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ABSTRACT 
 

The present study deals with the MHD stagnation point flow of Nanofluid past a non-isothermal 
stretching sheet in porous medium. The presence of Brownian motion and thermophoresis effects 
yields a coupled nonlinear Boundary Value Problem. The sheet is assumed to be permeable. 
Similarity transformations are invoked to reduce the partial differential equations into higher order 
nonlinear ODE’s. The transformed equations are solved numerically by using a well known finite 
difference scheme Keller-Box method. The analysis has been carried out for two different cases, 
namely prescribed surface temperature (PST) and prescribed heat flux (PHF) to see the effects of 
governing parameters for various physical conditions. The various non dimensional parameters 
effects with velocity, temperature and concentration profiles are discussed in detail with graphically 
and tabular form. The results indicate that increasing the Brownian motion parameter and 
thermophoresis parameter reduces the heat transfer rate at the surface. Increasing porosity 
parameter reduces the velocity of nanofluid and increases the temperature of nanofluid. 

Original Research Article  
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1. INTRODUCTION 
 
Choi [1] was the former who introduced the term 
of Nanofluid to explain the new class of 
nanotechnology based heat transfer fluids 
engineered by typical length scales on the order 
of 1 to 100 nm in traditional heat transfer fluids. 
The presence of the nanoparticles in the fluids 
increases significantly the effective thermal 
conductivity of the fluid, and consequently 
enhances the heat transfer characteristics, which 
is observed by Masuda et al. [2]. Buongiorno. J. 
[3] explained the effect of seven slip 
mechanisms: inertia, Brownian diffusion, 
thermophoresis, diffusiophoresis, Magnus effect, 
fluid drainage and gravity setting. M. Eldabe      
et al. [4] studied the Effect of magnetic field on 
flow and heat transfer over an unsteady 
stretching surface embedded in a porous 
medium filled with nanofluid. Similarity solutions 
to viscous flow and heat transfer of nanofluid 
over nonlinearly stretching sheet are examined 
by M. A. Hamad and Ferdows M. [5]. 
 
The industrial manufacturing processes like wire 
and fiber coating and transpiration cooling etc., 
require the study of MHD flow. Basically the 
MHD flow has wide applications in Engineering 
and industrial fields. The study of MHD flow of an 
electrically conducting fluid due to a stretching 
sheet is important in modern metallurgy and 
metal-working process. So this study has gained 
considerable attention in the recent years.  
 
Magnetohydrodynamics and boundary layer flow 
over a stretching sheet were numerically studied 
by Fadzilah et al. [6] and Ishak et al. [7] and their 
investigation showed that flow field velocity at a 
point decreases with an increase in the magnetic 
field due to Lorenz force effect. Likewise, 
researchers such as Mahapatra and Gupta [8] 
and Ishak et al. [9] extended the dimension of 
MHD boundary layer flow over a stretching sheet 
in different types of fluid such as micro polar 
fluids and power-law fluids with various flow 
geometries. Mabood et al. [10] studied the MHD 
boundary layer flow and heat transfer of 
nanofluids over a nonlinear stretching sheet. 
Shankar et al. [9] investigated radiation and 
mass transfer effects on MHD free convection 
fluid flow embedded in a porous medium with 
heat generation/absorption.    
 
The study of MHD stagnation point flow on 
stretching sheet has attracted many researchers 

in recent times, and many problems as regards 
different aspects, including the stretching sheet 
with variable surface temperature [11] or viscous 
dissipation [12,13], the effects of slip [14], and 
the analysis of the unsteady case [15]. Effects of 
radiation and magnetic field on the mixed 
convection stagnation-point flow over a vertical 
stretching sheet in a porous medium considered 
by Hayat et al. [16]. Recently, Ibrahim and 
Shankar [17] have analyzed MHD boundary layer 
flow and heat transfer of a nanofluid past a 
permeable stretching sheet with velocity, thermal 
and solutal slip boundary conditions. Roslinda 
Nazar [18] analyzed Unsteady mixed convection 
boundary layer flow near the stagnation point on 
a vertical surface in a porous medium. 
 
