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Abstract 
 

The Burr Type III distribution attracts special attention in life testing and reliability analysis as it is 
applied in several areas such as economics and environmetrics among others. A composite distribution of 
Kumaraswamy and Burr Type III distributions, referred to as Kumaraswamy-Burr Type III distribution, is 
introduced and studied. It contains some special well-known distributions, which are discussed in lifetime 
literature, such as the Burr Type III, exponentiated Burr Type III and Kumaraswamy-Burr Type XII, 
among several others. Some properties of the proposed distribution are studied including explicit 
expressions for the moments, the density functions of the order statistics, Rényi entropy, quantiles and 
moment generating function. The method of maximum likelihood is applied under Type II censored 
samples for estimating the model parameters, reliability and hazard rate functions. For different values of 
sample sizes, Monte Carlo simulation is performed to investigate the precision of the maximum 
likelihood estimates. 
 

 
Keywords: Kumaraswamy distribution; stress-strength; reversed hazard rate function; censored sampling; 

maximum likelihood method; asymptotic information matrix. 
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1 Introduction 
 
[1] Constructed a distribution with two shape parameters on (0, 1) which is known as Kumaraswamy 
distribution and denoted by Kum (�, b). Its cumulative distribution function (cdf) is defined by 
 

)1,0(,)1(1),;()( ∈−−=≡ yybayHyH ba ,                                                                        (1) 
 
where 0, >ba are shape parameters. 

 
[1] argued that the beta distribution does not faithfully fit hydrological random variables such as daily 
rainfall, daily stream flow, etc. He developed a more general probability density function (pdf) for double 
bounded random processes. It has simple explicit formulae for the distribution and quantile functions. This 
distribution is applicable to many natural phenomena whose outcomes have lower and upper bounds, such as 
the heights of individuals, scores obtained on a test, atmospheric temperatures and hydrological data. The 
Kum distribution is considered a better alternative to the beta distribution in hydrology and related areas     
(see [2,3,4]). 
 
Burr Type III distribution attracts special attention since it includes several families of nonnormal 
distributions (e.g. gamma distribution) and it includes the characteristics of other distributions such as 
logistic and exponential distributions. This distribution has been widely applied in various fields such as 
environmental studies, survival and reliability analysis, forestry, economics, meteorology and water 
resources among others. It is suitable to fit lifetime data since it has flexible shape and controllable scale 
parameters. Its distribution is used to study of income, wages and wealth as it is employed in financial 
literature. Its distribution can be used to simulate random sampling from a normal distribution. [5,6] focused 
on the distribution in terms of derivation and properties and the estimation through Bayesian and non-
Bayesian estimation  and also Bayesian prediction (see [7,8]). 
 
[9] used a composite distribution function, F, as a generated function by composing a cdf H with another cdf 
G. Kumaraswamy-Burr Type III (Kum-BIII(�, �, �, �)) distribution is a composite distribution of Kum 
distribution with parameters (�, b) and Burr Type III (c, k) (Burr III). 
 
[10] proposed the Kumaraswamy generalized distribution (Kum-G) with the following cdf and pdf 
respectively 
 

baxGxGHxF ])}({1[1)]([)( −−== ,                              −∞ <  � < ∞;    �, � > 0,                 (2)                 
 
and 
 �(�; �, �) = ���(�) (�(�))��� 1])}({1[ −− baxG ,             −∞ <  � < ∞;     �, � > 0.                 (3)         
  
The density family in (3) has many more properties better than the class of generalized beta distributions 
(see [11]), also it has some advantages in terms of tractability, since it does not involve any special 
functions. The reliability function of the Kum-G distribution can be written in closed form, thus the Kum-G 
distribution can be used quite effectively even if the data are censored. Recently the composite between Kum 
and other distributions have been studied such as the Kum-Weibull by [12,13] and [14], Kum-log-logistic by 
[15], Kum generalized exponentiated Pareto by [16], also Kum Burr Type XII by [17], Kum modified 
Weibull by [18], exponentiated Kum-Dagum by [19] and Kum–Kum by [20]. 
 
In particular, if G has Burr III (c, k), with cdf given by 
 �(�; �, �) = (1 + ���)�� ,                                                  � > 0;    �, � > 0,                                         (4) 
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where c and  k are shape parameters. Then the pdf corresponding to (4) is as follows 
 �(�; �, �) = ����(���)(1 + ���)�(���),                        � > 0;    �, � > 0.                                         (5) 

 
Substituting (4) in (2), the cdf of the Kum-BIII (�, b, c, k) distribution can be obtained as follows 
 �(�; �, �, �, �) = 1 − (1 − (1 + ���)���)�,                 � > 0;    �, �, �, � > 0,                                  (6)  
 
and the pdf corresponding to (6) is given by  
 �(�;  �, �, c, k) = ������(���)(1 + ���)�(����)(1 − (1 + ���)���)���,                                                                                                � > 0;   �, �, �, � > 0.                                                                                       (7) 

 
The Kum-BIII distribution can be obtained as a special sub-model from the Beta-Burr III distribution which 
was introduced by [21] and exponentiated Kum-Dagum distribution which was introduced by [19].  
 
The limiting distribution of the Kum-BIII (�, �, �, �) distribution, as the parameter c tends to infinity, is the 
cdf of Kum-I generalized logistic distribution among several others as special sub-models and the limiting 
distribution for the cdf of the Kum-BIII (�, �, �, �) distribution, given by (6), as the parameter k tends to 
infinity, is the cdf of the Kum-inverse Weibull distribution among several others as special sub-models. 
 
The importance of the pdf in (7) is that it contains several well-known sub models distributions, such as the 
Kum-Burr XII, Kum-Burr II, Kum-Weibull, Kum-exponential, Kum-Rayleigh, Kum-Beta I, Kum-Beta II, 
Kum-Pareto II, Kum-I generalized logistic, Kum-extreme value, Kum-Gompertz and Kum-F distributions 

(see Table 1, in page 10). Clearly, the Burr III distribution is the basic exemplar for � =  � =  1. For � = 1, it becomes the exponentiated Burr III distribution, which was introduced by [22]. 
 

