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Abstract

Quadratic forms in four variables over the field Z2 are sorted first of all with respect to
permutation symmetry. Thereafter it is shown that any such form is equivalent to one of seven
such canonical forms. The orthogonal group of each one of these seven forms is obtained. The
paper closes with some remarks about quadratic forms in three variables.
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1 Introduction

By a quadratic form we understand a homogeneous quadratic polynomial in n variables
∑
i,j

aijx
ixj

where the aij belong to a field or at least a commutative ring. In this article we shall consider
the equivalence of quadratic forms in four variables over the field Z2. As our references suggest,
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the study of quadratic forms over finite fields lies at the nexus of several areas of mathematics,
combinatorics, cryptography and the theory of algebraic curves, to name but three of them; see [1],
[2], [3], [4], [5] and [6].

The standard approach to classifying quadratic forms over R associates to each quadratic form a
symmetric matrix A so that the quadratic form is xtAx. Under a change of variables the matrix
A changes according to P tAP where P is non-singular. Such a change does not preserve the
eigenvalues of A. The only invariants are the signs of the eigenvalues; as such every matrix A
may be reduced to a diagonal matrix in which every entry is 1, −1 or 0. The number of non-zero
diagonal entries is the rank of the quadratic form; one can also sensibly define the signature of the
quadratic form to be the difference between the number of positive and number of negative entries
when A has been diagonalized. Conventions vary in these definitions. Another approach is simply
to repeatedly “complete the square” so as to reduce the quadratic form to diagonal form. Over the
situation is different, that is, if the matrix P is allowed to belong to GL(n, ) (the complex general
linear group) rather than GL(n,R) (the real general linear group), the distinction between positive
and negative eigenvalues disappears and a quadratic form may always be reduced to diagonal form
in which every non-zero entry is +1. Finally, if the matrix P is orthogonal then the eigenvalues of
A are preserved and one obtains the finite-dimensional spectral theorem: for further details see [7].

It is not possible to associate a symmetric matrix to a quadratic form when the field is Z2 since
the cross terms would be all be zero. Instead one could work simply with an upper triangular
matrix. This issue as well material about forms in characteristic 2 is discussed in [8]. Another
source for material about characteristic 2 is [9]. For further background material about quadratic
forms we refer to [7] and a much more recent account with many references and many contemporary
developments in [2]. In [4] the radical (maximal isotropic subspace) of a certain class of quadratic
forms over fields of characteristic 2 is determined. In [5] among other things, the author studies the
zeros of a quadratic form. Yet another direction [3] concerns pencils of quadratic forms over finite
fields.

Our calculations have been facilitated by the symbolic manipulation program Maple. Our method is
elementary, if not to say naive; however, it has the advantage of being self-contained and accessible
to non-experts. In terms of the literature on quadratic forms over finite fields, care must be taken
to distinguish between results that apply to fields of characteristic p where p is an odd or even
prime, whether the field is closed or perfect and so on. Undoubtedly similar results exist in the
literature but we did not find them anywhere organized in quite the same form and may require
some sophisticated algebraic techniques. Finally, for us the group D2n denotes the dihedral group
of order 2n. In a forthcoming paper we hope to be able to report on how to generalize some of our
results to quadratic forms with five or more variables.

2 Preliminary Reduction

There are, in principle, 210 = 1024 quadratic forms but some are equivalent by transformations
from the symmetric group S4. Two such quadratic forms will be considered to be equivalent by an
element of GL(4,Z2), which is a finite simple group of order 20160. There are 64 forms that have
no square terms.
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2.1 Equivalence of quadratic forms

We shall write a general quadratic form Q in the form

αx2 + βxy + δxz + ϵy2 + λtx+ µty + νtz + ϕyz + ρz2 + σt2. (1)

Working over Z2, it is not possible to associate to Q a symmetric matrix otherwise all cross terms
would vanish. In fact one needs to exercise a great deal of care when working with Z2 because
almost all the standard results of linear algebra no longer remain valid. Nonetheless, one may use

instead an upper triangular matrix, A =

[ α β δ λ
0 ϵ ϕ µ
0 0 ρ ν
0 0 0 σ

]
. See [8] for further details.

We shall make a change of variables P as

x = aX + bY + cZ + dT

y = eX + fY + gZ + hT

z = iX + jY + kZ +mT (2)

t = nX + pY + qZ + rT.

As such Q is transformed into(
αa2 + β ae+ δ ai+ λna+ ϵ e2 + ϕ ei+ µne+ ρ i2 + ν ni+ σ n2)X2 + (β af +

δ aj + λ pa+ β be+ δ bi+ λnb+ ϕ ej + µ pe+ ϕ fi+ µnf + ν pi+ ν nj)XY

+(β ag + δ ak + λ qa+ β ce+ δ ci+ λnc+ ϕ ek + µ qe+ ϕ gi+ µng + ν qi

+ν nk)XZ + (aβ h+ aδm+ aλ r + β de+ dδ i+ dλn+ emϕ+ eµ r + hiϕ

+hµn+ iν r +mnν)TX + (α b2 + β bf + δ bj + λ pb+ ϵ f2 + ϕ fj + µpf + ρ j2

+ν pj + σ p2)Y 2 + (β bg + δ bk + λ qb+ β cf + δ cj + λ pc+ ϕ fk + µ qf + ϕ gj

+gµ p+ jν q + kν p)Y Z + (bβ h+ bδ m+ bλ r + β df + dδ j + dλ p+ fmϕ

+fµ r + hjϕ+ hµ p+ nu r +mν p)TY + (α c2 + β cg + cδ k + cλ q + ϵ g2

+gkϕ+ gµ q + k2ρ)Z2 + (kν q + q2σ(β ch+ β dg + cδ m+ cλ r + dδ k + dλ q

+gmϕ+ gµ r + hkϕ+ hµ q + kν r +mν q)TZ +(
αd2 + β dh+ dδm+ dλ r + ϵ h2 + hmϕ+ hµ r +m2ρ+mν r + r2σ

)
T 2 (3)

and A transforms by P tAP . However, there is no general reason to suppose that P tAP should be
upper triangular. Of course it is possible to replace P tAP by an upper triangular matrix that is
equivalent in the sense that it engenders the quadratic form XtP tAPX. In the next subsection we
shall show that a sum of squares over Z2 is equivalent to just one square. Even if one starts with a
strictly upper triangular matrix and obtains an equivalent strictly upper triangular matrix there is
no guarantee that the two matrices will have the same rank. We consider two examples:

• xy + zt. Make the change

x = X + Z + T, y = Y, z = Z, t = T. (4)

Then the form is transformed into XY + Y Z + Y T + ZT . The associated strictly upper
triangular matrices are 

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 and


0 1 0 0
0 0 1 1
0 0 0 1
0 0 0 0

 ,

respectively.
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• xy + zt. Make the change

x = Y + Z, y = X + T, z = Y, t = Z + T. (5)

Then the form is transformed into XY + Y Z + ZX + ZT . The associated strictly upper
triangular matrices are 

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 and


0 1 1 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,

respectively.

