disk around such a highly eccentric
binary are much weaker than in the coplanar case, indicating a significantly smaller central cavity than in the
coplanar case. We show that the inferred inner radius (from carbon monoxide measurements) of the accretion disk
around BaBb can exclude the possibility of it being mildly inclined with respect to the binary orbital plane and
therefore confirm the polar configuration. This study constitutes an important diagnostic for misaligned
circumbinary disks, since it potentially allows us to infer the disk inclination from observed gas disk inner radii.
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1. Introduction

The majority of stars form in binary or multiple systems
(Ghez et al. 1993) and circumbinary disks, as well as
circumstellar disks, are likely to form. Stars do form in a
chaotic environment (McKee & Ostriker 2007), and therefore
we expect misaligned circumbinary disks to be quite common
rather than rare (Offner et al. 2010; Bate 2012, 2018).

The evolution of circumbinary disk orientations have been
extensively investigated in previous works. If the binary orbit is
circular, an initially misaligned circumbinary disk precesses
about the binary angular momentum vector and eventually
aligns with the binary orbital plane (Papaloizou & Ter-
quem 1995; Lubow & Ogilvie 2000; Nixon et al. 2011;
Foucart & Lai 2014). If the binary orbit is eccentric and the
disk misalignment is above a critical inclination, the circum-
binary disk precesses around the eccentricity vector of the
binary and aligns its angular momentum to it (Aly et al. 2015;
Martin & Lubow 2017, 2018; Lubow & Martin 2018; Zanazzi
& Lai 2018). This case is referred to as polar alignment.

The torque exerted on an aligned (prograde and coplanar)
circumbinary disk by the binary opens a central gap. The gap
has been directly observed in some cases, such as in GG Tau
(e.g., Dutrey et al. 2016). The gap is opened by the effects of
torques due to Lindblad resonances in the disk. The gap size is
a function of the binary separation, eccentricity, and disk
viscosity (Artymowicz & Lubow 1994).

If the disk is not aligned with the binary, there is a reduction
in the torque and consequently a reduction in the central gap
size. This is expected for two reasons. First, misaligned disks
feel a weaker Lindblad torque from the binary (Lubow et al.
2015; Miranda & Lai 2015; Nixon & Lubow 2015). For
significant binary–disk misalignments, this effect occurs
because the disk material at some radius can be on average
located farther away from the binary than would occur for a
coplanar disk, and in addition the relative motion of the binary
and disk increases. The latter effect is especially important for
retrograde disks (e.g., Nixon & Lubow 2015). Second, the

Lindblad torque for a highly misaligned disk decreases with
binary eccentricity, if the eccentricity is high (Lubow &
Martin 2018). This latter effect can be understood in the
extreme case of a polar disk with a central binary on an orbit
with eccentricity of unity. In that case, at each instant in time
the binary potential is axisymmetric in the plane of the disk,
and therefore the Lindblad torque on the disk is zero. We find
that for tidal azimuthal wavenumbers m�2, the Lindblad
torque on a polar disk approaches zero as (1−e)m for binary
eccentricity e close to unity. In contrast, an aligned binary–disk
system involving a highly eccentric binary produces a strongly
nonaxisymmetric potential in the plane of the disk, generally
resulting in a strong Lindblad torque on the disk. Since polar
circumbinary disks are more likely associated with high
eccentricity binaries, this effect should be quite important in
reducing its central gap size relative to the gap in a
coplanar disk.
Many misaligned circumbinary disks have been observed so

far at different stages in the evolution of binary systems. The
extensively studied pre-main-sequence binary KH 15D hosts an
inclined and precessing circumbinary disk (Chiang & Murray-
Clay 2004; Winn et al. 2004; Capelo et al. 2012; Smallwood
et al. 2019). The circumbinary disk that orbits around the
binary IRS 43 is highly misaligned with respect to the binary
orbital plane (Brinch et al. 2016). The most extreme misaligned
circumbinary debris disk observed so far is the debris disk
around the eccentric binary 99 Herculis that has been inferred
to be polar (i.e., with its angular momentum along the
eccentricity vector of the binary; Kennedy et al. 2012).
Very recently the Atacama Large Millimeter/submillimeter

