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Abstract 
 

In this paper, the motion of a non-uniform elastic structure resting on exponentially decaying Vlasov 
foundation and under repeated rolling concentrated loads moving with constant velocity is analyzed. The 
governing equation is a fourth order partial differential equation. The solution technique is based on the 
method of Galerkin with series representation of Heaviside function. The result shows that, an increase in 
the values of the structural parameters such as foundation stiffness, foundation modulus and distance x 
along span of the beam reduces the response amplitude of the beam for the dynamic problem.   
 

 
Keywords: Non-uniform elastic structure; repeated rolling concentrated loads; exponentially decaying 

Vlasov foundation; Galerkin's method. 
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1 Introduction  
 
Studies in structural dynamics dealing with moving loads on elastic structures are enormous and have been 
enriched in the last few decades by the development of high speed railway networks, elevated road-ways, 
highway bridges especially cable-stayed and suspension bridges etc., in the developed and developing 
countries. The fundamental problems have been the increasing high speeds and weights of the vehicles 
which this structure carries. In particular, the dynamic response of a simply supported beam, traversed by a 
constant force moving at a uniform speed was first studied by Krylov [1]. His results were obtained using the 
method of Eigen-functions. He assumed that the mass of the load is smaller than that of the beam. Later, 
Timoshenko [2] used energy methods to obtain solution in series form for simply supported finite beam on 
an elastic foundation subjected to time dependent point loads moving with uniform velocities across the 
beam. Kenny [3] similarly investigated the dynamic response of infinite beams on an elastic foundation 
under the influence of loads moving at constant speeds. He included the effects of viscous damping in the 
governing differential equation of motion. Steel [4] also investigated the response of a finite simply 
supported Bernoulli-Euler beam to a unit force moving at a uniform velocity. He analyzed the effects of this 
moving force on beams with and without an elastic foundation using a considerably simpler vector 
formulation with a Laplace rather than Fourier transformation. In a much later development Oni, [5] 
considered the problem of a harmonic time-variable concentrated force moving at a uniform velocity over a 
finite deep beam. The methods of integral transformations were used. Series solution which converges was 
obtained for the deflection of the simply supported beams and analyzed for various speeds of loads. Just as 
for elastic beams, the problem of dynamic response of an elastic plate to moving loads when the mass effect 
of the moving load is neglected has been tackled by many authors. The study of non-uniform elastic 
structure resting on exponentially decaying Vlasov foundation (i.e. a bi-parametric foundation model that 
shows the relationship between the foundation reaction and vertical deflection by incorporating shear 
modulus into the Winkler foundation model) and under repeated rolling concentrated loads moving with 
constant velocity forms a very important structural element in engineering design and construction. It has 
also become the objective of various researchers in the field of Applied Mathematics. In general, problems 
of this type are mathematically complex if analytical approach is used. Thus, most of the research works 
available in the Literature are those in which Numerical technique is used. This is due to great amount of 
computational labour which is required both to set up and solve the necessary equations. A major break-
through in this field of research is the work of Timoshenko [2] who gave impetus to research work in this 
area of study. The analysis of the dynamic response of a simple beam continuously supported by a 
viscoelastic foundation to a moving load, moving at variable speed was considered. The analysis reveals 
several resonance conditions depending on the viscoelasticity of the foundation. Also a theory for the 
response to an arbitrary number of concentrated moving masses of a rectangular plate continuously 
supported by an elastic Pasternak type foundation was developed [6]. It was found that the critical speeds of 
the system increased with increase in the values of the foundation moduli whether the inertia of the moving 
load is considered or not. The displacement response of a simply supported non-uniform beam resting on an 
elastic foundation to several moving load was later taken up and concluded that the maximum transverse 
deflection of the beam is always greater than the displacement of the moving mass [7]. A modification of the 
asymptotic method was used to simplify the resulting sequence of differential equation [8]. Sayad et al. 
Study vibration analyses of a tapered beam with exponentially varying thickness resting on Winkler 
foundation using the differential transform method [9]. It is well known that in the dynamical system like 
this, analytical methods are desirable as a method of solution, as there often shed light on vital information 
about the vibrating system. 
 