2.2 The zero quadratic form

Now we enquire about when a quadratic form can be transformed into zero. As such each of the
ten coefficients of X2,XY, ..., T 2, TX must be zero. We regard α, β, δ, λ, ϵ, ϕ, µ, ρ, ν, σ as unknowns
and write out the matrix of coefficients as a 10× 10 matrix:

M =



a2 ae ai an e2 ei en i2 in n2

b2 bf bj bp f2 fj fp j2 jp p2

c2 cg ck cq g2 gk gq k2 kq q2

d2 dh dm dr h2 hm hr m2 mr r2

0 af + be aj + bi ap+ bn 0 ej + fi ep+ fn 0 ip+ jn 0

0 ag + ce ak + ci aq + cn 0 ek + gi eq + gn 0 iq + kn 0

0 ah+ de am+ di ar + dn 0 em+ hi er + hn 0 ir +mn 0

0 bg + cf bk + cj bq + cp 0 fk + gj fq + gp 0 jq + kp 0

0 bh+ df bm+ dj br + dp 0 fm+ hj fr + hp 0 jr +mp 0

0 ch+ dg cm+ dk cr + dq 0 gm+ hk gr + hq 0 kr +mq 0



.

Now we shall work “mod 2”; as such it turns out according to Maple that the determinant of M
mod 2 is given by ∆5 where ∆ is the determinant of the transformation P . We require P to be
non-singular. It follows that:

Proposition 2.1. The zero quadratic form is equivalent only to itself.

2.3 Forms that are sums of squares

In a space of dimension n any non-zero form that is a sum of squares is equivalent to x2
1.

Proof. Consider the form x2
1+x2

2...+x2
k where k ≤ n. Make the transformation x1 = X1+X2, x2 =

X2 +X3, x3 = X3 +X4, ..., xp = Xp +Xp+1, ...xk−1 = Xk−1 +Xk, xk = Xk, xk+1 = Xk+1, ..., xn =
Xn. The transformation is invertible since the associated matrix consists of the identity plus an
upper triangular matrix and reduces the given form to X2

1 as required.

As a result of the Lemma a square term can be transformed only into a sum of squares.
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2.4 Forms that are square-free

• zero

• six monomials : xy, xz, xt, yz, yt, zt

• fifteen forms with two terms: three forms with no common factor xy + zt, xz + yt, xt + yz
and twelve forms with a common factor: x(y + z), x(y + t), x(z + t), y(x+ z), y(x+ t), y(z +
t), z(x+ y), z(x+ t), z(y + t), t(x+ y), t(x+ z), t(y + z)

• twenty forms with three terms: four forms with a common factor x(y + z + t), y(x + z +
t), z(x+ y+ t), t(x+ y+ z), four forms in which one variable is absent xy+ yz+ zx, xy+ yt+
tx, xz+zt+tx, yz+zt+ ty, and twelve forms in which two variables appear twice and each of
the remaining variables appear once xy+ zt+xz, xy+ zt+xt, xy+ zt+ yz, xy+ zt+ yt, xz+
yt+xy, xz+yt+xt, xz+yt+zy, xz+yt+zt, xt+yz+xy, xt+yz+xz, xt+yz+ty, xt+yz+tz

• fifteen forms with four terms: three forms in which the “missing” terms are xy + zt, xz +
yt, xt+ yz and twelve in which the “missing” terms have a common factor such as x(y + z)

• six forms with five terms such as xz + xt+ yz + yt+ zt

• one form with six terms: xy + xz + xt+ yz + yt+ zt

Next we consider forms that contain, 0, 1, 2, 3 and 4 squares, respectively, and use symmetry to
compile a list of quadratic forms; an arbitrary quadratic form is equivalent to one of the forms in
the list via a permutation.

2.5 Reduced square-free forms

• (1) 0

• (2) xy

• (3) xy + zt

• (4) xy + xz = x(y + z)

• (5) xy + xz + xt = x(y + z + t)

• (6) xy + yz + zx

• (7) xy + zt+ xz

• (8) xy + xz + yt+ zt = (x+ t)(y + z)

• (9) xy + xz + xt+ zt = x(y + z + t) + zt

• (10) xy + xz + xt+ yz + yt

• (11) xy + xz + xt+ yz + yt+ zt

2.6 Reduced forms that contain one square

• (12) x2

• (13) x2 + xy = x(x+ y)

• (14) x2 + yz

• (15) x2 + xy + zt

• (16) x2 + xy + xz = x(x+ y + z)

• (17) x2 + xy + yz = x2 + y(x+ z)

• (18) x2 + yz + yt = x2 + y(z + t)

• (19) x2 + xy + xz + xt = x(x+ y + z + t)
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• (20) x2 + xy + yz + yt = x2 + y(x+ z + t)

• (21) x2 + xy + yz + zx = (x+ y)(x+ z)

• (22) x2 + yz + zt+ ty

• (23) x2 + xy + zt+ xz = x(x+ y + z) + zt

• (24) x2 + xy + zt+ yz ≡ x(x+ y + z) + z(x+ y + t) mod 2

• (25) x2 + xz + xt+ yz + yt = x2 + (x+ y)(z + t)

• (26) x2 + xt+ yz + yt+ zt

• (27) x2 + xy + xz + xt+ yz = x2 + yz + x(y + z + t)

• (28) x2 + xy + xz + yz + yt

• (29) x2 + xz + xt+ yz + yt+ zt

• (30) x2 + xy + xz + xt+ yz + yt

• (31) x2 + xy + xz + xt+ yz + yt+ zt.