During the past several decades the study of flow 
over a non isothermal stretching sheet as 
attended many investigations. It has wide 
applications in many industrial and engineering 
fields. MHD Flow and Heat Transfer past a 
Porous Stretching Non-Isothermal Surface in 
Porous Medium with Variable Free Stream 
Temperature is studied by Swathi [19]. P.S. Datti 
et al. [20] have investigated MHD visco-elastic 
fluid flow over a non-isothermal stretching sheet. 
K.V. Prasad et al. [21] discussed Momentum and 
heat transfer in visco‐elastic fluid flow in a porous 
medium over a non‐isothermal stretching sheet.  
 
Motivated by these studies, in this paper, we 
analyzed the problem of MHD stagnation point 
flow and heat transfer of a nanofluid over a non-
isothermal stretching sheet in porous medium by 
considering the effects of Brownian motion and 
Thermophoresis parameters numerically by 
adopting the well known Keller-Box method. In 
addition this study has important applications in 
several manufacturing process from industry, a 
variety of engineering, astrophysical and 
geophysical problems. 
 
In this investigation, we consider two general 
cases of non-isothermal boundary conditions: 
 

(i) Prescribed surface temperature (PST) 
(ii) Prescribed surface heat flux (PHF) 

  
The effects of governing parameters on fluid 
velocity, temperature and particle concentration 
have been discussed. To verify the obtained 
results, I have compared the present numerical 
results with previous work by Ibrahim [22] and a 
very good agreement has been established.  



 
 
 
 

Vasumathi et al.; PSIJ, 12(4): 1-11, 2016; Article no.PSIJ.29926 
 
 

 
3 
 

2. MATHEMATICAL FORMULATION 
 
Consider the steady, two-dimensional laminar 
boundary layer flow of nanofluid in the region of 
stagnation point towards a non isothermal 
stretching sheet in a porous medium situated at 
� = 0 as shown in Fig. 1. The X – axis and Y – 
axis are taken along and perpendicular to the 
sheet and the flow is confined to � ≥ 0 . The 
effects of Brownian motion and thermophoresis 
are also accounted.  
 
The stretching velocity ���	
 and the free stream 
velocity �∞�	
 are assumed to vary proportional 
to the distance x from the stagnation point, i.e. 
���	
 = �	  and �∞ = �	 , where a and b are 
constants with � > 0  and � ≥ 0 . It is also 
assumed that the surface of the sheet is 
subjected to a prescribed temperature �� = �∞ +
�	� , where �∞  is the ambient fluid temperature 
and A and n are constants with  � > 0 (heated 
surface). Further, a uniform magnetic field of 
strength is assumed to be applied in the positive 
y-direction normal to the stretching sheet. The 
magnetic Reynolds number is assumed to be 
small, and thus the induced magnetic field is 
negligible. 
 
The simplified two-dimensional equations 
governing the flow of a steady, boundary layer 
flow are considered as: 
 

��
�� + ��

�� = 0                                    (1) 

 

� ��
�� + � ��

�� = �∞ ��∞
�� + � ���

��� − �� �
! �� − �∞
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(2) 
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�� + +[-�
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�� +
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��23]                                                      (3) 

 

� �5
�� + � �5

�� = -�
��5
��� + /0

%∞
��%
���             (4) 

 
The velocity and concentration boundary 
conditions are: 
 
   � = ���	
 = �	, � = 0, 7 = 7�         �9   � = 0,  
   
  � ⟶ �∞ = �	,   � = 0,   7 = 7∞     �;   � ⟶ ∞.  