Thus, this paper studied the dynamic response of non-uniform elastic structure resting on exponentially 
decaying Vlasov foundation and under repeated rolling concentrated loads using analytical approach. 
Several numerical examples will also be presented. It is assumed that the speed at which the load traverses 
the structural element is constant.    
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2 Mathematical Model  
 
The motion of a non-uniform elastic structure resting on exponentially decaying Vlasov foundation and 
under repeated rolling concentrated loads moving with constant velocity shown in figure (1) is governed by 
the following fourth order partial differential equation 
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Fig. 1. Geometry of a non-uniform beam on exponentially Vlasov foundation 

 
Where µ(x) is the variable mass per unit length L of the beam, t is the time, N is the constant axial force, d(x) 
is the variable material damping intensity, Fm(x, t) is the flexural moment acting on the beam across section, 
V(x, t) is the beam lateral displacement, f(x, t) is the rolling concentrated loads. K(x) and G(x) are the 
variable foundation stiffness and foundation modulus respectively. 
                                                                                  
The flexural moment acting on the beam across section is related to the vertical response as  
 

�� (�,�)= ��(�)
��

���
�(�,�)                                                                                                                          (2) 

 
Where EI(x) is the flexural rigidity of the beam and E is the Young's modulus. 
 
The non-uniform characteristics distribution of the beam may be assumed as power functions   Mohamed 
[10]. The parameters β and n are used to approximate the actual non-uniformity of the beam given as  
 

I(x) = ��(1 + ��)�� �;      μ(x) = ��(1 + ��)�;       d(x)= ��(1 + ��)�                                         (3) 
 
Where I(x) is the variable moment of inertia of the beam, Io, μo and do are the beam characteristic constants 
at x = 0.  
 
In this paper, we adopt the example in Omolofe [11] to define exponentially decaying Vlasov foundation as  
 

  K(x) = ���
���                               G(x) = ���

���                                                                                     (4)           
 

 Where λ1 and λ2 are constants, Ko and Go are the elastic foundation constants.                                                           
  

2.1 The boundary conditions    
 
The boundary conditions depend on the constraints at the beam ends. However, for a simply supported beam 
whose length is L, the vertical displacement at the beam ends are given as 
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�(0,�) = �(�,�)= 0;      � ′′(0,�)=  � ′′(�,�)= 0                                                                                                   (5) 
 
It is assumed that the initial conditions without any loss of generality is given by 
 

�(�,0)= 0 = �̈(�,0)                                                                                                                                                     (6) 
                                   
Where dash and dot are the derivatives with respect to x and t respectively. 
 
Furthermore, we adopt the example in Shahin (2010) to define the rolling concentrated Loads f(x, t) as 
 
�(�,�)= ���   (� − ��)+ ���[� − (��+ �)]                                                                                                            (7) 

 
where Pi is the constant magnitude of moving concentrated load, i = 1,2, d is the distance between the 
repeated moving loads, �(� − ��) represent the Dirac delta function, c is the velocity of the ith particle of the 
system. Substituting Eqns. (2), (3), (4) and (7) into (1), taking n=1, one obtains   
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2.2 Approximate analytical solution 
 
2.2.1 Analysis of non-uniform beam resting on exponentially decaying Vlasov foundation when the 

distance between the rolling concentrated loads is less than the length of the beam   
 
In this section, in order to compute the response displacement of the beam due to moving repeated rolling 
concentrated loads, we shall use an elegant technique called Galerkin's method often used in solving diverse 
problems involving mechanical vibrations Ojih (2013). This method requires that the solution of the 
deflection of the coupled equation is expressed as 
 

�(�,�)= ���(�)��(�)

�

���

                                                                                                                                                  (9) 

                                 
Where ��(�) coordinates in modal are space and ��(�) are the normal modes of free vibration written as  

 
��(�)= ������ + �������� + �����ℎ��� + �����ℎ���                                                                                        (10) 

 
Where the constants Aj, Bj & Cj define the space and amplitude of the beam vibration. Their values depend 
on the boundary condition associated with the structure. Thus, for a simply supported beam, using eq. (5), it 
can be shown that 
 
�� + �� = 0;                            − �� + �� = 0;                                                                                                              (11) 
 
����� + �� ����� + �� ���ℎ�� + �� ���ℎ�� = 0;    − ����� − �� ����� + �� ���ℎ�� + �� ���ℎ�� = 0        (12) 

 
 
Solving the equations in (11) and (12) simultaneously, it is easy to show that 
 

�� = �� = �� = 0 ��� �� =
��

�
                                                                                                                    (13) 

 
Thus, for a beam with simple support at both ends, Eqn. (10) becomes 
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��(�)= ���
���
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                                                                                                                                            (14) 