2.7 Reduced forms that contain two squares

• (32) x2 + y2 + xy

• (33) x2 + y2 + xz

• (34) x2 + y2 + zt

• (35) x2 + y2 + xy + zt

• (36) x2 + y2 + xz + yt

• (37) x2 + y2 + xy + xz

• (38) x2 + y2 + xz + xt

• (39) x2 + y2 + xz + yz

• (40) x2 + y2 + xz + zt

• (41) x2 + y2 + xy + xz + xt = x2 + y2 + x(y + z + t)

• (42) x2 + y2 + xt+ yt+ zt) = x2 + y2 + t(x+ y + z)

• (43) x2 + y2 + xy + yz + zx

• (44) x2 + y2 + xz + zt+ tx

• (45) x2 + y2 + xy + zt+ xz

• (46) x2 + y2 + xz + yt+ xy

• (47) x2 + y2 + xz + yt+ xt

• (48) x2 + y2 + xz + yt+ yz

• (49) x2 + y2 + xz + yt+ zt

• (50) x2 + y2 + xz + xt+ yz + yt

• (51) x2 + y2 + xy + xt+ yz + yt

• (52) x2 + y2 + xt+ yz + yt+ zt

• (53) x2 + y2 + xy + xz + xt+ zt

• (54) x2 + y2 + xy + xt+ yt+ zt

• (55) x2 + y2 + xy + xt+ yz + zt

• (56) x2 + y2 + xz + xt+ yz + yt+ zt

• (57) x2 + y2 + xy + xt+ yz + yt+ zt

• (58) x2 + y2 + xy + xz + xt+ yz + yt

• (59) x2 + y2 + xy + xz + xt+ yz + yt+ zt.

• (60) x2 + y2 + xy + xz + xt+ yt
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2.8 Reduced forms that contain three squares

• (61) y2 + z2 + t2 + xy

• (62) y2 + z2 + t2 + yz

• (63) y2 + z2 + t2 + xy + zt

• (64) y2 + z2 + t2 + xy + xz = y2 + z2 + t2 + x(y + z)

• (65) y2 + z2 + t2 + xy + yz = y2 + z2 + t2 + y(x+ z)

• (66) y2 + z2 + t2 + yz + yt = y2 + z2 + t2 + y(z + t)

• (67) y2 + z2 + t2 + xy + xz + xt = y2 + z2 + t2 + x(y + z + t)

• (68) y2 + z2 + t2 + xy + yz + yt = y2 + z2 + t2 + y(x+ z + t)

• (69) y2 + z2 + t2 + xy + yz + zx

• (70) y2 + z2 + t2 + yz + zt+ ty

• (71) y2 + z2 + t2 + xy + zt+ xz

• (72) y2 + z2 + t2 + xy + zt+ yz

• (73) y2 + z2 + t2 + xz + xt+ yz + yt = y2 + z2 + t2 + (x+ y)(z + t)

• (74) y2 + z2 + t2 + xt+ yz + yt+ zt

• (75) y2 + z2 + t2 + xy + xz + xt+ yz = y2 + z2 + t2 + yz + x(y + z + t)

• (76) y2 + z2 + t2 + xy + xz + yz + yt

• (77) y2 + z2 + t2 + xz + xt+ yz + yt+ zt

• (78) y2 + z2 + t2 + xy + xz + xt+ yz + yt

• (79) y2 + z2 + t2 + xy + xz + xt+ yz + yt+ zt.

2.9 Reduced forms that contain four squares

• (80) x2 + y2 + z2 + t2

• (81) x2 + y2 + z2 + t2 + xy

• (82) x2 + y2 + z2 + t2 + xy + zt

• (83) x2 + y2 + z2 + t2 + x(y + z)

• (84) x2 + y2 + z2 + t2 + x(y + z + t)

• (85) x2 + y2 + z2 + t2 + xy + yz + zx

• (86) x2 + y2 + z2 + t2 + xy + zt+ xz

• (87) x2 + y2 + z2 + t2 + xy + xz + yt+ zt

• (88) x2 + y2 + z2 + t2 + xy + xz + xt+ yz

• (89) x2 + y2 + z2 + t2 + xy + xz + xt+ yz + yt

• (90) x2 + y2 + z2 + t2 + xy + xz + xt+ yz + yt+ zt

As result of the previous investigations we have succeeded in reducing the number of quadratic
forms from the original 1024 down to 90. We claim that the list of 90 quadratic forms that have
been reduced purely on grounds of symmetry may be further reduced to just seven:

0, x2, xy, xy + zt, xy + yz + zx, x2 + xy + y2, xy + yz + zx+ xt+ yt+ zt.

In the next Section we give explicit transformations that change each of the ninety forms into these
seven.
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3 Explicit Equivalences

In this Section we shall further refine the list of 90 forms found in Section 2 using the transformation
P that changed 2 into 3. Equivalence of two forms is denoted by ∼ and the numbers of the forms
pertain to Section 2. The letters a, b, c, ..., r are the entries of the matrix P introduced in Section 3.

3.1 Forms equivalent to xy

1. a = 1, b = 0, c = 0, d = 0, e = 0, f = 1, g = 1, h = 0, i = 0, j = 0, k = 1,m = 0, n = 0, p =
0, q = 0, r = 1 =⇒ 2 ∼ 4.

2. a = 1, b = 0, c = 0, d = 0, e = 0, f = 1, g = 1, h = 1, i = 0, j = 0, k = 1,m = 0, n = 0, p =
0, q = 0, r = 1 =⇒ 2 ∼ 5.