Array (ALMA) telescope allowed a more precise characteriza-
tion of the highly misaligned circumbinary disk around one of
the two components of the quadruple system HD 98800
(Kennedy et al. 2019). This system is composed of two pairs of
binaries (“A” and “B,” or “AaAb” and “BaBb”) orbiting each
other with semimajor axis 54 au, eccentricity
eAB=0.52±0.01, and period of 246±5 yr.
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The binary BaBb has a very well characterized orbit with
semimajor axis 1 au and eccentricity e=0.785±0.005. The
masses of the two stars are MBa=0.699Me and
MBb=0.582Me (Boden et al. 2005; Verrier & Evans 2008).
HD 98800 BaBb has been known to host a bright circumbinary
disk (Walker & Wolstencroft 1988) that was initially inferred
to be coplanar with the binary orbital plane (Andrews et al.
2010). However, higher-resolution images obtained with
ALMA showed that the disk orientation is quite different
(Kennedy et al. 2019).

From the modeling of the dust and carbon monoxide
measurements, Kennedy et al. (2019) inferred a disk radial
extent from 2.5±0.02 au to 4.6±0.01 au in dust and from
1.6±0.3 au to 6.4±0.5 au in gas. Both components have
been found to be consistent with having the same orientation.
The disk inclination relative to the binary orbital plane has been
inferred to be either 48° or close to 90°. Kennedy et al. (2019)
further investigated this system by performing numerical
smoothed particle hydrodynamics (SPH) simulations. They
modeled two disk orientations, 48° and 90° (polar), and
concluded that the polar configuration is the more likely based
on the argument that the time required for a disk with an initial
misalignment of 48° to evolve to 90° (polar) is very short
compared to the age of the stars.

As also pointed out in Kennedy et al. (2019), there is some
uncertainty in the evolution time due to unknown properties of
the disk, such as its turbulence parameter α. For sufficiently
small α10−5, linear models suggest that the tilt evolution
timescale could be comparable to the age of the system of
10Myr (Lubow & Martin 2018; Zanazzi & Lai 2018). While
we are not suggesting these conditions are likely in HD 98800,
they may be possible. We are therefore motivated to provide an
independent check on the inclination of this disk. Furthermore,
such an independent check may be useful in other systems
where the parameters are not as observationally well
determined.

In this Letter we show that a circumbinary disk orbiting the
binary BaBb can radially extend in to the observed inner radius
only if the disk is in a polar configuration. We therefore
confirm the conclusion drawn in Kennedy et al. (2019) that the
disk is in a polar configuration. This analysis constitutes an
important diagnostic for this type of observation and allows us
to exclude the possibility of the disk being inclined by 48° with
respect to the binary orbital plane.

2. Hydrodynamical Simulations

We ran SPH numerical simulations using the code PHAN-
TOM (Lodato & Price 2010; Price & Federrath 2010;
Price 2012; Price et al. 2017). Misaligned disks in binary
systems have been extensively studied with PHANTOM (e.g.,
Nixon 2012; Nixon & Lubow 2015; Franchini et al. 2019). We
perform SPH simulations using N=5×105 particles. The
resolution of the simulation depends on N, the viscosity
parameter α, and the disk scale height H. The Shakura &
Sunyaev (1973) viscosity parameter is modeled by adapting
artificial viscosity according to the approach of Lodato &
Price (2010).

We set up a circumbinary disk orbiting around the binary
BaBb. The initial surface density profile is set as
Σ∝(R/Rin)

−3/2 between Rin=1.6 au and Rout=6.4 au,
and the sound speed distribution is given by cs∝(R/Rin)

q

with q=3/4 in order to ensure that the disk is uniformly

resolved (Lodato & Pringle 2007). The initial mass of the
gaseous accretion disk is set asMd=0.001Me. The small disk
mass does not significantly affect the evolution of the binary
orbit (e.g., Martin & Lubow 2019). The aspect ratio at the inner
edge is H/R(Rin)=0.1 and the viscosity is set as α=0.1.
Since these parameters are both upper limits to values expected
for protoplanetary disks, we are considering the most viscous
case possible. The cavity size is determined by the balance
between the viscous torque with the binary torque and thus
these parameters lead to the smallest possible cavity size.
We measure the size of the cavity carved by the binary in

disks at different inclinations i=0°, 48°, 90°. The disk has to
reach a steady state in the inner parts of the disk where the tidal
torque balances the viscous torque in the disk. The inclination
of the coplanar and polar-aligned disks do not evolve and so
finding a steady state is straightforward. However, in the
misaligned case, the inclination of the disk changes in time.
A low mass circumbinary disk that is initially inclined by

