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Abstract 
 

Timetabling is a problem faced in all higher education institutions. The International Timetabling 
Competition (ITC) has published a dataset that can be used to test the quality of methods used to solve 
this problem. A number of meta-heuristic approaches have obtained good results when tested on the ITC 
dataset, however few have used the ant colony optimization technique, particularly on the ITC 2007 
curriculum based university course timetabling problem. This study describes an ant system that solves 
the curriculum based university course timetabling problem and the quality of the algorithm is tested on 
the ITC 2007 dataset. The ant system was able to find feasible solutions in all instances of the dataset and 
close to optimal solutions in some instances. The ant system performs better than some published 
approaches, however results obtained are not as good as those obtained by the best published approaches. 
This study may be used as a benchmark for ant based algorithms that solve the curriculum based 
university course timetabling problem.  
 

Original Research Article 
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1 Introduction 
 
The University Course Timetabling Problem (UCTP) is concerned with assigning venues and timeslots to 
courses whilst meeting several required or desirable constraints. There have been a number of approaches to 
solving this problem, some of which divide the problem into two stages, the construction stage that finds a 
solution that meets all required constraints and the improvement stage that improves the solution found in 
the construction stage by minimizing desirable constraints.  
 
Some of the two stage approaches have solved the UCTP with local search methods like simulated annealing 
[1], tabu search [2] and hill climbing [3] to improve a feasible timetable that was previously constructed with 
heuristics such as the least saturation degree first heuristics [4]. The least saturation degree first heuristic 
sequentially assigns to the timetable solution harder courses (those courses that can be assigned to fewer 
room period combinations) before assigning less hard courses. If a feasible solution is not found in the first 
instance, the solution is repaired by applying neighborhood functions like swapping the time slots or venues 
of two events recursively until it is transformed to a feasible solution.  
 
Evolutionary based local search techniques like ants colony [5], genetic [6] and swarm intelligence [7] 
algorithms can be used to efficiently find a feasible timetable solution that would not need to be repaired, 
and can produce different solutions for a given problem as feasible solutions are not constructed in a 
deterministic fashion. Evolutionary strategies can also select sequence or combination of moves adaptively 
which in turn may improve the quality of the resulting timetable [8,9].    
 
This paper describes a greedy ants’ colony optimization strategy for solving the university course 
timetabling problem. Ant systems have previously been used for timetable construction [5,10,11]. This study 
attempts to construct a feasible timetable in the first phase and then improves the desirable constraints on the 
found feasible timetable in the second phase, which is different from the ant colony optimization methods 
like [5,10,11] that optimize both required and desirable constraints in a single phase.   
 
Subsequent sections in this paper formally describes the UCTP, the ants’ system for construction and 
improvement stages and then the performance of the ants’ colony algorithm is tested on ITC 2007 
curriculum based benchmark dataset and compared with other published results. This dataset has been used 
as benchmark for testing the quality of algorithms in a number of researches, but no published result on the 
quality of solutions that an ants’ system can find was identified for this dataset during the literature review. 
Nothegger et al.’s [11] ants’ system solved the post enrolment university course timetabling problem. 
 

2 University Course Timetabling Problem (UCTP) 
 
The UCTP has been defined as the construction of a timetable where “a number of courses must be placed 
within a given timetable (assigned venues and periods), so that the timetable is feasible (may actually be 
carried out), and a number of additional preferences to be satisfied is maximized” [12]. A feasible timetable 
solution is met when all required constraints are met. Required constraints are hard constraints while 
desirable requirements (additional preferences) are soft constraints. A violation of a soft constraint does not 
result in an infeasible timetable solution. The goal is to minimize the soft constraint violations. The majority 
of researches have always found a feasible solution, sometimes by a simple least saturation degree first 
heuristic [2,13], thus the majority studies have focused on minimizing the soft constraints.   
 