3. a = 1, b = 0, c = 0, d = 1, e = 0, f = 1, g = 1, h = 0, i = 0, j = 0, k = 1,m = 0, n = 0, p =
0, q = 0, r = 1. xy + xz + yt+ zt ∼ xy =⇒ 2 ∼ 8

4. a = 1, b = 0, c = 0, d = 0, e = 1, f = 1, g = 0, h = 0, i = 0, j = 0, k = 1,m = 0, n = 0, p =
0, q = 0, r = 1. x2 + xy ∼ xy : =⇒ 2 ∼ 13

5. a = 1, b = 0, c = 0, d = 0, e = 1, f = 1, g = 1, h = 0, i = 0, j = 0, k = 1,m = 1, n = 0, p =
0, q = 1, r = 0 : x2 + xy + xz ∼ xy =⇒ 2 ∼ 16

6. a = 1, b = 0, c = 0, d = 0, e = 1, f = 1, g = 1, h = 1, i = 0, j = 0, k = 1,m = 0, n = 0, p =
0, q = 0, r = 1 : =⇒ 2 ∼ 19

7. a = 1, b = 0, c = 1, d = 0, e = 1, f = 1, g = 0, h = 0, i = 0, j = 0, k = 1,m = 1, n = 0, p =
0, q = 0, r = 1 : =⇒ 2 ∼ 21

8. a = 1, b = 1, c = 0, d = 0, e = 1, f = 0, g = 1, h = 1, i = 0, j = 0, k = 1,m = 1, n = 1, p =
0, q = 1, r = 0 : =⇒ 2 ∼ 30

9. a = 1, b = 1, c = 1, d = 0, e = 1, f = 1, g = 0, h = 0, i = 0, j = 1, k = 1,m = 0, n = 1, p =
1, q = 0, r = 1 : =⇒ 2 ∼ 39

10. a = 1, b = 1, c = 0, d = 0, e = 1, f = 1, g = 1, h = 1, i = 0, j = 0, k = 0,m = 1, n = 0, p =
1, q = 0, r = 0 : =⇒ 2 ∼ 50

11. a = 1, b = 1, c = 0, d = 1, e = 1, f = 1, g = 1, h = 0, i = 0, j = 1, k = 0,m = 1, n = 0, p =
1, q = 0, r = 0 : =⇒ 2 ∼ 56

12. a = 1, b = 1, c = 1, d = 1, e = 0, f = 1, g = 1, h = 1, i = 1, j = 0, k = 0,m = 1, n = 0, p =
1, q = 0, r = 1 : =⇒ 2 ∼ 67

3.2 Forms equivalent to xy + zt

1. a = 1, b = 0, c = 0, d = 0, e = 0, f = 1, g = 1, h = 1, i = 0, j = 0, k = 0,m = 1, n = 0, p =
0, q = 1, r = 0 : =⇒ 3 ∼ 7

2. a = 1, b = 0, c = 0, d = 0, e = 0, f = 1, g = 1, h = 1, i = 0, j = 0, k = 1,m = 0, n = 0, p =
0, q = 0, r = 1 : =⇒ 3 ∼ 9

3. a = 1, b = 0, c = 0, d = 0, e = 1, f = 1, g = 0, h = 0, i = 0, j = 0, k = 1,m = 0, n = 0, p =
0, q = 0, r = 1 : =⇒ 3 ∼ 15

4. a = 1, b = 0, c = 0, d = 0, e = 1, f = 1, g = 1, h = 0, i = 0, j = 0, k = 1,m = 0, n = 0, p =
0, q = 0, r = 1 : =⇒ 3 ∼ 23

5. a = 1, b = 0, c = 0, d = 0, e = 1, f = 1, g = 1, h = 0, i = 0, j = 0, k = 1,m = 0, n = 1, p =
1, q = 0, r = 1 : =⇒ 3 ∼ 24

6. a = 1, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 1, i = 1, j = 1, k = 0,m = 0, n = 1, p =
0, q = 1, r = 0 : =⇒ 3 ∼ 27
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7. a = 1, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 1, i = 1, j = 1, k = 0,m = 0, n = 1, p =
0, q = 1, r = 1 : =⇒ 3 ∼ 28

8. a = 1, b = 1, c = 0, d = 1, e = 1, f = 1, g = 1, h = 0, i = 1, j = 1, k = 0,m = 0, n = 0, p =
1, q = 0, r = 0 : =⇒ 3 ∼ 31

9. a = 1, b = 1, c = 0, d = 0, e = 0, f = 1, g = 0, h = 1, i = 1, j = 0, k = 0,m = 0, n = 1, p =
1, q = 1, r = 1 : =⇒ 3 ∼ 36

10. a = 1, b = 1, c = 0, d = 0, e = 1, f = 1, g = 1, h = 0, i = 0, j = 1, k = 0,m = 0, n = 1, p =
0, q = 1, r = 1 : =⇒ 3 ∼ 46

11. a = 1, b = 0, c = 0, d = 0, e = 0, f = 0, g = 1, h = 0, i = 1, j = 1, k = 0,m = 0, n = 1, p =
1, q = 0, r = 1 : =⇒ 3 ∼ 47

12. a = 1, b = 1, c = 0, d = 0, e = 0, f = 1, g = 1, h = 1, i = 1, j = 0, k = 0,m = 0, n = 1, p =
1, q = 0, r = 1 : =⇒ 3 ∼ 48

13. a = 1, b = 1, c = 0, d = 0, e = 0, f = 1, g = 1, h = 1, i = 1, j = 0, k = 0,m = 0, n = 1, p =
0, q = 1, r = 0 : =⇒ 3 ∼ 51

14. a = 0, b = 1, c = 0, d = 1, e = 1, f = 1, g = 1, h = 0, i = 1, j = 0, k = 0,m = 0, n = 1, p =
1, q = 0, r = 0 : =⇒ 3 ∼ 52

15. a = 1, b = 0, c = 1, d = 1, e = 1, f = 0, g = 0, h = 1, i = 1, j = 1, k = 0,m = 1, n = 0, p =
1, q = 0, r = 1 : =⇒ 3 ∼ 53

16. a = 0, b = 1, c = 0, d = 0, e = 1, f = 0, g = 0, h = 0, i = 1, j = 1, k = 1,m = 0, n = 1, p =
1, q = 0, r = 1 : =⇒ 3 ∼ 59

17. a = 0, b = 1, c = 1, d = 0, e = 0, f = 1, g = 0, h = 1, i = 1, j = 0, k = 1,m = 0, n = 1, p =
1, q = 0, r = 1 : =⇒ 3 ∼ 60

18. a = 1, b = 1, c = 1, d = 0, e = 0, f = 1, g = 1, h = 1, i = 1, j = 1, k = 0,m = 1, n = 0, p =
0, q = 0, r = 1 : =⇒ 3 ∼ 71