1.1 A general expansion for the density function of the Kum-BIII distribution 
 
The cdf given in (6) can be simplified using the binomial expansion theorem of the last bracket in the right 
hand side as shown below 
 �(�; �, �, �, �) = 1 − ��  (−1)! "�# $ %&�; '(,       )

!*+  

 
 � > 0;  �, �, �, � > 0,                                                                                                                          (8) 

 

where  � > 0 is non-integer, � is integer and %&�; '( is the Burr III cdf in (4) with parameters ' = (�, ��#). 
 
If  � > 0 is integer and � is integer, then the index # stops at �. 
 
Similarly the pdf given in (7) can be written as follows: 
 

�(�; �, �, �, �) = ���� ��(���)  ,!-1 + ���.�/,)
!*+   

 

where  0 = ��(# + 1) + 1 and  ,! = (−1)! 1���! 2,                                                                                  (9) 
 
hence 
 � 1�; 32 = �� ∑ ,!  � 1�; 32 ,)!*+              � > 0;    �, �, �, � > 0,                                                     (10)    
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where 
 � > 0  is non-integer , � is integer and � 1�; 32 denotes the Burr III distribution with parameters 

 3 = (�, ��(# + 1) + 1). 

 
If  � > 1 is integer and a is integer then the index # stops at � – 1. 
 
1.2 Reliability function 
 
The reliability function (rf) for the Kum-BIII distribution is given below: 
 61(�; �, �, �, �) =  7(8 ≥ �) = (1 − (1 + ���)���)�, 

 
                                                                                            � > 0;  �, �, �, � > 0,                           (11) 

 
where the limit of rf, as k or � tends to infinity, equals one. 
 
Stress-strength reliability 
 
The stress-strength model is a measure of the reliability of a component. Considering that X is a random 
strength of a component subjected to a random stress Y, a component fails if the applied stress is greater than 
the strength at any time and there is no failure when Y is less than X. Hence the reliability 62 is the 
probability that the unit is strong enough to overcome the stress and can be defined as follows 
 62 =  7(; < 8) =  < �=(�) �>(�)?�@   , 
 
where FB(�) is a cdf of Y at the point x and f=(�) is the pdf, X and Y are independent, also if X has the Kum-
BIII ( �1, b1, c, k1) and Y has the Kum-BIII (�2, b2, c, k2) as the parameters �, b and k change but c does 
not change.  
 
Then  
 62 =  7(; < 8) =  < �(�;  �1, �1, �, �1) �D(�;  �2, �2, �, �2)?�)+ ,                                              (12) 

 
        = < �1�1��1 ��(���)(1 + ���)�(������)(1 − (1 + ���)�����)����)+      
 
        × -1 − (1 − (1 + ���)��F�F)�F. ?� 
       = 1 − ∑ ∑ ������(��)GHIJ(����)J(�F) K!M!(����(K��)��F�FM) J(���K��)J(�F�M)  )K*+)M*+      ,                                                   (13)  

 
where  N(. )  represents the gamma function.        
                                                                                                                                                
The stress-strength modeling was studied by many authors [see [23] and [24]]. 
 
Hazard and reversed hazard functions 

 
The hazard rate function (hrf) of the Kum-BIII distribution is given by 
 ℎ(�; �, �, �, �) = P(@)Q�(@) = ����@R(SHT)(��@RS)R(UVHT)��(��@RS)RUV ,   � > 0;  �, �, �, � > 0,                                    (14) 
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and the reversed hazard (rh) rate function, which is also known by the dual of the hazard rate, extends the 
concept of the hazard rate to a reverse time direction and is given by  
 Wℎ(�; �, �, �, �) = P(@)X(@) = ����@R(SHT)(��@RS)R(UVHT)&��(��@RS)RUV(YRT

��&��(��@RS)RUV(Y ,   � > 0;    �, �, �, � > 0.      (15) 

 
1.3 Graphical description  
       

 � =0.4, b=0.02, c=0.05, k=0.01 
 

Figure 1 
 

 � =1.1, b=0.9, c=5, k=1.5 
 

Figure 2 
 

  � =1.1, b=1.2, c=1.3, k=1.5 
 

Figure 3 
                                                                           

 
          � =1.1, b=0.9, c=0.5, k=1.5 

 
Figure 4 

 
The plots of the probability density and hazard rate functions  

 
From Figures 1-4, one can observe that the pdf is almost constant, approximately symmetric, decreasing and 
positive skewed respectively. The Kum-BIII distribution is a flexible model since the hrf represents major 
hazard shapes: constant, monotone decreasing and positive skewed respectively for different values of its 
parameters. In Figure 1, when the parameters b, c and k tend to zero, the hrf is approximately constant such 
as the hrf of the exponential distribution.  
 
This paper is outlined as follows: In Section 2, some statistical properties are studied, such as: quantile 
function, skewness and kurtosis, order statistics and characteristic functions. In Section 3, some limiting 
distributions and relations between the Kum-BIII and other distributions are presented. Maximum likelihood 
estimation based on Type II censoring scheme is performed and the observed information matrix is 
determined in Section 4. In Section 5, Monte Carlo simulation is carried out to investigate the precision of 
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the maximum likelihood estimates (MLEs) for different values of parameters and sample sizes. Finally some 
concluding remarks are given in Section 6.  
 

2 Some Statistical Properties 
 
In this section, the quantile function, the characteristic function, the WZ[  central and non-central moments, the 
mean, the variance, the skewness, the kurtosis and the \Z[  order statistic of the Kum-BIII (�, �, �, �) 
distribution are derived.  
 

• The quantile function, can be obtained as follows: 
 � = ���(]) = ^_1 − -1 − ].� �⁄ a�� ��⁄ − 1b�� �⁄ ,   0 < ] < 1.                                                     (16)             

                               
One can easily generate � by taking ] as a uniform random variable on (0, 1). 
 
Special quantiles can be obtained using (16). For example, if ] = 1 2⁄ , the median of the Kum-BIII (�, �, �, �) is given by 
  

median= ���(1 2⁄ ) = ^_1 − -1 − 0.5.� �⁄ a�� ��⁄ − 1b�� �⁄
. 

 

• The characteristic function is 
 

 d@(e) = ��� ∑ ,!)!*+ ∑ 1(fZ)gh! 2)h*+ Β 11 − h� , 0 − 1 + h�2,  
  � > ?, 1 + h� < 0.                                (17) 
 

where s and ,! are given by (9), B(., .) represents the beta function, i= (−1)� F⁄  and e ∈ R. 
 