48° might evolve toward polar alignment, depending also on its
initial longitude of ascending node, and by this time the cavity
is the same size as the disk that starts at 90°. Therefore, we start
a simulation with the circumbinary disk inclined by 20°. The
disk will eventually evolve to coplanar alignment, but because
the binary is eccentric, the disk undergoes tilt oscillations (see,
for example, Figures 6 and 12 in Smallwood et al. 2019). The
disk becomes warped but reaches a density averaged inclina-
tion of 48° at times of roughly 100 and 740 binary orbits. The
disk surface density in the inner regions has reached a steady
state by 740 binary orbits, and so we choose to show all three
simulations at this time.
Figure 1 shows the disk column density for the coplanar (left

panel), 48° (middle panel), and polar (right panel) configura-
tion, respectively, after 740 binary orbits. Each disk is viewed
face on. The binary components are identified by the green
circles, and the gas color scale corresponds to roughly two
orders of magnitude higher density in the yellow regions
compared to the red ones. We can clearly see that the cavity
size decreases with the misalignment angle. This result agrees
with our expectations based on resonance theory, as discussed
in the Introduction.
Figure 2 shows the circumbinary disk surface density profile

after 740 binary orbits for the three different simulations. The
black line corresponds to the coplanar disk; the green and red
lines identify the disk at i=48° and i=90°, respectively. The
disk masses differ somewhat in the three cases likely, at least in
part, because of the initially small inner disk edge that causes
more mass to be initially accreted onto the binary in the more
aligned cases that have stronger torques than the polar case. We
find that the disk is able to reach the observed inner edge of
Rin≈1.6 au only in the polar case, while it remains truncated
farther out (roughly 2.5 au) in the coplanar and 48° case.

3. Discussion and Conclusion

The theory of disk resonances suggests that polar disks
around highly eccentric binaries should contain considerably
smaller central gaps than in the case of coplanar systems, as we
find in our simulations. We have investigated the evolution of
the surface density of the inner parts of a circumbinary disk
around the binary star BaBb in the quadruple system HD 98800
for different disk inclinations. We have shown that the inner
radius inferred from carbon monoxide measurements suggests
that the only configuration possible is a polar-aligned accretion
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disk. According to the observations there are two possibilities:
a disk misaligned to the binary orbital plane by 48° or a polar-
aligned disk (Kennedy et al. 2019). However, the size of cavity
is still larger in the 48° case; therefore, this type of
configuration can be ruled out by the observations. Further-
more, for HD 98800, the disk that orbits the highly eccentric
binary and is initially inclined by 48° can evolve toward polar
alignment on a timescale that is short compared to the age of
the stars (Kennedy et al. 2019). Note that we considered the
most viscous case possible, and this gives the smallest possible
cavity size. More accurately determined CO density profiles
would help further constrain our models.

We showed, using hydrodynamical simulations, that the
radial extent of the gas disk detected around the BaBb binary in
HD 98800 is consistent with it being in a polar configuration
and thus confirms the orientation found by Kennedy et al.
(2019). Although our analysis was applied to a particular
system, it is important in general, since it provides a means of a
diagnostic for other circumbinary disks with poorly constrained
inclination, especially for highly eccentric orbit binaries. For
disks whose gaseous configuration can be estimated from

carbon monoxide measurements the analysis presented can be
used as a tool to infer the disk inclination with respect to the
binary orbital plane.

We thank Daniel Price for providing the PHANTOM code for
SPH simulations and acknowledge the use of SPLASH
(Price 2007) for the rendering of the figures. We acknowledge
support from NASA through grants NNX17AB96G and
80NSSC19K0443. Computer support was provided by
UNLV’s National Supercomputing Center.
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Figure 1. Circumbinary accretion disks around the binary BaBb viewed face on. The disk is shown at a time of 740 binary orbits with inclination: i=0° (left panel),
i=48° (middle panel), and i=90° (right panel). The binary components are shown by the two green circles. In the polar-aligned disk on the right, one star is behind
the other.

Figure 2. Surface density profile of the circumbinary disk after 740 binary
orbits for three different inclinations: i=0° (black), i=48° (red), and i=90°
(green). The surface density Σ is normalized by 10−6 M/a2, the binary mass
divided by the square of its separation.
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