19. a = 0, b = 1, c = 0, d = 1, e = 0, f = 1, g = 0, h = 0, i = 0, j = 1, k = 1,m = 1, n = 1, p =
0, q = 1, r = 1 : =⇒ 3 ∼ 75

20. a = 1, b = 1, c = 1, d = 1, e = 1, f = 0, g = 1, h = 1, i = 0, j = 1, k = 0,m = 1, n = 0, p =
1, q = 1, r = 0 : =⇒ 3 ∼ 82

3.3 Forms equivalent to xy + yz + zx

1. a = 0, b = 0, c = 1, d = 1, e = 1, f = 0, g = 0, h = 0, i = 0, j = 1, k = 0,m = 0, n = 0, p =
0, q = 0, r = 1 : =⇒ 6 ∼ 10

2. a = 1, b = 0, c = 0, d = 0, e = 1, f = 0, g = 1, h = 0, i = 1, j = 1, k = 0,m = 0, n = 0, p =
0, q = 0, r = 1 : =⇒ 6 ∼ 14

3. a = 0, b = 0, c = 1, d = 0, e = 1, f = 1, g = 0, h = 0, i = 1, j = 0, k = 0,m = 0, n = 0, p =
0, q = 0, r = 1 : =⇒ 6 ∼ 17

4. a = 1, b = 0, c = 0, d = 0, e = 1, f = 0, g = 1, h = 1, i = 1, j = 1, k = 0,m = 0, n = 0, p =
0, q = 0, r = 1 : =⇒ 6 ∼ 18

5. a = 1, b = 0, c = 0, d = 0, e = 1, f = 1, g = 0, h = 0, i = 0, j = 0, k = 1,m = 1, n = 0, p =
0, q = 0, r = 1 : =⇒ 6 ∼ 20

6. a = 1, b = 0, c = 0, d = 1, e = 1, f = 1, g = 0, h = 0, i = 1, j = 0, k = 1,m = 0, n = 0, p =
0, q = 0, r = 1 : =⇒ 6 ∼ 22

7. a = 1, b = 0, c = 1, d = 1, e = 1, f = 0, g = 0, h = 0, i = 0, j = 1, k = 0,m = 0, n = 1, p =
0, q = 0, r = 1 : =⇒ 6 ∼ 25

9
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8. a = 1, b = 0, c = 0, d = 1, e = 1, f = 0, g = 1, h = 0, i = 0, j = 1, k = 0,m = 0, n = 0, p =
1, q = 0, r = 1 : =⇒ 6 ∼ 29

9. a = 1, b = 1, c = 1, d = 0, e = 0, f = 1, g = 0, h = 0, i = 1, j = 1, k = 0,m = 0, n = 0, p =
0, q = 1, r = 1 : =⇒ 6 ∼ 33

10. a = 1, b = 1, c = 0, d = 0, e = 1, f = 1, g = 0, h = 1, i = 1, j = 1, k = 1,m = 0, n = 0, p =
1, q = 0, r = 0 : =⇒ 6 ∼ 34

11. a = 1, b = 1, c = 0, d = 0, e = 1, f = 0, g = 1, h = 0, i = 0, j = 1, k = 0,m = 0, n = 0, p =
0, q = 0, r = 1 : =⇒ 6 ∼ 37

12. a = 1, b = 1, c = 1, d = 1, e = 0, f = 1, g = 0, h = 0, i = 1, j = 1, k = 0,m = 0, n = 1, p =
0, q = 1, r = 0 : =⇒ 6 ∼ 38

13. a = 1, b = 1, c = 0, d = 0, e = 1, f = 1, g = 1, h = 0, i = 0, j = 1, k = 0,m = 1, n = 0, p =
1, q = 0, r = 0 : =⇒ 6 ∼ 40

14. a = 1, b = 1, c = 0, d = 0, e = 0, f = 1, g = 0, h = 0, i = 1, j = 0, k = 1,m = 1, n = 1, p =
0, q = 1, r = 0 : =⇒ 6 ∼ 41

15. a = 1, b = 1, c = 0, d = 0, e = 0, f = 0, g = 1, h = 0, i = 1, j = 1, k = 0,m = 1, n = 0, p =
1, q = 0, r = 0 : =⇒ 6 ∼ 42

16. a = 0, b = 1, c = 0, d = 0, e = 1, f = 0, g = 0, h = 0, i = 1, j = 1, k = 1,m = 0, n = 1, p =
1, q = 0, r = 1 : =⇒ 6 ∼ 43

17. a = 1, b = 1, c = 0, d = 1, e = 1, f = 1, g = 1, h = 0, i = 0, j = 1, k = 0,m = 0, n = 0, p =
1, q = 0, r = 1 : =⇒ 6 ∼ 44

18. a = 1, b = 0, c = 0, d = 1, e = 0, f = 1, g = 1, h = 0, i = 1, j = 1, k = 0,m = 0, n = 1, p =
1, q = 0, r = 1 : =⇒ 6 ∼ 55

19. a = 1, b = 0, c = 0, d = 0, e = 0, f = 1, g = 1, h = 0, i = 1, j = 1, k = 0,m = 1, n = 0, p =
0, q = 1, r = 0 : =⇒ 6 ∼ 57

20. a = 1, b = 1, c = 1, d = 0, e = 0, f = 0, g = 1, h = 0, i = 1, j = 0, k = 0,m = 1, n = 1, p =
0, q = 0, r = 0 : =⇒ 6 ∼ 58

21. a = 0, b = 1, c = 1, d = 1, e = 0, f = 0, g = 1, h = 1, i = 1, j = 1, k = 1,m = 1, n = 0, p =
0, q = 1, r = 0 : =⇒ 6 ∼ 61

22. a = 0, b = 1, c = 0, d = 1, e = 0, f = 0, g = 1, h = 1, i = 0, j = 1, k = 1,m = 1, n = 1, p =
1, q = 0, r = 0 : =⇒ 6 ∼ 62

23. a = 1, b = 1, c = 1, d = 1, e = 0, f = 0, g = 0, h = 1, i = 0, j = 1, k = 1,m = 1, n = 1, p =
1, q = 0, r = 1 : =⇒ 6 ∼ 64