• The WZ[ non-central moments is as follows 
 

lmn = o(�n) = ���  ,!
)

!*+ Β 11 − W� , 0 − 1 + W�2 , 
            � > W, 1 + n� < 0.                                 (18)        

          
The mean and the variance are given respectively by 
 

l = ���  ,!  )
!*+ Β "1 − 1� , 0 − 1 + 1�$ , � > 1, 1 + 1� < 0,   

 
and 

 p(�) = ��� 
 

qrr
s ,!

)
!*+ Β "1 − 2� , 0 − 1 + 2�$ − ��� t ,!

)
!*+ Β "1 − 1� , 0 − 1 + 1�$u

F

vww
x,  

 

                                                                                                                       � > 2, 1 + F� < 0, 
 

where s and ,! are given by (9). 
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The central moments can be obtained using the relationship between the central moments and the non-
central moments in (18) as follows: 
 ln = ∑ 1n!2 (−1)!l !n!*+ lmn�!   .                                                                                                      (19) 
 
The standard moments can be obtained using (19), then 
 yn = z{|z}{ .                                                                                                                                       (20)                

                                                                                                                           
When W = 3 in (20), then the skewness is given by 
 

y� = �∑ ������ ������� ∑ ������ �T ∑ ������ �}�F(���)}1∑ ������ �T2��
(���)T }� �∑ ������ �}����1∑ ������ �T2}�� }� ,                                                          (21)  

 

where    �M = Β 11 − M� , 0 − 1 + M�2,   � = 1, 2, 3   and   � > 3;   1 + M� < 0. 
 
When W = 4 in (20), then the kurtosis is 
 

y� = �∑ ������ ������� ∑ ������ �T ∑ ������ ����1��� ∑ ������ �T2} ∑ ������ �}��(���)�1∑ ������ �T2��
����∑ ������ �}����1∑ ������ �T2}�} ,               (22) 

 

where    �M = � 11 − M� , 0 − 1 + M�2,    � = 1, 2, 3, 4 ,      � > 4, 1 + M� < 0, 
 

s and ,! are given by (9). 
 
Rényi entropy 
 
An entropy of a random variable X with the pdf �(. ) is a measure of variation of the uncertainty and is 
denoted by �Q(�). The Rényi entropy was introduced by [25]. It is defined by 
 �Q(�) = ���� ln_<@ (�(�))� ?�a,     � > 0 and  � ≠ 1.                                                                  (23) 
 
Substituting (7) into (23), then the Rényi entropy of Kum-BIII (�, �, �, �) distribution is given by 
 �Q(�) = �1 − � (ln � + ln � + ln � + ln �) 

 

           + ���� ln ∑ (−1)�&�(���)� ( 1− ��2 Β(�1, �2))�*+ ,                                                                     (24)      

                                                                                                       

where      �1 = � 11 + ��2 − �� and �2 = ��(� + �) − �� (� − 1). 
 
The ��� order statistic  
 
Let 8�, 8F , … , 8�  be independent identically distribution (iid) random variables from the Kum-BIII (�, �, �, �) distribution. Let 8(�) denote the \Z[ order statistic. Then the pdf of 8(�) can be written as a linear 
combination of Kum-BIII (�, �, �, �) density functions. It is well known that the pdf of \Z[ order statistic is 
given by  
 ℎ�:�&�(�)( = �(\)�&�(�)(�&�(�)(���_1 − �&�(�)(a��� ,                                                                     (25)   
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substituting the cdf and pdf given by (6) and (7) in (25), and using the binomial expansion theorem, then the 
pdf of  ℎ�:�&�(�)( can be rewritten as follows 
 ℎ�:�&�(�)( = ���� �(\) ∑ �(�)� ∗(hT,h},h�)*+ ,                
   

                                                                  � > 0, �, �, �, � > 0,  \ = 1, 2, … , ¢,                             (26) 
 
where 

 �(\) = \ 1¢\ 2 = ¢!(\ − 1)! (¢ − \)! = 1�(\, ¢ − \ + 1),  
 =    (−1)hT�h}�h� "\ − 1?� $ " £?F$ "£�?�$)

h�*+
)

h}*+
���

hT*+
∗

(hT ,h},h�)*+ , 
 ¤ = �(?� + 1) + 1, £ = �(¢ − \ + ?� + 1) − 1 and  £� = ��(?F + 1) + 1. 
 
Special cases: 
 

I. The pdf of the first order statistic can be obtained; if  \ = 1 in (26), as follows  
 

��:�(��) = ¢!(¢ − 1)!  ����  �(�)�¥∗∗
(¦,¦T)*+ , 

 
                                                                     �(�) > 0;  �, �, �, � > 0,                                              (27) 

 
where 

 ∑ = ∑ ∑ (−1)¦�¦T 1§}¦ 2 1§∗¦T2)¦T*+)¦*+∗∗(¦,¦T)*+ ,        
 ¨ = �(�� + 1) + 1, £F = �¢ − 1 and £∗ = ��(� + 1) + 1.  
 

II. The pdf of the largest order statistic can be obtained; if  \ = ¢ in (26),  and is given by  
 

��:�(��) = ¢!(¢ − 1)! ����  �(�)�¥T∗∗∗
&¦},¦�,¦�∗(*+ , 

 �(�) > 0;   �, �, �, � > 0,                                      (28)       
 
where  
 

 =    (−1)¦}�¦��¦�∗ "¢ − 1�F $ "£���$ "£�∗��∗$)
¦�∗*+

)
¦�*+

)
¦}*+

∗∗∗
&¦},¦�,¦�∗(*+  

 �̈ = �(��∗ + 1) + 1, £� = �(1 + �F) − 1 and £�∗ = ��(�� + 1) + 1.  
 