 
Thus, in view of (9) and (12), after some simplification and rearrangement, Eqn. (8) becomes 
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To determine ��(�), the expressions on the left hand side of (15) are required to be orthogonal to the 

function ���
���

�
. Thus, equation (15) becomes 
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Further simplification and rearrangement of (16) after substituting the values of the integrals' results in (17) 
into (16), one obtains 
 

   �̈�(�)+ ���̇�(�)+ ����(�) = �����∅�+ �� sin(∅�+ �)                                                               (18) 
Where 
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Equation (18) is a second order ordinary differential equation, therefore, subjecting the equation to a Laplace 
transform defined as 
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� = ∫ (~)������
∞

�
                                                                                                                                        (20)   

           

In conjunction with the initial conditions defined in (6), gives the following simple algebraic equation 
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Where 
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Thus, the equation reduces to that of finding Laplace inversion of (21), so that the Laplace inversion of ��(�) 

is the convolution of (21) defined as 
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Thus, the Laplace inversion of (21) is given as 
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[���(��� − ���)+ ���(��� − ���)]                                                                               (25) 

                   
Where 

  

  ��� = ����(���)���∅� ��

�

�

            ��� = ����(���)���∅� ��           ��� = ����(���)���∅� ��

�

�

 

�

�

 

                                                           ��� = ����(���)���∅� ��

�

�

                                       (26)   

 

 It is easy to show that  

��� =
1

∅� + ��
�
(∅���� − �����∅�− ∅���∅�)             ���

=
1

∅� + ��
�
(∅���� − �����∅�− ∅���∅�) 

��� =
1

∅� + ��
�
(���

��� − �����∅�+ ∅���∅�)             ���

=
1

∅� + ��
�
(���

��� − �����∅�+ ∅���∅�)                                                                     (27)   

 
Substituting (27) into (25), after some rearrangement, one obtains 
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In view of (9), (19) and (22), we have 
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Eqn. (29) is the transverse displacement of the non-uniform elastic structure resting on exponentially 
decaying Vlasov foundation under repeated rolling concentrated loads when the distance between P1 and P2 
is less than the length L of the beam. 
 
2.2.2 Analysis of non-uniform beam resting on exponentially decaying Vlasov foundation when the 

distance between the rolling concentrated loads is equal to the length of the beam  
 
In this section, we consider the case when the distance between the concentrated loads is equal to the length 
of the beam. This implies that one load is leaving the beam as the other begins to travel onto the beam at the 
left end, and if the time t is remeasured from this instant, the differential equation governing the transverse 
motion of the beam may be written in the form 
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Like in the previous section, closed form solution to (30) is sought using (9). Following the same arguments 
as in the previous section after some simplification and rearrangements, equation (30) becomes 
 

 ��(�,�)�̈�(�)+ ��(�,�)�̇�(�)+ ��(�,�)��(�) = �����
����

�
                                                          (31) 

 

Equation (31) is analogous to (16), thus subjecting (31) to a Laplace transform in conjunction with the 
boundary conditions stated in (6) and using convolution theory, after inversion, one obtains 
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sin���

�
              (32) 

 

Eqn. (32) is the transverse displacement of the non-uniform elastic structure resting on exponentially 
decaying Vlasov foundation under repeated rolling concentrated loads when the distance between P1 and P2 
is equal to the length L of the beam. 
 

3 Results and Discussion 
 
The transversed displacement of a non-uniform elastic beam may increase without bound. Thus one is 
interested in resonance condition. Eqs (29) and (32) clearly depicts that the non-uniform beam resting on 
exponentially decaying Vlasov foundation will grow without bound whenever 



     �� =  �� ;              ��
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  and the velocity at which this occurs is known as critical velocity which is given as 

 

 � =
�

2��
  �4�� + 2�����

�

=
�

2��
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For the purpose of numerical analysis of the forgoing problem, the velocity of the moving load and the 
length of non-uniform elastic beam are 30m/s and 15m respectively. Furthermore, 
β = 0.025,�� = 0.0012  �� = 0.5,  �
of a non-uniform elastic structure resting on exponentially decaying Vlasov
rolling concentrated loads when the distance between 
shown in Fig (2a) – Fig (2f). It is observed that as the values of the varying parameters are increased, the 
response amplitudes decreased. The same effect is shown when the distance between 
the length L of the beam in Fig. 3.  
 