24. a = 0, b = 1, c = 1, d = 1, e = 0, f = 0, g = 1, h = 1, i = 1, j = 1, k = 0,m = 1, n = 0, p =
0, q = 0, r = 1 : =⇒ 6 ∼ 65

25. a = 0, b = 1, c = 1, d = 1, e = 1, f = 1, g = 0, h = 0, i = 0, j = 0, k = 1,m = 1, n = 1, p =
0, q = 1, r = 0 : =⇒ 6 ∼ 68

26. a = 0, b = 0, c = 1, d = 1, e = 1, f = 1, g = 1, h = 1, i = 0, j = 1, k = 0,m = 1, n = 0, p =
0, q = 1, r = 0 : =⇒ 6 ∼ 69

27. a = 0, b = 1, c = 0, d = 0, e = 0, f = 1, g = 1, h = 1, i = 1, j = 0, k = 1,m = 1, n = 1, p =
1, q = 1, r = 0 : =⇒ 6 ∼ 73

28. a = 0, b = 1, c = 1, d = 0, e = 0, f = 1, g = 0, h = 1, i = 1, j = 0, k = 1,m = 1, n = 1, p =
0, q = 1, r = 0 : =⇒ 6 ∼ 77

29. a = 0, b = 0, c = 1, d = 1, e = 1, f = 1, g = 1, h = 1, i = 0, j = 1, k = 0,m = 0, n = 0, p =
0, q = 0, r = 1 : =⇒ 6 ∼ 78
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30. a = 1, b = 1, c = 1, d = 1, e = 1, f = 0, g = 1, h = 1, i = 1, j = 0, k = 1,m = 0, n = 1, p =
1, q = 0, r = 1 : =⇒ 6 ∼ 81

31. a = 0, b = 1, c = 1, d = 1, e = 1, f = 0, g = 0, h = 1, i = 1, j = 1, k = 1,m = 1, n = 1, p =
1, q = 0, r = 0 : =⇒ 6 ∼ 83

32. a = 0, b = 1, c = 1, d = 1, e = 1, f = 1, g = 0, h = 1, i = 1, j = 0, k = 1,m = 1, n = 1, p =
0, q = 0, r = 0 : =⇒ 6 ∼ 85

3.4 Forms equivalent to xy + yz + zx+ xt+ yt+ zt

1. a = 1, b = 1, c = 0, d = 1, e = 1, f = 1, g = 0, h = 0, i = 0, j = 1, k = 1,m = 0, n = 0, p =
1, q = 0, r := 0 : =⇒ 11 ∼ 26

2. a = 1, b = 1, c = 0, d = 0, e = 0, f = 1, g = 1, h = 0, i = 0, j = 1, k = 0,m = 1, n = 1, p =
0, q = 0, r = 0 : =⇒ 11 ∼ 35

3. a = 1, b = 1, c = 0, d = 0, e = 0, f = 1, g = 1, h = 0, i = 1, j = 1, k = 0,m = 1, n = 1, p =
0, q = 0, r = 0 : =⇒ 11 ∼ 45

4. a = 0, b = 1, c = 0, d = 1, e = 1, f = 0, g = 1, h = 0, i = 0, j = 1, k = 0,m = 0, n = 1, p =
0, q = 0, r = 0 : =⇒ 11 ∼ 49

5. a = 1, b = 0, c = 0, d = 0, e = 0, f = 1, g = 0, h = 1, i = 1, j = 0, k = 1,m = 0, n = 1, p =
1, q = 0, r = 0 =⇒ 11 ∼ 54

6. a = 1, b = 1, c = 1, d = 0, e = 0, f = 1, g = 1, h = 0, i = 0, j = 0, k = 1,m = 1, n = 0, p =
0, q = 0, r = 1 : =⇒ 11 ∼ 63

7. a = 1, b = 1, c = 0, d = 0, e = 0, f = 1, g = 1, h = 0, i = 0, j = 0, k = 1,m = 1, n = 0, p =
0, q = 0, r = 1 : =⇒ 11 ∼ 72

8. a = 1, b = 1, c = 1, d = 0, e = 1, f = 0, g = 1, h = 1, i = 1, j = 1, k = 0,m = 1, n = 1, p =
0, q = 0, r = 1 : =⇒ 11 ∼ 74

9. a = 0, b = 1, c = 0, d = 1, e = 0, f = 0, g = 0, h = 1, i = 0, j = 0, k = 1,m = 0, n = 1, p =
1, q = 1, r = 0 : =⇒ 11 ∼ 76

10. a = 0, b = 0, c = 1, d = 0, e = 1, f = 1, g = 1, h = 1, i = 0, j = 1, k = 0,m = 0, n = 0, p =
0, q = 0, r = 1 : =⇒ 11 ∼ 79

11. a = 1, b = 0, c = 1, d = 1, e = 1, f = 1, g = 0, h = 1, i = 0, j = 0, k = 1,m = 0, n = 0, p =
1, q = 0, r = 1 : =⇒ 11 ∼ 86

12. a = 0, b = 1, c = 0, d = 1, e = 1, f = 1, g = 0, h = 1, i = 0, j = 1, k = 1,m = 0, n = 1, p =
0, q = 1, r = 0 : =⇒ 11 ∼ 88

13. a = 0, b = 1, c = 0, d = 1, e = 1, f = 0, g = 0, h = 1, i = 0, j = 0, k = 1,m = 1, n = 1, p =
1, q = 1, r = 0 =⇒ 11 ∼ 90

3.5 Forms equivalent to x2 + xy + y2

1. a = 0, b = 0, c = 1, d = 1, e = 0, f = 1, g = 0, h = 0, i = 1, j = 0, k = 0,m = 0, n = 0, p =
0, q = 0, r = 1 : =⇒ 32 ∼ 66

2. a = 0, b = 1, c = 1, d = 0, e = 0, f = 0, g = 1, h = 1, i = 1, j = 1, k = 0,m = 0, n = 0, p =
0, q = 0, r = 1 : =⇒ 32 ∼ 70

3. a = 1, b = 1, c = 1, d = 1, e = 0, f = 1, g = 1, h = 1, i = 0, j = 0, k = 1,m = 1, n = 0, p =
0, q = 0, r = 1 : =⇒ 32 ∼ 84

4. a = 1, b = 1, c = 1, d = 0, e = 1, f = 0, g = 0, h = 1, i = 0, j = 1, k = 0,m = 1, n = 0, p =
0, q = 0, r = 1 : =⇒ 32 ∼ 87

5. a = 1, b = 1, c = 0, d = 0, e = 1, f = 0, g = 1, h = 1, i = 0, j = 0, k = 1,m = 1, n = 0, p =
0, q = 0, r = 1 : =⇒ 32 ∼ 89
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4 Orthogonal Groups

A transformation P of a quadratic form will be said to be orthogonal if it is unchanged under P .
In this Section we shall find the orthogonal groups of each of the seven canonical quadratic forms.