III.   One can obtain the median observable in the odd case; if \ = ���F   in (26),  which is given by       
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�©HT} :� "�1©HT} 2$ = ¢!1���F 2 ! 1���F 2 ! ����  �(©HT} )�¥}         ,∗∗∗∗
&¦�,¦ª,¦ª∗(*+  

 
                                                                                  �(©HT} ) > 0;   �, �, �, � > 0,                             (29)                    

 
where  
 

 =    (−1)¦��¦ª�¦ª∗ "£���$ "£«�«$ "£«∗�«∗$)
¦ª∗*+

)
¦ª*+

)
¦�*+

∗∗∗∗
&¦�,¦ª,¦ª∗(*+ , 

  F̈ = �(�«∗ + 1) + 1, £« = � 1���F 2 + �� − 1 and £«∗ = ��(�« + 1) + 1.  
 

Remark 
 
All statistical properties of the Burr Type III (�, �) distribution, which was introduced by [5], can be derived 
from Kum-BIII (�, �, �, �) distribution, if  � = � = 1. 
 

3 Some Limiting and Transformed Distributions   
 
Kum-BIII (�, �, �, �) distribution is related through variable transformations to a wide range of some other 
commonly distributions. In this section, some limiting and transformed distributions of the Kum-BIII (�, �, �, �) distribution are derived. 
 

3.1 Some limiting distributions  
 
The following limiting distributions provide relationships between Kum-BIII (�, �, �, �)  and other well-
known distributions. 
 

I. If 8 ~ Kum-BIII (�, �, �, �), then  
 lim�→) 7 °8 ≤ exp µ� "1 + ��F $¶· = 1 − -1 − -1 + exp(−�).���.� , 

                                                                             
  −∞ < � < ∞;   �, �, � > 0,              (30) 

 
which is the limit of the cdf of the Kum-BIII (�, �, �, �) distribution, given by (6), as the parameter c tends to 
infinity, and also is the cdf of a Kum-I generalized logistic distribution with parameters �, b and k. If k=1, 
the Kum-logistic distribution can be obtained. When � = � = 1,  the Type I generalized logistic (k) 
distribution can be derived. For b = 1, it becomes the exponentiated Type I generalized logistic distribution. 

When � = b = k= 1, the logistic distribution is given with mean = 0 and variance =  ¹F 3�  . 
 

II. If 8 ~ Kum-BIII (�, �, �, �), then  
 

lim�→) 7 º8 ≤ "1�$�� ��  �» = 1 − -1 − exp(−����).�  ,      � > 0, �, �, � > 0,                                        (31) 
 

which is the limit of the cdf of the Kum-BIII (�, �, �, �) distribution, given by (6), as the parameter k tends to 
infinity, which is the cdf of a Kum-inverse Weibull distribution with parameters �, b and c. If c =1, the 
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Kum-inverse gamma distribution can be obtained. When � = � = 1, the inverse Weibull distribution can be 
derived. For b = 1, the exponentiated inverse Weibull distribution can be proposed. When � = b = c= 1, 
inverse gamma distribution can be obtained. 
 

3.2 Some transformed distributions  
 
Table 1 presents the transformations of 8 which provide different relationships between Kum-BIII (�, �, �, �) and other well-known distributions such as Kum-Burr XII, Kum-Burr II, Kum-Weibull, Kum-
exponential, Kum-Rayleigh, Kum-Beta I, Kum-Beta II, Kum-Pareto II, Kum-I generalized logistic, Kum-
extreme value, Kum-Gompertz and Kum-F. 
 

Table 1. Summary of transformations applied to the Kumaraswamy-Burr Type III and resulting 
distributions 

 
Transformations Distribution pdf Range 8�� Kum-Burr Type XII (�, �, �, �) ����¼���� -1 + ¼��.�(����) × -1 − -1 + ¼��.���.��� 

¼� > 0 
 �ln (8) Kum-Burr Type II (�, �, �) 

 
��� exp(−¼F) × -1 + exp(−¼F).�(����) × -1 − -1 + exp(−¼F).���.��� 

−∞ < ¼F < ∞ 

-ln(1 + 8��).� ��  Kum-Weibull (�, �, �, �) 
 

����¼���� × -exp(−�¼��).� × -1 − exp(−�¼��)�.��� 

¼� > 0 

ln(1 + 8��) Kum-exponential(�, �, �) 
 

���-exp(−�¼�).� ×  -1 − -exp(−�¼�).�.��� 
¼� > 0 

-ln(1 + 8��).� F�  Kum- Rayleigh(�, �, 2, �) 
 

2���¼«-exp(−�¼«F).� × -1 − exp(−�¼«F)�.��� 
¼« > 0 

-1 + 8��.�� Kum-Beta Type I (��, �) 
 

���¼�����-1 − ¼���.��� 0 < ¼� < 1 
 8�� Kum-Beta Type II (�, �, 1, �) ���-1 + ¼½.�(����) ×  -1 + (1 + ¼½)���.��� 
¼½ > 0 

1 + 8�� Kum-Pareto Type II (�, �, 1, �) ���(¼¾)�(����) × -1 − (¼¾)���.��� 
¼¾ > 1 
 ln(8��) Kum-Type I generalized-

logistic(�, �, �) 
 

��� exp(−¼¿)    × -1 + exp(−¼¿).�(����) ×  -1 − -1 + exp(−¼¿).���.��� 

−∞ < ¼¿ < ∞ 
 

ln-ln(1 + 8��)�.�� �⁄  Kum-extreme value  (�, �, �) 
 
 

��� × -exp-−�¼�+ − � exp(−�¼�+).. × ^1 − _exp&exp(−�¼�+)(a��b���
 

−∞ < ¼�+ < ∞ 
 
 
 ln-1+ ln(1 + X�Á).�� Â⁄  

Kum-Gompertz (�, �, ], £) 
 ��£ Ãexp °]¼�� + °exp µ− £] (]¼��

− 1)¶·�·» 
× �1 − ^exp 1− £] -exp(]¼��

− 1).2b�����
 

¼�� > 0 
 
 

�8��    Kum-F (�, �, 2,2�) 
 
 

�� ^1 + ¼�F� b�(����)
 

× �1 − 11 + ¼�F� 2�������
 

 ¼�F > 0 
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 4 Maximum Likelihood Estimation 
 
Suppose that 8(�) ≤ 8(F) ≤ ⋯ ≤ 8(n) is a censored sample of size r obtained from a life-test on n items 
(Type II censored sample) whose lifetimes have a Kum-BIII (�, �, �, �) distribution. The likelihood function 
in this case is given by 
 

 Å&ÆÇ�( =  �!(� � n)! È∏ �&�(�); Æ(n�*� Ê_6(�(n); Æ)a��n ,                                                                        (32)        

                                 

where Æ =  (�, �, �, �)m, �&�(�); Æ( and 6(�(n); Æ) are given by (7) and (11), respectively.  