The ITC 2007 dataset is used for evaluating the algorithm, thus hard and soft constraints are the same as the 
constraints used in the Track 2 (UD2) of the competition as well as in a number of studies that have used this 
dataset [2,7,13–17].  These constraints as listed in [18] are as follows: 
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2.1 Hard constraints 
 

HC1. All courses should be assigned the required number of weekly lectures. 
HC2. A lecturer should not be assigned to teach more than one course at a given period. 
HC3. Students should not be scheduled to attend more than one lecture at a given period. 
HC4. Not more than one course can be assigned to a room at a given period. 
HC5. Courses should be assigned to periods when the lecturer is available. 

 
2.2 Soft constraints  
 

SC1. The number of students attending a lecture in a particular room should be less or equal to the 
capacity of the room. Each student that will not be allocated a seat if a lecture is scheduled in a 
particular room counts as one violation. 

SC2. The number of lecture days for each course should be greater or equal to the minimum working 
days for that course. For each course, the number of days less than the minimum working days is 
the number of violations. 

SC3. Students’ lectures should not be isolated, that is; lectures that belong to each curriculum in a 
given day should be in consecutive periods. Each lecture belonging to curriculum that is isolated 
counts as one violation.  

SC4. All lectures of a course should be scheduled in the same room. Each additional room different 
from the first room given to a course counts as one violation.  

 
Any hard constraint violation results in an infeasible timetable. The quality of a feasible timetable which 
depends on the number of soft constraint violations is evaluated by: 
 

������� = 	
����
� ∗ 1 + 	
����
� ∗ 5 + 	
����
� ∗ 2 + 	
����
� ∗ 1 
 
Lu and Hao [2] defined the detailed mathematical model of the curriculum based UCTP with the hard and 
soft constraint violations for the track 2 of the ITC 2007 dataset. The mathematical model for this study is 
identical to the model described in Lu and Hao [2].  
 

3 Algorithm 
 
This paper uses ants’ colony optimization for both construction and improvement phases, which is different 
from other ant systems that finds a solution in a single phase. 
 

3.1 Construction phase 
 
A number of studies have used heuristic techniques like the least saturation degree first and largest degree 
first  heuristics [1,3,9,19,20],  which constructs a feasible solution by assigning the most difficult events to a 
room/time slot before the less difficult events. Difficult events are those events that have fewer available 
rooms/time slots that they can be assigned to. In some cases, a feasible solution is not be found by the 
construction heuristics in a single run [15],  the solution can be repaired by neighbourhood search [9].   
 
Geiger [15] adaptively updated the order in which events are to be scheduled by identifying those events that 
are particularly difficult to schedule in the previous run and then giving them priority in subsequent run, 
which can be seen as the working principle of the ants colony optimization algorithm. 
 
Algorithm 1 and Algorithm 2 describes the ant system that finds a feasible solution.   
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3.1.1 Representation 
 
Problems have to be represented as a graph before a solution can be found using ants’ colony optimization. 
Socha, Knowles and Sampels [5] represented the UCTP as a graph of virtual timeslots. Their representation 
does not take room assignments into account but uses a deterministic network flow algorithm for room 
assignments. Djamarus and Ku-Mahamud [10] modelled the UCTP as a bipartite graph of course vertices, 
lecturer vertices, period vertices and room vertices which may result in a large pheromone trail matrix. 
Nothegger et al. [11] represented the UCTP with course, room and period vertices, but stored the pheromone 
trail information in two matrices, PeriodTraili,j; the trail for event i in time slot j, and RoomTraili,k; the trail 
for event i in room k. The authors noted that is not as expressive as representing the trail information as 
Traili,j,k; the trail of event i in timeslot j and in period k, but it sufficiently approximates Traili,j,k and is 
computationally less expensive.  This study uses the more expressive representation, accepting the trade-off 
of fewer computations per unit time. Room and time slots were combined to a single vertex and edges 
connect a Course Ci to a RoomPeriod RjPk if scheduling the course in that room and period does not violate 
any unavailable period constraint (HC5) and the difference in room capacity and course size is not more than 
one; thus minimizing SC1. This representation ensures that HC5 cannot be violated and SC1 is minimized in 
any timetable solution generated. The illustration of the graph representation is shown in Fig. 1. 
 