4.1 x2 + xy + y2

We shall begin by understanding why the quadratic form x2 + xy + y2 is not equivalent to a form
that has one square or square-free form. In this regard under the transformation P of eq.(2), the
quadratic form changes into

(a2 + ae+ e2)X2 + (b2 + bf + f2)Y 2 + (c2 + cg + g2)Z2 + (d2 + dh+ h2)T 2 + crossterms (6)

If c2+cg+g2 = 0 we can only have c = g = 0. If three square terms are zero we can assume WLOG
that b2+ bf + f2 = c2+ cg+ g2 = d2+dh+h2 = 0 and hence b = c = d = f = g = h = 0. However,
in that case, the determinant of P is zero and P becomes singular. Thus, any form equivalent to
x2 + xy + y2 has at least two squares.

Now we shall determine the orthogonal group. Referring to the matrix P of eq.(2), we have
to find the subgroup of all such P that preserves x2 + xy + y2 and it is advantageous to think of
P as consisting of four 2 × 2 blocks. It follows from the analysis above that if P is orthogonal
c = d = g = h = 0. The quadratic form changes now to

(a2 + ae+ e2)X2 + (af + be)XY + (b2 + bf + f2)Y 2. (7)

Furthermore detP is given by (af + be)(kr+mq). The matrices

[
a e
b f

]
must have determinant 1.

The space of such matrices is of order six and itself determines a group isomorphic to S3: generators

are given by

[
0 1
1 0

]
and

[
1 1
1 0

]
, for example. Precisely the same situation holds for the matrix[

k m
q r

]
, which produces another copy of S3. Finally, the entries

[
i j
n p

]
are arbitrary in Z2 and

the corresponding 4×4 matrices with the identity in the upper left 2×2 block, engenders the direct
product of four copies of the group Z2. Altogether, the orthogonal group of x2 + xy + y2 is the
semi-direct product (S3 × S3) ▹ (Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2) and has order 36× 16 = 576.

4.2 0

The orthogonal group is a simple group GL(4,Z2) of order 20160.

4.3 x2

The orthogonal group is a subgroup of GL(4,Z2) and consists of matrices of the form

[ 1 0 0 0
a b c d
e f g h
i j k m

]
where bgm+ bhk+ cfm+ chj + dfk+ dgj = 1; it is a semi-direct product of Z2 ⊕ Z2 ⊕ Z2 and the
simple group of order 168. The order of the group is 8× 168 = 1344.

4.4 xy

The orthogonal group is a subgroup of GL(4,Z2) and consists of matrices of the form

[ a 1+a 0 0
1+a a 0 0
i j k m
n p q r

]
where kr + qm = 1. The group is a semi-direct product (Z2 × S3) ▹ 4Z2. Its order is 192.

12
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4.5 xy + yz + zx

Under the transformation P the form xy + yz + zx changes according to

(ae+ ai+ ei)X2 + (af + aj + be+ bi+ ej + fi)XY + (ag + ak + ce+ ci

+ek + gi)XZ + (ah+ am+ de+ di+ em+ hi)TX + (bf + bj + fj)Y 2 (8)

+(bg + bk + cf + cj + fk + gj)Y Z + (bh+ bm+ df + dj + fm+ hj)TY + (cg

+ck + gk)Z2 + (ch+ cm+ dg + dk + gm+ hk)TZ + (dh+ dm+ hm)T 2

The only way that the coefficient of X2 can be zero is either to have a = e = i = 0, in which
case the term in XY would be absent, or to have one of a, e, i being 1 and the other two zero. In
fact one finds that the upper 3× 3 block is a permutation of the columns of the identity. Then in
order for the coefficients of XT, Y T, ZT we will require that d = h = m but then the coefficient
of T 2 gives d = h = m = 0. The determinant of P is now found to be r and so we must have
r = 1 and n, p, q ∈ Z2 are arbitrary. We find that the orthogonal group is a semi-direct product
S3 ▹ (Z2 ⊕ Z2 ⊕ Z2) and its order is 48.

4.6 xy + zt

Under the transformation P the form xy + zt changes according to

(ae+ in)X2 + (af + be+ ip+ jn)XY + (ag + ce+ iq + kn)XZ + (ah+ de

+ir +mn)TX + (bf + jp)Y 2 + (bg + cf + jq + kp)Y Z + (bh+ df + jr +mp)TY

+(cg + kq)Z2 + (ch+ dg + kr +mq)TZ + (dh+mr)T 2. (9)

If P is orthogonal the coefficient of X2 is zero which gives ae+ in = 0. There are only ten possible
solutions:

• a = e = i = n = 0

• a = e = i = n = 1

• three of a, e, i, n equal to 0 and the remaining entry equal to 1

• [a, e, i, n] = [1, 0, 1, 0], [a, e, i, n] = [1, 0, 0, 1], [a, e, i, n] = [0, 1, 1, 0] and [a, e, i, n] = [1, 0, 0, 1].