(5) 
 
The thermal boundary conditions are: 
 
 

(i) The prescribed surface temperature 
 

  � = �� = �∞ + �	�,    �9 � = 0,   
  
    � ⟶ �∞  �; � ⟶ ∞.                                          �6
 

    
(ii) The prescribed heat flux  

 

      −> �%
�� = ?� = -	 @    �9 � = 0,  

 
         � ⟶ �∞  �; � ⟶ ∞.            (7) 

 
where x and y represents coordinate axes along 
the continuous surface in the direction of motion 
and normal to it, respectively. u and v are the 
velocity components along the x and y axes, 
respectively. � - kinematic viscosity, >$ – thermal 
concuctivity, AB - the density of the base fluid, C - 
electrical conductivity, DE  - magnetic field, AF  - 
the density of the nanoparticle,  �AG
B  - heat 
capacity of the fluid, -� - the Brownian diffusion 
and -%  - thermophoretic diffusion coefficient, T – 
temperature inside the boundary layer, �AG
F  - 
effective heat capacity of a nanoparticle, A - the 
density, �∞ - is the temperature far away from the 

sheet,  & = � #
�!'
(

, + = H�'!
I
�'!
(

J , � = � K
!(


.  

 
Similarity transformations used in this problem 
are: 

                 

L = MN
" �,          O = √��	Q�L
,             ℎ�L
 = 5S5∞

5TS5∞  

(8) 
 
We introduce the dimensionless quantities for the 
thermal boundary conditions as: 
 

(i) In prescribed surface temperature case, n 
is the wall temperature parameter ��  is      
the wall temperature and A is constant. 
When U = 0 , the thermal conditions 
become isothermal. The non-dimensional 
temperature in this case is 

 

V�L
 =  %S%∞
%TS%∞         (9) 

 

(ii) The prescribed heat flux is considered to 
vary with distance x from the origin. In this 
case the non dimensional temperature is 

 

W�L
 =  %S%∞
%TS%∞   (10) 

 

Where �� − �X = �/�Y
# 
M"

N , D is a constant.  



 

Fig. 1. Physical modal and coordinate system

The equation of continuity is satisfied if we 
choose a stream function O�	, �
 such that
 

� = �Z
�� ,     � = − �Z

��                                     

 
By using the Rosseland approximatio
radiation, we write the radiative heat flux as:
 

  ?[ = − \�∗
^#∗

�%_
��                                    

                                                                                                            
where >∗ is the mean absorption coefficient and 
C∗  is the Stefan-Boltzmann constant. Since the 
temperature differences within the flow field are 
assumed to be small, and then we linearize and 
expand  �\ into the Taylor series about
after neglecting higher order forms takes the 
form 
 

   �\ = 4�∞^� − 3�∞\                  
 
From above equation we get  
 

   ?[ = − $b%c
∞�∗

^#∗
�%
��                                

 
Using the above transformations, the non
dimensional, nonlinear, and coupled ordinary 
differential equations are written as 
 

(i) For PST case 
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Physical modal and coordinate system 
 

The equation of continuity is satisfied if we 
such that 

                                    (11) 

By using the Rosseland approximation for 
radiation, we write the radiative heat flux as: 

                                (12)        

                                                                                                            
is the mean absorption coefficient and 

Boltzmann constant. Since the 
temperature differences within the flow field are 
assumed to be small, and then we linearize and 

into the Taylor series about �∞, which 
after neglecting higher order forms takes the 

                  (13) 

                             (14) 

tions, the non-
dimensional, nonlinear, and coupled ordinary 

 

   Q ′′′ + QQ ′′ − dQ ′e3 − �f+g
Q ′ +

�1 + i
V ′′ + jk. QV ′ − U. jk. Q ′V +
jk. l�. ℎℎℎℎ′V ′ + jk. l9V ′3 = 0,

 

  ℎ′′ + mn. Qℎ′ + 1op
oq2 . V ′′ = 0.                      (17)

 

The transformed boundary conditions
 

Q�0
 = 0, Q ′�0
 = 1, V�0
 = 1, ℎ�

  Q ′�∞
 = r, V�∞
 = 0, ℎ�∞
 =
 

(ii) For PHF case 
 

Q ′′′ + QQ ′′ − dQ ′e3 − �f+g
Q ′ + f. r
 
�1 + i
W′′ + jk. QW′ − ;. jk. Q ′W + jk
jk. l9W′3 = 0,                                           
 

      ℎ′′ + mn. Qℎ′ + 1op
oq2 . W′′ = 0.                      