3.1.2 Initialization 
 
The pheromone trail matrix is initialized using Min Max Ant System Algorithm [5]. The value (edge weight) 
in the trail matrix is initialized to Tmax if an edge exists between the course vertex and RoomPeriod vertex 
(assigning a course that period will not violate HC5 and the difference between the room capacity and course 
size is not more than one), else the value on the trail matrix is initialized to zero. 
 
3.1.3 Graph walk 
 
An ant starts at a random Course vertex, and then walks to a possible RoomPeriod vertex with a probability 
dependent on the quantity of pheromone on the edge, adding visited course, room and period triples to an 
initially empty partial timetable solution, until all events have been scheduled. The probability that an ant 
will follow an edge is computed using Equation    (1). Possible RoomPeriod vertices are those vertices that 
will not violate any hard constraint when the course, room and period event triple is added to the partial 
timetable solution.  
 

 
Fig. 1. Graph representation of the university course timetabling problem 

 

C1 

R1P2 

R1P1 

Cn 

C2 

RnPn 

 



 
 
 

Kenekayoro and Zipamone; BJMCS, 14(2): 1-10, 2016; Article no.BJMCS.23143 
 
 
 

5 
 
 

If no such RoomPeriod vertex exists, a RoomPeriod vertex that will violate a hard constraint is walked to 
with a probability based on the pheromone trail on the edge and the number of hard constraints that will be 
violated (heuristic) when the course, room period event triple is added to the partial solution. The edge 
weight on the trail matrix is also not updated during trail update. 
 
 ��
���������,� =  ������,��  +   !���"��#�,�$

∑ &������,��  +    !���"��#�,�$ '()*+,- ./ 0.11�+2,34�
 

   (1) 
 

Alpha, α is the trail weight, a high value increases the sensitivity of ants to pheromone trail. Beta, β is the 
heuristic weight, a high value increases the sensitivity of ants to heuristic information. Heuristic is computed 
as number of hard constraints (5) minus number of additional hard constraint violations if Course i and 
RoomPeriod j event tuple is added to the partial timetable solution.  After several tests, Alpha = 2 and Beta = 
8 is used for the results shown in subsequent sections.  
 

3.1.4 Trail update 

 
It is suggested that not all ants should update the pheromone trail [21], thus the  elitist strategy where only 
the ant with the best solution in a cycle (CBest) updates the pheromone trail [22] is used.  After all ants in a 
cycle have walked the UCTP graph and found a solution, the best solution (smallest number of hard 
constraints violations) is used to update the trail matrix. All edges that the ant followed to find its solution, 
except those edges that caused hard constraint violations are updated using the formula in Equation (4). The 
algorithm used here only rewards positively, different from [10] that positively or negatively updates ant 
trails. In tests, computing reward with only positive updates Equation (4) found feasible solutions faster than 
computing rewards with Equation (3) that is described in [22]. The values on the pheromone trail matrix are 
reduced through the evaporation formula in Equation (5) in order to avoid convergence to a local minimum. 
The rate of evaporation is controlled by rho; ρ, which can be between 0 and 1. When ρ is high, the rate of 
evaporation is high and thus convergence is slow. When ρ is small, the rate of evaporation is slow, 
convergence is fast and thus reduces the search space ants explore.  
 

    5!6��7 = 8 �
�9
:,1;<=:,1; , 	>!"� >  @>!"�

1, 	>!"� < @>!"� B   
 
 

 5!6��7 =  �
�9=:,1;<
:,1;   

 

 ������,� =   ������,�  + 5!6��7   
 

 ������,� =  ������ � ∗  C1 −  EF   
 

  
Algorithm 1 construction graph walk 

1 AntWalk(alpha, beta, trail) 
2  While not visited all courses 
3   C = random course not already visited 
4    While not assigned all weekly lectures 
5     Possible = List of feasible room period objects the course can be assigned to 
6     RP = a RoomPeriod from possible based on probability in Equation    (1) 
7     Create Event from tuple (C,R,P) 

 
 
 

(2) 

(3) 

(4) 

(5) 
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 Algorithm 2 ants colony optimization  