Fig. 2(a). Transverse displacement of the non
decaying Vlasov foundation under repeated rolling concentrated loads when the distance between P
and P2 is equal to the length L of the beam for various value of foundation stiffness K and for fixed 

values of N (40000), P1(16000), P2(18000) , d(1.4) and G(40000)

Fig. 2(b). Transverse displacement of the non
decaying Vlasov foundation under repeated rolling concentrated loads when the distance between P
and P2 is equal to the length L of the beam for various value of foundation modulus G and for fixed 

values of N (40000), P1(16000), P2(18000), d(1.4)  an
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For the purpose of numerical analysis of the forgoing problem, the velocity of the moving load and the 
uniform elastic beam are 30m/s and 15m respectively. Furthermore, E =

�� = 0.4, �� = 0.05, � = 1.4, � = 3, � = 50 . The deflection profile 
uniform elastic structure resting on exponentially decaying Vlasov foundation under repeated 

rolling concentrated loads when the distance between P1 and P2 is less than the length L of the beam is 
(2f). It is observed that as the values of the varying parameters are increased, the 

response amplitudes decreased. The same effect is shown when the distance between P1 and 

 

lacement of the non-uniform elastic structure resting on exponentially 
decaying Vlasov foundation under repeated rolling concentrated loads when the distance between P

is equal to the length L of the beam for various value of foundation stiffness K and for fixed 
values of N (40000), P1(16000), P2(18000) , d(1.4) and G(40000) 

 

 
Transverse displacement of the non-uniform elastic structure resting on exponenti

decaying Vlasov foundation under repeated rolling concentrated loads when the distance between P
is equal to the length L of the beam for various value of foundation modulus G and for fixed 

values of N (40000), P1(16000), P2(18000), d(1.4)  and K(40000) 
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                  (33) 

                (34)  

For the purpose of numerical analysis of the forgoing problem, the velocity of the moving load and the 
=  2.02e + 11, 

The deflection profile 
foundation under repeated 

of the beam is 
(2f). It is observed that as the values of the varying parameters are increased, the 

and P2 is equal to 

 

uniform elastic structure resting on exponentially 
decaying Vlasov foundation under repeated rolling concentrated loads when the distance between P1 

is equal to the length L of the beam for various value of foundation stiffness K and for fixed 

 

uniform elastic structure resting on exponentially 
decaying Vlasov foundation under repeated rolling concentrated loads when the distance between P1 

is equal to the length L of the beam for various value of foundation modulus G and for fixed 



Fig. 2(c). Transverse displacement of the non
decaying Vlasov foundation under repeated rolling concentrated loads when the distance between P
and P2 is equal to the length L of the beam fo

(40000), P1(16000), P2(18000),  K(40000) and G (40000)

Fig. 2(d). Transverse displacement of the non
decaying Vlasov foundation under repeated ro
and P2 is equal to the length L of the beam for various value of foundation stiffness K and for fixed 

values of N (40000), P1(18000), P2(18000) , d(1.4) and G(40000)

Fig. 2(e). Transverse displacement of the non
decaying Vlasov foundation under repeated rolling concentrated loads when the distance between P
and P2 is equal to the length L of the beam for various value of foundat

values of N (40000), P1(18000), P2(18000), d(1.4)  and K(40000)
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decaying Vlasov foundation under repeated rolling concentrated loads when the distance between P
is equal to the length L of the beam for various value of distance d and for fixed values of N 

(40000), P1(16000), P2(18000),  K(40000) and G (40000) 
 

 
Transverse displacement of the non-uniform elastic structure resting on exponentially 
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Fig. 2(f). Transverse displacement of the non
decaying Vlasov foundation under repeated rolling concentrated 
and P2 is equal to the length L of the beam for various value of distance d and for fixed values of N 

(40000), P1(18000), P2(18000),  K(40000) and G (40000)

Fig. 3. Transverse displacement of the non
Vlasov foundation under repeated rolling concentrated loads when the distance between P

equal to the length L of the beam for various value of distance d and for fixed values of N (40000), 
P1(18000), P2(18000),  K(40000) and G (40000)

 

4 Conclusion 
 
An analytical solution is presented for the deflection response of non
exponentially decaying Vlasov foundation and under repeated rolling concentrated loads moving with 
constant velocity. The solution technique is based on Galerkin's method and Laplace transformation. The 
analysis exhibited the following features:
 
 The critical speeds of the system increase with an increase in the values of foundation stiffness, 

foundation modulus and exponential factor in the problem of non
exponentially decaying Vlasov foundation and un
constant velocity. 

 As the foundation parameters increased, the transverse deflection of the beam model decreased.
 
Thus, the risk of resonance was reduced as the value of the foundation parameters increas
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