 
The transformed boundary conditions
 

 Q�0
 = 0, Q ′�0
 = 1, W′�0
 = −1, ℎ
�9 L = 0,                          
      �∞
 = r, W�∞
 = 0, ℎ�∞
 = 0,   �;

 
 
 
 

, 2016; Article no.PSIJ.29926 
 
 

 

                                                                                                             

+ f. r + r3 = 0 
  (15) 

 

+
,                 (16) 

.                      (17) 

The transformed boundary conditions 

�0
 = 1, �9 L =
0,         

                       � 
 = 0,   �;   L → ∞,   
(18) 

+ r3 = 0   (19) 

jk. l�. ℎ′W′ +
                                                  (20) 

                    (21) 

The transformed boundary conditions 

ℎ�0
 = 1,

�;   L → ∞,    (22)  
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Where r = q
N  is the velocity ratio, jk = "

t  is the 

Prandtl number, i = $b�∗%c
∞

^#∗#  is the radiation 

parameter, f = �� �
!(N  is Magnetic parameter, 

l� = u/v�5TS5∞

"  is Brownian motion parameter, 

l9 = u/0�%TS%∞

"%∞  is Thermophoresis parameter, 

mn = � "
/v
  is Lewis number, g =  porosity 

parameter. 
 
Because the parameter Nt depends on x, true 
similarity solution is not achieved. However, if the 
parameter A is proportional 	S� and parameter D 
is also proportional to 	S@ , Nt becomes 
independent of x and a true similarity is realized.  
 
Heat transfer coefficient and mass transfer 
coefficients are important physical parameters. 
They defined as, 
 

l�� =  w)T
#�%TS%∞
 =  − w1x0

xy2yz 
�%TS%∞
 ,  and  

 

 rℎ� =   w){
#�5TS5∞
 =  − w1x|

xy2yz 
5TS5∞ .  

 
The dimensionless forms of these parameters 
are: 

 l�� =  −�1 + i
M}~�
3  V ′�0
,  and rℎ� =

 −M}~�
3 ℎ′�0
,                                              (23) 

 

where the surface heat flux ?� = > 1�%
�� + �)*

�� 2
��E

, 

the surface mass flux ?� = > 1�5
��2

��E
 and 

in� =  �Tw
"  is the Reynolds number where k is the 

thermal conductivity. The numerical values of 
−ℎ′�0
  are proportional to local Sherwood 
number and these are presented by Table 1 for 
the values of the physical parameters. 
 

2.1 Numerical Solution 
 
Equations (15)-(17) and (19)-(21) subjected to 
the boundary conditions (18) and (22) are solved 
numerically using finite difference method that is 
known as Keller box in combination with the 
Newton’s techniques.  
 

• Reducing higher order ODEs  in to 
systems of first order ODEs 

• Writing the systems of first order ODEs 
into difference equations using central 
differencing scheme 

• Linearizing the difference equations using 
Newton’s method and wring it in vector 
form  

• Solving the system of equations using 
block elimination method  

 

In order to solve the above differential equations 
numerically, we adopt function bvp4c in Matlab 
software which is very efficient in using the well 
known Keller box method. In accordance with the 
boundary layer analysis, the boundary condition 
at L =  ∞ is replaced by L =  4, and the step size 
�L = 0.04  is used to obtain numerical solution 
with four decimal place accuracy as the criterion 
of convergence. Obtained ordinary non-linear 
Equations are solved by Keller box method for 
boundary condition. Accuracy of this numerical 
method shown in Table 1 is being validated by 
direct comparison with the numerical results 
reported by Ibrahim and Shankar [22]. The 
numerical calculations of V�0
, and −ℎ′�0
 for the 
values of Pr, Le, n, s, S, R, Nt, Nb, M, and G  are 
shown in Table 2.  
 
