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Abstract

In this paper, a bounded rational monopolist Bertrand model is proposed using a specific demand
function. Therefore, some stability analysis is carried out to describe some complex dynamic
phenomena such as bifurcation and chaos. Also, an approach for risk in the model which based
on multi-objective method is studied.
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1 Introduction

In economic structure, an economic market may be described as an oligopoly model where some
firms produce the same goods, or homogeneous goods [1, 2]. This market is characterised by the
interdependence between the firms. Each firm must take into account the actions of their rivals
in the market. So that it can choose the best reaction [3, 4, 5, 6]. Game theory is one of the
important tools for analyzing the strategic behaviour of this market [7, 8, 9, 10]. Various empirical
works have shown that difference equations have been extensively used to simulate the behaviour
of monopolistic markets [11, 12].

In economic markets, competed firms often face considerable uncertainty upon their productions.
This uncertainty may concern with information on the exact demand function, rivals’ costs or
even components of firms own production cost. The impacts of uncertainty in the optimizing
behavior of economic models have been previously examined by many researchers. Sandmo [13] has
introduced a systematic study of the theory of firms under a price uncertainty and risk aversion.
In [14], some properties of a class of models involving optimization under uncertainty have been
analyzed. Dardononi [15] has presented the impact of uncertainty on an agent that has a two-
argument utility function under plausible normality conditions. A simple non-cooperative games
with common uncertainty in which the firms have two arguments utility functions has been discussed
by Gradstein et al. [16], they shown that the effect of increased uncertainty on the equilibrium
strategies is similar to its effect on the optimal strategy of a single agent. In literature, several
studies concerning duopolistic models under uncertainty have investigated that in such models each
firm is in risk neutral and may share or exchange its information on market uncertainty with its
rival [17, 18, 19]. In these studies, it has been investigated how market uncertainty with either
unknown market demand or unknown constant marginal cost can affect firms’ behavior.

Taking a decision is associated with a risk due to its consequences. These consequences may be
bad or undesirable. The amount of risk of the decision is related to the degree of uncertainty in the
future circumstances. The cost of a certain good plays un important role in determining its price.
Uncertainty measures how much the cost deviates from being constant. So, some papers consider the
cost as a random variable instead of being constant [18]. Ahmed et al. [20], has introduced in detail
an alternative approach for risk measurement. Since the main aim of any firm is to maximize its
profit and at the same time to minimize the risk corresponding, he has used the standard deviation
for modeling risk in Cournot game.

This paper introduces cost uncertainty into a simple Bertrand monopoly model. It assumed that
the cost function used in this model is generated based on a random variable with zero mean and
standard deviation equal to one. Therefore, with the given situation of uncertainty, the existence
and uniqueness of the equilibrium point and its asymptotic behavior investigated. Furthermore, a
Bertrand monopoly model under risk aversion is introduced.

The model is presented in section 2. The steady state and its local stability are studied in section
3. In section 4, a model with risk in multi-objective under uncertainty is presented.

2 The Model

In this section, a demand function is proposed [21, 22] in the form;

q t = a− b p 2
t , (2.1)

where p t > 0 and q t > 0 are the price and the quantity produced of a certain commodity at
steps t = 0, 1, 2, .... The positive constants a and b are the parameters of the model. The positivity
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of the quantity q t requires that p t <
√

a/b. Since a is the highest price in the market, then a > c

and p t > c for each quantity q t, so, this means that p t ∈ ( 0,
√

a/b).

A few approaches of uncertainty in multi-objective optimization problems have been reported in [18].
The most fundamental idea to address uncertainty in such problems is to begin by condensing
random variables. Here, we used the following linear random cost function;

C(q t) = (c+ γ ϵ) q t, (2.2)

where c (> 0) is the fixed cost in the market. γ is a random parameter with zero mean and variance
equal to 1. γ and ϵ (> 0) are the cost control parameters.

With this information and the information that the firm wants to maximize its profit, the profit
will takes the form;

Π(p t) = p t q t − C(q t) = (p t − (c+ γ ϵ)) q t

= (p t − (c+ γ ϵ)) (a− b p 2
t ),

(2.3)

which has the the following maximum value;

Πmax =
2

27

(
− 9 a (c+ γ ϵ) + b (c+ γ ϵ)3 + (3 a+ b (c+ γ ϵ)2)

√
(c+ γ ϵ)2 +

3 a

b

)
,

at the price value p =
b (c+γ ϵ)+

√
b2 (c+γ ϵ)2+3 a b

3 b
.

A standard approach to generalize the static games to dynamic ones is called the bounded rationality
approach [23]. The corresponding dynamical system for the model is given in the form;

p t+1 = p t + α(p t)
dΠ(p t)

d p t
, (2.4)

where α(p t) = α, is the speed of adjustment. Substituting Eq. (2.3) in Eq. (2.4), we get the
following dynamical system;

p t+1 = p t + α

(
a+ 2 b (c+ γ ϵ) p t − 3 b p 2

t

)
, (2.5)

which is an one-dimensional nonlinear difference equation.