 

The natural logarithm of Å&ÆÇ�(is given by  
 ℓ ≡ ln Å&Æ; �( ∝ ∑ ln �&�(�); Æ( +  (¢ − W) ln 6(�(n); Æ)n�*� ,                                                         (33) 

 
and substituting (7) and (11) in (33) yields 
 

ℓ ∝ W�¢(�) + W ln(�) +  W ln(�) +  W ln(�) − �  ln&�(�)( n
�*�  

−(�� + 1) ∑ ln(£�)n�*� +  (� − 1) ∑ ln(1 − £����) + �(¢ − W) ln(1 − £∘���),n�*�                            (34)  
 
where      . 
 

Ï £� = &1 + �(�)��(,£∘ = &1 + �(n)��( .Ð                                                                                                                         (35) 

 
The maximum likelihood estimators (MLEs) of Æ can be derived by differentiating ℓ in (34) with respect to �, �, � and � and then setting to zero as given bellow, 
 ÑℓÑ� = W� − �  ln(£�)n

�*� + �(� − 1)  (£����)(ln(£�))(1 − £����)n
�*�  

 +��(¢ − W) �(§∘RUV)(ÒÓ(§∘))&��§∘RUV( �,                                                                                                       (36)        

 ÔℓÔ� = n� + ∑ ln(1 − £����)n�*� + (¢ − W) ln(1 − £∘���),                                                                  (37)       

                                 ÑℓÑ� = W� −  ln(�(�))n
�*� + º(�� + 1)  (����)&ln(�(�))(£�

n
�*� » 

 

    − º��(� − 1)  (£��(����))&���� ln&�(�)(((1 − £����)n
�*� » 

  −�� �(¢ − W) �(§∘R(UVHT))&@{RS ÒÓ&@({)((&��§∘RUV( �,                                                                                          (38)  
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and          
                                                                ÑℓÑ� = W� − �  ln(£�)n

�*� + º�(� − 1)  (£����)(ln(£�))(1 − £����)n
�*� » 

 

 + ��(¢ − W) �(§∘RUV)(ÒÓ(§∘))&��§∘RUV( �.                                                                                                           (39)  

 
The solution of the system of nonlinear Equations (36), (38) and (39) can be solved numerically to obtain the 
MLEs of the parameters �, �, � and the MLE of � can be obtained by equating (37) to zero, hence 
 �Õ = �n/T ,                                                                                                                                             (40) 

 
where 
 
 0� = ∑ ln(1 − £����)n�*� + (¢ − W) ln(1 − £∘���). 
 
Remarks: 
 

I. If  ��� = Ö, then from (37) the uniformly minimum variance unbiased estimator (UMVUE) of Ö is, 
 Ö× = ��n -∑ ln(1 − £����) + (¢ − W) ln(1 − £∘���) n�*� .,                                                                 (41)               

         
where £� and  £∘ are defined by (35).   

 
II.  When  W = ¢, all the results obtained for Type II censored sample reduce to those of the complete 

sample. 
                                                                               

III.  Considering that 8�, 8F, … , 8�  is a random sample of size ¢ drawn from a Kum-BIII (�, �, �, �) 
distribution with pdf given by (7). One can obtain a sufficient and complete statistic for the 
parameter b using the exponential family which is 0F,       
        0F = ∑ ln-1 − (1 + ���)���..��*�                                                                                                    (42) 

 
Maximum likelihood estimators for the reliability and hazard rate functions 
 
Applying the invariance property, the MLEs of the rf and hrf are obtained by replacing the parameters �, �, � 
and � in (11) and (14) by their MLEs. 
 
Hence, for a given value of �, the MLEs of 6(�) and ℎ(�) are given, respectively by   
 6Õ(�) = 11 − &1 + ���̂(��Ù�Õ 2�Õ�� ,                                � > 0,                                                             (43) 

 
and  
 ℎÕ(�) = �Ù�Õ�̂�Õ @R(SÙHT)&��@RSÙ(R&UÚVÛHT(

��&��@RSÙ(RUÚVÛ  ,                               � > 0,                                                             (44)            

                                                                                                
where �,Ú �,Û �̂ �¢? �Õ are the MLEs of �, �, � and �. 
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The asymptotic Fisher information matrix is given by 
 ÜÝ = − � Ô}ℓÔÞßÔÞ�� ,        \, # = 1,2,3,4,                                                                                                  (45) 

 
where  Æ� = �,  ÆF = �,  Æ� = �  and Æ� = �  and the elements of the information matrix are derived. 
 
The asymptotic variance-covariance matrix of the MLEs �Ù, �Õ, �̂ �¢? �Õ is the inverse of the asymptotic Fisher 
information matrix.  
                                                                                                                               
For large sample size, the MLEs under regularity conditions are consistent and asymptotically unbiased as 
well as asymptotically normally distributed, hence the asymptotic confidence intervals (ACI) for the MLE is 

obtained by 7 µ−à < ÞÛßáâ�ÞßãäÛßáâ < à¶ = 1 − y where Z is the 10011 − åF2th  standard normal percentile. The 

two sided approximate 100(1 − α)% the confidence intervals are as shown below 
 ÅÅÞ = ÆÕ�èé − àê}  ëÙÞÛßáâ              and                ìÅÞ = ÆÕ�èé + àê}  ëÙÞÛßáâ     ,                                              (46) 

 
where  ëÙÞÛßáâ is the standard deviation and ÆÕ�èé is �Ù, �Õ, �̂ or �Õ respectively. 
                                                                

5 Simulation Study 
 

• In this section, a numerical study is given to illustrate the results obtained on the basis of generated 
data from Kum-BIII (�, �, �, �) distribution.  

• The computations are performed using Mathematica 9, where N = 1000 is the number of 
repetitions, for different sample sizes (n=20, 50, 100) and the number of survival units are (r= 0.90 
n and 0.80n).  