1 AntColonyOptimization (numberCycles, numberAnts) 
2  Input:  
3   alpha = 2  
4   beta = 8 
5   rho = 0.05 
6   tmin = 0.01 
7   tmax = 10 
8   GBest = ∞ 
9  Initialize Pheromone trail matrix 
10  for i=1 to numberCycles 
11   for j=1 to numberAnts 
12    solution[j] = AntWalk(alpha, beta, trail) 
13   CBest = GHIHJKJLMINOPQHIORHMSQOHMIT4UVKJWXPYZ[ION  
14   if CBest < GBest  
15    GBest = CBest 
16   if GBest = 0 
17    return GBest Timetable Solution 
18   Update pheromone trail matrix 
19   Pheromone trail evaporation 
20   Set edge weights to tmax if edge weight > tmax  
21   Set edge weights to tmin if edge weight < tmin 
    

3.2 Improvement phase 
 
The improvement phase is key feature of the method used in this study. Local search algorithms like hill 
climbing, great delunge, simulated annealing and tabu search [3,9,23,24] have been used for the 
improvement phase of exam or course timetabling problem, but few studies have used ant systems. 
Nothegger et al.  [11] used a local search algorithm that does not escape the local optima, however the main 
algorithm used in their study minimized both hard and soft constraints, unlike [3,9,23,24] that does not take 
soft constraint violations into account in the construction phase.  
 
The ant system used in the improvement phase of this study improves the quality of a feasible timetable with 
a greedy heuristics. Only improving moves are accepted which makes this essentially a hill climbing 
approach, however pheromone trails are used to break ties. 
 
3.2.1 Neighbourhood structures 
 
In the improvement phase, neighbourhood structures are used to improve the quality (reduce the number of 
soft constraint violations) in an already feasible schedule. The choice of neighbourhood structures is 
important for local search algorithms as they are believed to be among key features that determine the 
quality of the local search algorithm [2].  
 
The simple swap neighbourhood structure described in Lü and Hao [2] is also used in this study. The courses 
of two course room period triples are exchanged. For example, the result of swapping 	�5�� with 	�5�� 
results in 	�5�� and 	�5��. A move occurs when the course in one of the two events (Course Room Period 
triple) is empty.   
 
3.2.2 Representation 
 
The improvement problem is also represented as a graph whose adjacent matrix is shown in Table 1. The 
move [�, ]] creates a new schedule where the course at 	5��  is swapped with the course at 	5�� . The 
maximum value of � is the number of events in the schedule, while the maximum number of ] is the number 
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of events + number of room period tuples. This representation sometimes results in a large matrix which 
could be computationally expensive.  
 

Table 1. Adjacent matrix representation of ants system for improvement phase 
 L_`U  L_`U L_`a … L_`I bJcOd_`U bJcOd_`a … bJcOd_`I L_`a 	5�� 	5�� … 	5�( efg��5�� efg��5�� … efg��5�( 

. . . … . . . … . 

. . . … . . . … . 

. . . … . . . … . L_`I 	5�� 	5�� … 	5�( efg��5�� efg��5�� … efg��5�( 
 
3.2.3 Initialization 
 
All elements on the trail matrix are initialized to �*hi , because depending on previous swaps, subsequent 
swap moves may or may not result in a feasible schedule.  
 
Graph walk and trail update are the same as described in the construction phase. The Ant walk algorithm is 
shown in Algorithm 3. 
 

 Algorithm 3 improvement graph walk 
1 AntWalk(alpha, beta, trail) 
2  While not visited all events 
3   	5�� = random event not already visited 
4    Possible=List of CRT swap with lowest soft constraint violations 
5    	5��=a CRT from possible based on probability in Equation    (1) 
6    Apply neighbourhood structure C	5�� , 	5��F 

 
Combining multiple algorithms have been shown to result in good solutions to optimization problems [3,13],  
when simulated annealing, hill climbing and great deluge algorithms were combined in a round robin 
sequence to solve the university course timetabling problem. In this study, only one algorithm (ants’ colony 
optimization) is used, however, the ants’ colony algorithm is run multiple times. The input of the next run is 
the output of the previous run. 
 

4 Results and Discussion 
 
Table 2 reports the results of running the greedy ants’ colony optimization algorithm described in earlier 
sections. After tests, it was determined that 8 ants were suitable for the algorithm.  
 