3 The Dynamical Analysis of the Model

The steady state solutions are important [24]. In the context of difference equations, a steady state
solution p is defined to be the value that satisfies the relation p t+1 = p t = p for all t. Then, we can
get the steady state solutions for our model by the following. Substituting by p t+1 = p t = p in Eq.
(2.5), we get;

p = p+ α

(
a+ 2 b (c+ γ ϵ) p− 3 b p 2

)
. (3.1)

From Eq. (3.1), there is a unique steady state p =
b (c+γ ϵ)+

√
b2 (c+γ ϵ)2+3 a b

3 b
, which is the same

value that maximizes the profit. Local stability analysis [11] shows that the steady state p of the
system p t+1 = F (p t) is stable iff; ∣∣∣∣dF (p t)

d p t

∣∣∣∣
p= p

< 1.
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Then, the steady state p =
b (c+γ ϵ)+

√
b2 (c+γ ϵ)2+3 a b

3 b
, of the system (2.5) is stable under the condition

|1 + α (2 b (c+γ ϵ)−6 b p)| < 1. Substituting by p in this condition, we get the condition of stability
in the form;

0 < α
√

b2 (c+ γ ϵ)2 + 3 a b < 1.

Then, the threshold value for the speed of adjustment (the reaction coefficient) of the stability of
the monopolist is;

α <
1√

b2 (c+ γ ϵ)2 + 3 a b
.

We used some numerical calculations to show the changes in the behaviour of the system by varying
the values of the parameter α. Let the initial values of the price is p = 0.25 and the values of the
system parameters are a = 3.0, b = 1.5, c = 0.3 and ϵ = 0.2, respectively. Fig. 1 shows the
bifurcation diagram for the price p for different values for γ. We note that increasing the values
of the parameter α changes the dynamics of the system from steady state to bifurcation state and
finally the system become chaotic.

Also, increasing the values of γ decreases the values at which the behaviour of the system starts to
bifurcate. This is plausible because the increasing of the variance of the random variable γ decreases
the period of stability of the market. In Fig. 1 the value of γ are −0.8, −0.4, 0.0, 0.4, 0.8, 1.0 and
the corresponding values of α that starts the bifurcations are 0.272, 0.271, 0.270, 0.268, 0.267, 0.266.

4 Risk in Multi-objective Model under Uncertainty

In this section, an alternative approach for risk measurement is applied. This approach has been
introduced in details by Ahmed et al. [20].

Since the main aim of any firm is to maximize its profit and at the same time minimize the
risk corresponding. We used the standard deviation for modeling risk in Bertrand game, σ2 =

1
2
(pt − a νt), where a νt = 1

t−1

(∑t−1
j=1 pj

)
. According to this method, we propose the following

multi-objective Bertrand dynamical system;

pt+1 = pt + ω ∂ Πt
∂ pt

− (1− ω) (pt − a νt),

a νt+1 = (t−1) a νt+pt
t

, (4.1)

where ω1 = ω and ω2 = 1− ω are the weights assigned to different objectives (maximize the profit,
minimize the risk) such that 0 ≤ ω ≤ 1.

Using Eq. (2.3) in Eq. (4.1), one gets the following two dimension system;

pt+1 = pt + ω [a+ 2 b (c+ γ ϵ) pt − 3 b p2t ]− (1− ω) (pt − a νt),

a νt+1 = (t−1) a νt+pt
t

,
(4.2)

Proposition 4.1. The system (4.2) has the unique equilibrium point

(p1, a ν1) =

(
b (c+γ ϵ)+

√
b2 (c+γ ϵ)2+3 a b

3 b
,

b (c+γ ϵ)+
√

b2 (c+γ ϵ)2+3 a b

3 b

)
which is asymptotically stable under the condition,

2
√

b2 (c+γ ϵ)2+3 a b ω−1

1−[1−2
√

b2 (c+γ ϵ)2+3 a b ]ω
< t <

√
b2 (c+γ ϵ)2+3 a b ω−1

1+[1−2
√

b2 (c+γ ϵ)2+3 a b ]ω
.
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Fig. 1. The bifurcation diagram for the price at a = 3.0, b = 1.5, c = 0.3, ϵ = 0.2 and for
different values of γ
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Proof To study the stability of this point, the Jacobian matrix is given as follows;[
[1− 2

√
b2 (c+ γ ϵ)2 + 3 a b ]ω 1− ω

1
t

1− 1
t

]
,

which has the characteristic equation λ2 − β λ+ δ = 0, where

β =

[
[1− 2

√
b2 (c+ γ ϵ)2 + 3 a b ]ω + 1− 1

t

]
and

δ = [1− 2
√

b2 (c+ γ ϵ)2 + 3 a b ]ω +
2
√

b2 (c+ γ ϵ)2 + 3 a b ω − 1

t
,

Its eigenvalues |λi| < 1, i = 1, 2, if the following condition is satisfied;

2
√

b2 (c+ γ ϵ)2 + 3 a b ω − 1

1− [1− 2
√

b2 (c+ γ ϵ)2 + 3 a b ]ω
< t <

√
b2 (c+ γ ϵ)2 + 3 a b ω − 1

1 + [1− 2
√

b2 (c+ γ ϵ)2 + 3 a b ]ω
,

then the equilibrium point (p1, a ν1) is asymptotically stable.

5 Conclusion

In this paper, we studied the local stability of a steady state of a monopoly under uncertainly cost
function. This steady state is exactly the value that maximize the profit of the firm that adapt
the proposed price (2.1). We find that variation of the parameter has an important effect on the
behaviour of the system. Also, we studied an approach for risk in a Bertrand game which based on
multi-objective method. We will extend this work to the doubly case.
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