• Tables 2 and 3, in Appendix 1, show the MLEs of the parameters, rf and hrf where the initial 
parameter values are � =1.1, b=1.2, c=1.3 and k=1.5 based on two levels of Type II censoring. 
Similarly Tables 5 and 6 display the MLEs of the parameters, rf and hrf with the initial parameter 
values � =0.7, b=0.9, c=1.2 and k=1.4.  

• Some measurements of accuracy are used to evaluate the performance of the estimators �, b, c and 
k. Tables 2 and 5 show the variances, biases2 and the estimated risks (ER) of the estimates to study 
the precision and the variation of MLEs. Also Tables 4 and 6 present the estimated risks of the 
reliability and the hazard rate functions. 

• Tables 4 and 7 present the two-sided 95% ACI for the parameters, rf and hrf of Kum-BIII 
(�, �, �, �) distribution. These tables contain the estimates, lower limit (LL), upper limit (UL) and 
the length of the intervals. 
 

6 Concluding Remarks 
 

• Tables 2 and 5 indicate that the variances, biases2 and ER decrease when the sample size n 
increases. For all sample sizes Table 2 shows that, the ER (�Ù) performs better than other estimates. 
It is observed that as the level of censoring decreases the variances,  biasF and ER decrease.  

• Tables 3 and 6 show that the ER of rf and hrf decrease when the different values of time e+ and the 
sample size increase, while the hrf increases when the different values of time e+ and the sample 
size increase. 

• From Tables 4 and 7, for all different sample sizes, one can observe that the lengths of the ACI of 
the four model parameters, rf and hrf become narrower when the sample size n increases and the 
level of censoring decreases. Also the lengths of  �Ù performs better than other estimates. 
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• The first and the last remark are expected since decreasing the level of censoring means that more 
information is provided by the sample and hence increases the accuracy of the estimates. 
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Appendix 1 
 
Table 2. ML estimates of the parameters, variances, biases2 and their estimated risks based on Type II 

censoring, N=1000, r=0.80 n and 0.90 n, ð =1.1, b=1.2, c=1.3 and k=1.5 
 

ER ñ�ðòó Variance Estimates r n 
0.0455 
0.2223 
0.1583 
0.0760 

0.0045 
0.0136 
0.0274 
0.0031 

0.0409 
0.2087 
0.1309 
0.0729 

�Ù �Õ �̂ �Õ 

 
16 
 
 

 
 
 
 
20 0.0336 

0.1598 
0.0997 
0.0556 

0.0023 
0.0043 
0.0212 
0.0009 

0.0313 
0.1554 
0.0785 
0.0556 

�Ù �Õ �̂ �Õ 

 
18 
 

0.0299 
0.1593 
0.0906 
0.0513 

0.0011 
0.0003 
0.0313 
0.0001 

0.0288 
0.1589 
0.0593 
0.0512 

�Ù �Õ �̂ �Õ 

 
40 

 
 
 
 
50 
 

0.0194 
0.0799 
0.0658 
0.0347 

0.0001 
0.0038 
0.0259 
0.0004 

0.0193 
0.0760 
0.0398 
0.0343 

�Ù �Õ �̂ �Õ 

 
45 

0.0195 
0.1034 
0.0860 
0.0364 

0.0000 
0.0198 
0.0432 
0.0018 

0.0195 
00836 
0.0428 
0.0347 

�Ù �Õ �̂ �Õ 

 
80 

 
 
 
 
100 0.0096 

0.0453 
0.0525 
0.0193 

0.0001 
0.0139 
0.0269 
0.0025 

0.0095 
0.0313 
0.0255 
0.0168 

�Ù �Õ �̂ �Õ 

 
90 

 
Table 3. The estimated reliability and hazard rate functions at different time �ô and different sample 

sizes 
 

n r �ô õÛ(�ô) ER ö× (�ô) ER 
 
 
20 

16 0.4 
1 

0.9048 
0.6486 

0.0059 
0.0166 

0.4017 
0.6803 

0.6572 
0.1015 

18 0.4 
1 

0.9042 
0.6445 

0.0040 
0.0138 

0.4487 
0.6649 

0.0592 
0.0717 

 
 
50 

40 0.4 
1 

0.9072 
0.6592 

0.0028 
0.0085 

0.4299 
0.6224 

0.0998 
0.0266 

45 0.4 
1 

0.9049 
0.6471 

0.0019 
0.0064 

0.4566 
0.6283 

0.0269 
0.0196 

 
 
100 
 

80 0.4 
1 

0.9131 
0.6592 

0.0015 
0.0047 

0.4215 
0.6059 

0.0204 
0.0101 

90 0.4 
1 

0.9063 
0.6446 

0.0011 
0.0031 

0.4525 
0.6218 

0.0137 
0.0094 
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Table 4. Confidence intervals for the parameters ð, b, c, k, rf and hrf based on Type II censoring at 
confidence level 95% at different sample sizes 

 
n r Parameters Estimates UL LL Length 
 
  
 
 
 
20 

 
 
16 

� � � � 6(e) ℎ(e) 

1.1671 
1.3167 
1.4656 
1.5561 
0.6486 
0.6803 

1.5639 
2.2121 
2.1747 
2.0852 
0.8989 
1.2855 

0.7703 
0.4213 
0.7564 
1.0270 
0.3982 
0.0751 

0.7936 
1.7908 
1.4183 
1.0582 
0.5008 
1.2104 

 
 
18 

� � � � 6(e) ℎ(e) 

1.1477 
1.2659 
1.4456 
1.5302 
0.6445 
0.6649 

1.4944 
2.0386 
1.9947 
1.9925 
0.8733 
1.1749 

0.8009 
0.4932 
0.8965 
1.0679 
0.4157 
0.1548 

0.6934 
1.5454 
1.0982 
0.9246 
0.4576 
1.0201 

 
 
 
 
 
50 

 
 
40 

� � � � 6(e) ℎ(e) 

1.1329 
1.1818 
1.4769 
1.5106 
0.6592 
0.6224 

1.4655 
1.9633 
1.9544 
1.9539 
0.8309 
0.9394 

0.8004 
0.4003 
0.9994 
1.0673 
0.4875 
0.3054 

0.6649 
1.5629 
0.9549 
0.8866 
0.3434 
0.6341 

 
 