In the construction phase, the algorithm runs until a feasible solution is found, which is instant in some 
instances, except difficult instances like comp05 where over 100 cycles is needed to find a feasible solution. 
A feasible solution was always found in all instances in less than 350 seconds, which is less than the time out 
condition for in the ITC-2007 competition rules.  
 
In the improvement phase, the algorithm was run until 10 consecutive solutions that are not improvements 
on the current global best is reached. The representation used to improve soft constraint violations in this 
study is expensive, because of the large number of evaluations that are computed in each iteration. An 
alternative is using only ant trails to direct ants, but that will slow convergence even though it may produce 
better results. Thus, a more efficient representation is needed in the improvement stage. 
 
Each ant walk in independent, thus ant walks in a cycle is implemented to run concurrently with different 
threads. This increases the number of computations in a given time interval, thus solutions are found faster.  
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In terms of the quality of the results, the proposed algorithm does not achieve results better than the best 
published algorithms, however it outperforms some algorithms [7,14]. In 17 out of the 21 instances, the 
proposed methods’ soft constraint violations is less than the mean of all algorithms compared. Lü  and  Hao 
[2] have emphasized on the importance of neighbourhood structures in local search algorithms, so a more 
complex neighbourhood function may be used to achieve better results than the result stated in Table 2.   
 
The algorithm is implemented in C++, compiled with GCC 4.8.4 on a 64 bit Ubuntu 14.04 machine (Intel® 
Core™ i7-3612QM CPU @ 2.10GHz × 8 and 8.0GB memory).   
 
Table 2. Comparison of the Proposed Method (PM) and other published solutions including the best 

known solution as published in [2] 
 

Instance PM A1 A2 A3 A4 A5 A6 A7 BK Mean 
Comp01 10 322 5 - 5 9 5 5 5 51.57 
Comp02 176 732 108 312 43 103 29 43 29 193.25 
Comp03 222 665 115 292 72 101 66 77 66 201.25 
Comp04 100 577 67 193 35 55 35 38 35 137.50 
Comp05 606 1297 408 - 298 370 292 311 292 511.71 
Comp06 178 879 94 336 41 112 37 44 37 215.13 
Comp07 123 930 56 324 14 97 13 19 7 197.00 
Comp08 112 645 75 218 39 72 39 44 38 155.50 
Comp09 172 685 153 302 103 132 96 108 96 218.87 
Comp10 125 816 66 274 16 74 10 13 7 174.25 
Comp11 1 179 0 293 0 1 0 0 0 59.25 
Comp12 622 1398 430 - 331 393 310 339 310 546.14 
Comp13 136 694 101 - 66 97 59 69 59 174.57 
Comp14 141 702 88 236 53 87 51 60 51 177.25 
Comp15 189 665 128 284 84 119 68 76 68 201.63 
Comp16 155 827 81 281 34 84 23 48 23 191.63 
Comp17 148 830 124 331 83 152 69 91 69 228.50 
Comp18 132 510 116 196 83 110 65 84 75 162.00 
Comp19 156 608 107 304 62 111 57 71 57 184.50 
Comp20 147 950 88 372 27 144 22 42 17 224.00 
Comp21 246 835 174 - 103 169 93 103 89 246.14 

PM - Proposed Greedy Ant System, A1 [14],  A2 [15], A3 [7], A4 [16], A5 [17], A6 [2], A7 [13], BK - Best Known 
results as published in [2] 

 

5 Conclusions 
 
This study has used ants’ colony optimization to solve the university course timetabling problem. 
Previously, a number of heuristics techniques have been used to solve this problem however few have used 
the ants system, particularly for the curriculum based timetabling problem in the ITC-2007 dataset.  
 
Although the results obtained by the proposed ants’ system is not as good as state of art techniques, it 
outperforms a number of published results. Also, as this is among the few that have used the ants colony 
algorithm in this dataset, the results published here can be used as benchmarks for other ant systems using 
this dataset.  
 
The ants system in the improvement phase is computationally expensive, thus future research well aim to 
address this, as well as improve on the results so that it is more competitive with state of art techniques.   
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