Table 1. Comparison of results for – ����
with 

previous published works 
 

Pr Wubshet  
Ibrahim [22] 

Present 
work 

1.0 0.9383 0.9383 
2.0 0.8964 0.8964 
5.0 0.8605 0.8605 

Table 2. Showing results of ���
 and −�′��
 for the values of Pr, M, S, Le, R, s, Nt, Nb and G 
 
Pr S Le ���
 −�′��
 
1 1 5 1.3650 1.3272 
2 1 5 1.0097 1.2710 
5 1 5 0.7099 1.2028 
5 0 5 0.8598 0.7537 
5 2 5 0.6096 1.5489 
5 3 5 0.5398 1.8368 
1 1 10 1.3810 2.1379 
1 1 15 1.3889 2.7464 
1 1 20 1.3939 3.2542 
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3. RESULTS AND DISCUSSION 
 
In order to get a physical insight into the problem, 
a representative set of numerical results is 
shown graphically in Figs.2-15, to illustrate the 
influence of physical parameters viz., the 

magnetic parameter M, viscous ratio S, radiation 
parameter R, Prandtl number Pr, Brownian 
motion parameter Nb, thermophoresis parameter 
Nt, porosity parameter G, Lewis number Le on 
the velocity Q ′�L
 , temperature V�L
  and 
concentration ℎ�L
. 

 

  
 

Fig. 2. Influence of S on �′��
 
 

Fig. 3. Influence of S on ���
 
 

 
 

Fig. 4. Influence of S on ���
 
 

Fig. 5. Influence of n on ���
 
 

  
 

Fig. 6. Influence of Le on ���
 
 

Fig. 7. Influence of R on ���
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Fig. 8. Influence of Pr on ���
 
 

Fig. 9. Influence of Nb and Nt on ���
 
 

  
 

Fig. 10. Influence of Pr on ���
 
 

Fig. 11. Influence of s on ���
 
 

  
 

Fig. 12. Influence of R on ���
 
 

Fig. 13. Influence of Le on ���
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Fig. 14. Influence of Nt on ���
 
 

Fig. 15. Influence of S on ���
 
 

  
 

Fig. 16. Influence of G on ���
 
 

Fig. 17. Influence of G on �′��
 
 

 
 

Fig. 18. Influence of G on ���
 
 

Fig. 2 refers that there is an increase in the 
velocity with an increase in velocity ratio S for 
some fixed values of parameters. It is evident 
from this figure that when r < 1 , the thickness               
of the boundary layer decreases with the 
increase in S. Here is straining motion near                
the stagnation region increases so the 
acceleration of the external stream increases 

which causes a reduction in the boundary layer 
thickness and as a consequence the horizontal 
velocity increases. On the other hand, when 
r > 1, the flow has an inverted boundary layer 
structure. Here the sheet velocity ���	
 = �	 
exceeds the velocity of external stream �∞�	
 =
�	. It is also noticed that boundary layer is not 
formed when r = 1. 
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Fig. 3 depicts the effect of velocity ratio S on the 
temperature. The temperature and the thermal 
boundary layer thickness decrease with an 
increase in S. 
 
Fig. 4 shows that the influence of S on the 
nanoparticles concentration is virtually similar to 
that accounted for the temperature V�L
. 
 
Fig. 5 illustrates the effects of power index n of 
terms in non-isothermal surface. From the graph, 
we can realize that as the values of n increase, 
the temperature decreases and the thermal 
boundary layer thickness decreases. 
 
Fig. 6 exhibits the nature of concentration field 
for the variation of Lewis number. As Lewis 
number increases the concentration graph 
decreases and the concentration boundary layer 
thickness decreases. This is probably due to the 
fact that mass transfer rate increases as Lewis 
number increases. It also reveals that the 
concentration gradient at surface of the sheet 
increases. Moreover, the concentration at the 
surface of a sheet decreases as the values of Le 
increase. 
 
As depicted in Fig. 7, 12 it is noticed that an 
increase in R yields an increase in the 
nanofluid’s temperature, which leads to decrease 
in the heat transfer rate. Thus, the radiation 
should be at its minimum in order to facilitate the 
cooling process. All these physical behaviour are 
due to the combined effects of the strength of the 
Brownian motion and thermophoresis particle 
deposition. 
 