45 

� � � � 6(e) ℎ(e) 

1.1097 
1.1380 
1.4612 
1.4797 
0.6471 
0.6283 

1.3818 
1.6785 
1.8522 
1.8424 
0.8013 
0.8979 

0.8377 
0.5975 
1.0701 
1.1169 
0.4930 
0.3588 

0.5442 
1.0810 
0.7820 
0.7256 
0.3082 
0.5391 

 
 
 
 
 
100 

 
 
80 

� � � � 6(e) ℎ(e) 

1.0936 
1.0594 
1.5078 
1.4581 
0.6592 
0.6059 

1.3673 
1.6262 
1.9135 
1.8230 
0.7824 
0.8023 

0.8199 
0.4925 
1.1022 
1.0932 
0.5360 
0.4096 

0.5474 
1.1338 
0.8113 
0.7298 
0.2463 
0.3928 

 
 
90 

� � � � 6(e) ℎ(e) 

1.0878 
1.0817 
1.4641 
1.4504 
0.6446 
0.6218 

1.2785 
1.4283 
1.7774 
1.7046 
0.7506 
0.8081 

0.8972 
0.7351 
1.1509 
1.1962 
0.5385 
0.4355 

0.3813 
0.6932 
0.6265 
0.5084 
0.2121 
0.3726 
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Table 5. ML estimates of the parameters, variances, biases2 and their estimated risks based on Type II 
censoring, N=1000, r=0.80 n and 0.90 n, ð =0.7, b=0.9, c=1.2 and k=1.4 

 
ER ñ�ðòó variance estimates r n 
0.0503 
0.1331 
0.1018 
0.0540 

0.0318 
0.0178 
0.0030 
0.0149 

0.0185 
0.1153 
0.0988 
0.0391 

�Ù �Õ �̂ �Õ 

 
16 
 
 

 
 
 
 
20 0.0421 

0.0934 
0.0680 
0.0497 

0.0278 
0.0078 
0.0033 
0.0194 

0.0143 
0.0858 
0.0651 
0.0303 

�Ù �Õ �̂ �Õ 

 
18 
 

0.0241 
0.0483 
0.0289 
0.0461 

0.0184 
0.0029 
0.0072 
0.0341 

0.0057 
0.0454 
0.0217 
0.0121 

�Ù �Õ �̂ �Õ 

 
40 

 
 
 
 
50 
 

0.0228 
0.0328 
0.0165 
0.0433 

0.0184 
0.0012 
0.0043 
0.0340 

0.0044 
0.0315 
0.0122 
0.0093 

�Ù �Õ �̂ �Õ 

 
45 

0.0162 
0.0192 
0.0149 
0.0467 

0.0144 
0.0001 
0.0087 
0.0429 

0.0018 
0.0191 
0.0062 
0.0038 

�Ù �Õ �̂ �Õ 

 
80 

 
 
 
 
100 0.0142 

0.0112 
0.0107 
0.0443 

0.0140 
6.0553× 10�¾ 
0.0057 
0.0403 

0.0002 
0.0112 
0.0050 
0.0040 

�Ù �Õ �̂ �Õ 

 
90 

 
Table 6. The estimated reliability and hazard rate functions at different time �ô  

and different sample sizes 
 

n r �ô õÛ(�ô) ER ö× (�ô) ER 
 
 
20 

16 0.2 
0.4 

0.8884 
0.7816 

0.0081 
0.0095 

0.5421 
0.6634 

2.1067 
0.1995 

18 0.2 
0.4 

0.8936 
0.7843 

0.0051 
0.0078 

0.5962 
0.6710 

1.3250 
0.0662 

 
 
50 

40 0.2 
0.4 

0.8892 
0.7766 

0.0023 
0.0037 

0.6680 
0.7069 

0.3002 
0.0286 

45 0.2 
0.4 

0.8927 
0.7769 

0.0415 
0.0036 

0.6648 
0.6975 

0.0361 
0.0267 

 
 
100 
 

80 0.2 
0.4 

0.8926 
0.7764 

0.0009 
0.0019 

0.6736 
0.7036 

0.0196 
0.0172 

90 0.2 
0.4 

0.8917 
0.7788 

0.0008 
0.0013 

0.6743 
0.6891 

0.0169 
0.0135 
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Table 7. Confidence intervals for the parameters ð, b, c, k, rf and hrf based on Type II censoring at 
confidence level 95% at different sample sizes 

 
n r parameters estimates UL LL Length 
 
  
 
 
 
20 

 
 
16 

� � � � 6(e) ℎ(e) 

0.8784 
1.0335 
1.2549 
1.2776 
0.7816 
0.6634 

1.1447 
1.6991 
1.8709 
1.6651 
0.9697 
1.5377 

0.6120 
0.3679 
0.6389 
0.8902 
0.5936 
0 

0.5327 
1.3311 
1.2319 
0.7749 
0.3761 
1.5377 

 
 
18 

� � � � 6(e) ℎ(e) 

0.8668 
0.9875 
1.2578 
1.2608 
0.7843 
0.6710 

1.1013 
1.5616 
1.7577 
1.6018 
0.9531 
1.1745 

0.6323 
0.4134 
0.7579 
0.9198 
0.6155 
0.1676 

0.4689 
1.1481 
0.9999 
0.6821 
0.3376 
1.0069 

 
 
 
 
 
50 

 
 
40 

� � � � 6(e) ℎ(e) 

0.8356 
0.9536 
1.2849 
1.2154 
0.7766 
0.7069 

0.9837 
1.3713 
1.5736 
1.4308 
0.8944 
1.0357 

0.6875 
0.5358 
0.9963 
1.0001 
0.6587 
0.3783 

0.2961 
0.8354 
0.5773 
0.4307 
0.2356 
0.6574 

 
 
45 

� � � � 6(e) ℎ(e) 

0.8357 
0.9354 
1.2653 
1.2155 
0.7769 
0.6975 

0.9656 
1.2835 
1.4818 
1.4046 
0.8926 
1.0173 

0.7057 
0.5872 
1.0487 
1.0265 
0.6612 
0.3777 

0.2599 
0.6962 
0.4331 
0.3781 
0.2313 
0.6396 

 
 
 
 
 
100 

 
 
80 

� � � � 6(e) ℎ(e) 