Figs. 8, 10, portrays the behaviour of Prandtl 
number Pr on the temperature. An increase in Pr 
rapidly shifts the profiles towards the boundary 
causing a diminution in the thickness of thermal 
boundary layer. A bigger Prandtl number has a 
relatively lower thermal diffusivity. Thus an 
increase in Pr reduces conduction and thereby 
increases the variation in the thermal 
characteristics. As expected, the variation in the 
temperature is more pronounced for smaller 
values of Pr than its larger values. 
 
Fig. 9 is plotted to perceive the effects of 
Brownian motion and thermophoresis 
parameters on the temperature. There is a 
substantial increase in the temperature and the 
thermal boundary layer thickness with an 
increase in Nb and Nt. In nanofluid system, due 
to the presence of nanoparticles, the Brownian 
motion takes place and for the increase in Nb the 

Brownian motion is effected and  consequently 
the heat transfer characteristics of the fluid 
changes. With increase of Nt, the temperature of 
the fluid increases. The over shoot near the wall 
is found. Increase in Nt causes increase in the 
thermophoresis force which tends to move 
nanoparticles from hot to cold areas and 
consequently it increases the magnitude of 
temperature profiles. 
 
Fig. 11 illustrates the effects of power index s of 
terms in non-isothermal surface. From the graph, 
we can realize that as the values of s increase, 
the temperature decreases and the thermal 
boundary layer thickness decreases. 
 
As it is noticed from Fig. 13 as Lewis number 
increases the concentration graph decreases 
and the concentration boundary layer thickness 
decreases. This is probably due to the fact that 
mass transfer rate increases as Lewis number 
increases. It also reveals that the concentration 
gradient at surface of the sheet increases. 
Moreover, the concentration at the surface of a 
sheet decreases as the values of Le increase. 
 
Fig. 14 plots the concentration profiles for 
different values of the Thermophoresis 
parameter Nt. Here concentration boundary layer 
reduces as Nt increases which thereby enhances 
the nanoparticles concentration at the sheet. 
 
Fig. 15 shows the effect of velocity ratio S on the 
temperature.  The temperature and the thermal 
boundary layer thickness decrease with an 
increase in S. 
 
Figs. 16, 17 and 18, shows the effect of porosity 
parameter G on the temperature and velocity 
profiles. It is observed that the presence of the 
porous medium. The temperature profile 
whereas is reduces the velocity profile. This is 
because the porous medium inhibits the fluid not 
to move freely through the boundary layer. This 
leads the flow to increase thermal boundary layer 
thickness. 
 
4. CONCLUSIONS 
 
In this work, the MHD stagnation point flow and 
heat transfer of nanofluid over a non-isothermal 
stretching sheet in porous medium is analyzed. 
The governing boundary layer equations are 
converted into highly nonlinear coupled similarity 
equations using linear group of transformation 
before being solved numerically. Numerical 
results were obtained using the function bvp4c in 
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MATLAB for several ranges of parameters: 
Magnetic parameter M, velocity ration S, 
temperature index parameter n, Prandtl number 
Pr, radiation parameter R, Lewis number Le, 
porosity parameter G, Brownian motion 
parameter Nb, thermophoresis parameter Nt. 
The main observations of the present study are 
as follows. 
 

• An increase in velocity ratio S is to 
increase the velocity profile but is to 
decrease the temperature and 
concentration profiles 

• As magnetic parameter M increases, 
velocity profile decreases 

• An increase in radiation parameter R leads 
the temperature profiles to increase 

• As n, increases, temperature and 
concentration profiles decreases 

• The impact of Prandtl number shows that 
temperature profile is decreasing 

• As Nt and Nb increases, the temperature 
of nanofluid increases, and as Nt 
increases,  concentration decreases 

• As s, increases, temperature profile 
decreases 

• As increase in Nt is to increase the 
concentration profiles  

• Lewis number Le reduces the 
concentration of nanofluid 

• Porosity parameter G reduces the velocity 
of nanofluid, and increases the 
temperature of nanofluid. 
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