0.8202 
0.9101 
1.2934 
1.1929 
0.7764 
0.7036 

0.9032 
1.1813 
1.4472 
1.313 
0.8607 
0.9583 

0.7371 
0.6389 
1.1395 
1.0721 
0.6920 
0.4488 

0.1661 
0.5423 
0.3078 
0.2416 
0.1687 
0.5095 

 
 
90 

� � � � 6(e) ℎ(e) 

0.8245 
0.8998 
1.2756 
1.1993 
0.7789 
0.6891 

0.9001 
1.1069 
1.4144 
1.3237 
0.8587 
0.9167 

0.7370 
0.6926 
1.1367 
1.0749 
0.6988 
0.4615 

0.1631 
0.4144 
0.2777 
0.2488 
0.1599 
0.4553 
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Appendix 2 
 

The elements of the information matrix; the second partial derivatives of the log-likelihood function, are 
given below 
 

Ü�� = ÑFℓÑ�F = −W�F + (� − 1)  (−)(1 − £����)£����(� ln(£�))F − -£����(� ln(£�)).F-1 − £����.F
n

�*�  

 
      +�(¢ − W)((�)(§∘RUV)(� ÒÓ(§∘))}∙&��§∘RUV(�^(§∘RUV)(� ÒÓ(§∘))b}

&��§∘RUV(} ),     
 Ü�� = Ô}ℓÔ�} = �n�}  ,       

                                                                                                                                         

Ü�� = ÑFℓÑ�F = −W�F − º(�� + 1)  (−)£����� ln(�(�))F + &���� ln(�(�))(F-£�.F
n

�*� » − (� − 1) 

 
 

     × {∑ &��§ßRUV(^&��(����)§ßR(UVH})(&@ßRS ÒÓ(@(ß))(}�1��@ßRS§ßR(UVHT)&ÒÓ(@(ß))(}2b&��§ßRUV(}n�*�      

 

    + &��@ßRS ÒÓ&@(ß)(§ßR(UVHT)(}
&��§ßRUV(} } − �(¢ − W)-&��§∘RUV({�(��)(§∘R(UVHT))&@{RS〈ÒÓ&@({)(〉}( &��§∘RUV(}  

 

               + (��)(����)§∘R(UVH}) &@{RS ÒÓ&@({)((}}�^(��)(§∘R(UVHT))&@{RS ÒÓ&@({)((b} &��§∘RUV(} .,         
                                                                              Ü�� = ÑFℓÑ�F = −W�F  

 

     +(� − 1)  −-(1 − £����)£����(� ln(£�))F. − -£� ���(� ln(£�)).F-1 − £����.F
n

�*�  

 +�(¢ − W)-�&§∘RUV� ÒÓ(§∘)(}�(��§∘RUV)&§∘RUV(� ÒÓ(§∘))}(&��§∘RUV(} .,                               
                      

Ü�� = ÑFℓÑ�Ñ� =  £����(� ln(£�))(1 − £����) + (¢ − W) °(£∘���)(� ln(£∘))(1 − £∘���) ·n
�*� , 

                                    

Ü�� = ÑFℓÑ�Ñ� = −�  −���� ln(�(�))£�
n

�*� + (� − 1) 

 

      × -∑ &��§ßRUV(°(�� §ßR(UVHT))@ßRS ÒÓ(@(ß))(� ÒÓ(§ß))��§ßRUVµüßRS ýþ(ü(ß))
�ß ¶·

_��§ßRUVa}n�*�  
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      +  (�� §ßR(UVHT))@ßRS ÒÓ(@(ß))(§ßRUV)(� ÒÓ(§ß))_��§ßRUVa} . + �(¢ − W){&��§∘RUV({�§∘RUV�Vü{RS ýþ1ü({)2
�∘ �

&��§∘RUV(}            

 + ��}(§∘R(UVHT))&@{RS ÒÓ&@({)(( ÒÓ(§∘)}���}§∘R(}UVHT)&@{RS ÒÓ&@({)(( ÒÓ(§∘)&��§∘RUV(} },                          

                                                                                                                                   Ü�� = Ô}ℓÔ�Ô� = − ∑ ln(£�) + (� − 1)n�*�  

 × °∑ &��§ßRUV(^§ßRUV ÒÓ(§ß)�{§ßRUV(� ÒÓ(§ß))(� ÒÓ(§ß))}b�^&§ßRUV(}(� ÒÓ(§ß))(� ÒÓ(§ß))b_��§ßRUVa}n�*� ·         
                    +�(¢ − W)-&��§∘RUV({§∘RUV ÒÓ(§∘)���§∘RUV(ÒÓ(§∘))}}���&§∘RUV ÒÓ(§∘)(}

&��§∘RUV(} .,               
        Ü�� = Ô}ℓÔ�Ô� = ∑ �(�� §ßR(UVHT))@ßRS ÒÓ(@(ß))&��§ßRUV(n�*� − (¢ − W) ��§∘R(UVHT)&@{RS ÒÓ&@({)((��§∘RUV ,          
 

Ü�� = ÑFℓÑ�Ñ� =  £����(� ln(£�))(1 − £����) + (¢ − W) �£∘��� ln(£∘)1 − £∘���
n

�*�  

    
and   
                                                                                                  

Ü�� = ÑFℓÑ�Ñ� = �  ���� ln&�(�)(£� +n
�*� (� − 1) 

 

    × {∑ &��§ßRUV(°(�� §ßR(UVHT))@ßRS ÒÓ(@(ß))(� ÒÓ(§ß))��§ßRUVµüßRS ýþ(ü(ß))
�ß ¶·

_��§ßRUVa}n�*�  

 
      

      + � (�� §ßR(UVHT)2@ßRS ÒÓ(@(ß))(§ßRUV)(� ÒÓ(§ß))}_��§ßRUVa}  . 

 

+�(¢ − W)-&��§∘RUV({�}� §∘R(UVHT)ÒÓ(§∘)&@{RS ÒÓ&@({)((��§∘RUVµü{RS ýþ(ü({))
�∘ ¶}

&��§∘RUV(}   

 

 + �}� §∘R(}UVHT)ÒÓ(§∘)&@{RS ÒÓ&@({)((&��§∘RUV(} ..            
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