Of these solutions, the first is untenable or else P will be singular. The same conditions apply to the
remaining three columns of P . As such there are, in principle, 9×8×7×6 = 3024 matrices that have
to be considered. However, if we consider eq(4.6), we see that under a permutation, the coefficients
of X2, Y 2, ..., T 2 are unchanged although they will be reassigned to different monomials. As such the
order of the columns is relatively immaterial as concerns finding an orthogonal transformation. This
observation enables us to reduce the number of possible matrices to

(
9
4

)
= 126. What is required

then, is to sift through this list of 126 matrices and identify the ones that are non-singular and for
which precisely two of the cross terms are non-zero. It is then possible to change the quadratic
form to xy+ zt by applying a suitable permutation. We find that the following set of “P”-matrices
eq.((2) satisfy the two conditions:

A =


1 0 1 0

0 1 0 0

0 1 0 1

0 0 1 0

B =


1 0 1 0

0 1 0 0

0 0 1 0

0 1 0 1

C =


1 1 1 1

0 1 0 0

0 1 0 1

0 1 1 0

E =


0 1 0 0

1 0 0 1

0 1 1 0

0 0 0 1



F =


0 1 0 0

1 0 0 1

0 0 0 1

0 1 1 0

G =


0 1 0 0

1 1 1 1

0 1 0 1

0 1 1 0

H =


0 1 0 1

0 1 1 0

1 1 1 1

0 1 0 0

 J =


0 1 0 1

0 1 1 0

0 1 0 0

1 1 1 1

 . (10)
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We should note also that the subgroup of permutations that preserves xy+ zt is isomorphic to D8,

the dihedral group of order 8 that is generated by R =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 and S =


0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

. They do not

arise as separate solutions because they are permutations of the identity matrix.

Let us note that A = S2FS2R,B = RFS2R,C = SF 3RFR,E = RS2F,G = S3RF 3RFR,H =
RF 3RFRF, J = RS2RF 3RFRF, S = F 3R where, of course, all products are calculated “mod 2”
. It follows that the orthogonal group is generated by F and R only, subject to the relations
R2 = F 6 = I and RF 3RF 3 = F 3RF 3R, the latter relation following from S3R = RS after
eliminating S. In fact it is also true that RF 2RF 2 = F 2RF 2R and RF 4RF 4 = F 4RF 4R.

It turns out that the group generated by R and F has order 72. The Sylow 3-subgroup is a unique
and therefore normal and of course abelian since it has order 9. Its elements consist of

{I, F 2, F 4, RF 2R,RF 4R,F 2RF 2R,F 4RF 4R,F 4RF 2R,F 2RF 4R} :

the fact that this subgroup is abelian of order nine implies the various relations between F and R
mentioned above. One of the Sylow 3-subgroups is the group D8 alluded to above and in terms of
F and R it may be written as

{I, F 3R,F 3RF 3R,RF 3, R, F 3, F 3RF 3, RF 3R.}

However, it is not normal; for example, F−1F 3RF = F 2RF =


1 1 1 1

0 0 0 1

0 1 0 1

1 0 0 1

 whereas all the matrices

in D8 are permutations. The conclusion is that the orthogonal group is a semi-direct product
D8 ▹ (Z3 ⊕ Z3).

4.7 xy + yz + zx+ xt+ yt+ zt

In this case under the transformation P the quadratic form is changed into

(ae+ ai+ an+ ei+ en+ in)X2 + (af + aj + ap+ be+ bi+ bn+ ej + ep

+fi+ fn+ ip+ jn)XY + (ag + ak + aq + ce+ ci+ cn+ ek + eq + gi+ gn

+iq + kn)XZ + (ah+ am+ ar + de+ di+ dn+ em+ er + hi+ hn+ ir +mn)

TX + (bf + bj + bp+ fj + fp+ jp)Y 2 + (bg + bk + bq + cf + cj + cp+ fk

+fq + gj + gp+ jq + kp)Y Z + (bh+ bm+ br + df + dj + dp+ fm+ fr + hj

+hp+ jr +mp)TY + (cg + ck + cq + gk + gq + kq)Z2 + (ch+ cm+ cr + dg

+dk + dq + gm+ gr + hk + hq + kr +mq)TZ + (dh+ dm+ dr + hm+ hr

+mr)T 2. (11)

If P is orthogonal we need to have ae + ai + an + ei + en + in = 0 and likewise for the other
columns. The only way to satisfy such an equation, apart form having a = e = i = n = 0, is to
have just one of a, e, i, n equal to one or to have a = e = i = n = 1. Thus the orthogonal group
can be described as follows. Every column has either one 1 and three 0’s or there is one column
with four 1’s. Those non-singular matrices each of which have four columns that have one 1 and
three 0’s are permutations and S4 is a subgroup of the orthogonal group with order 24. For the
other elements, pick any column and assigns it four 1’s (four such choices); next, pick one of the
remaining columns and put a 1 in any of the four entries (four such choices); now go to one of the
remaining two columns and put a 1 in a row that is different from the 1 assigned to the previous
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column (three such choices); finally go to the last column and put a 1 in either of the rows which do
not already contain two 1’s (two such choices). Altogether we obtain 4× 4× 3× 2 = 96. Together
with the permutations we have a group of order 120 which is in fact S5. To understand why we

obtain S5 we begin by taking the matrices such as M12 =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 to define the transpositions of

the subgroup S4. For the remaining four transpositions of S5 we define

M15 =


1 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

M25 =


1 1 0 0

0 1 0 0

0 1 1 0

0 1 0 1

M35 =


1 0 1 0

0 1 1 0

0 0 1 0

0 0 1 1

M45 =


1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 1

 .

Then M12,M13, ...,M45, or in fact just of four of them, will generate the orthogonal group. For

example M15M25M35M45 is the matrix M12345 =


1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0

 which is a 5-cycle.

5 Equivalence of quadratic Forms

Now we shall take up the issue of showing that the seven canonical forms are mutually inequivalent.
We know in the first place that 0 and x2 are not equivalent to each other nor to any of the other five
forms. For the other forms we note that if two forms are equivalent then they must have isomorphic
orthogonal groups; for, an equivalence will induce an isomorphism of orthogonal groups and an
orthogonal group is nothing but the set of self-equivalences. Thus:

Theorem 5.1. Every quadratic form in four variables x, y, z, t with coefficients in Z2 is equivalent
to precisely one of 0, x2, xy, xy + zt, xy + yz + zx, x2 + xy + y2, xy + yz + zx+ xt+ yt+ zt.

6 Quadratic Forms in Three Variables

The equivalence of quadratic forms in three variables was considered in [10]. Now we shall revisit the
issue in light of the conclusions made in this paper. Thus every form in three variables is equivalent
to one of {0, x2, xy, xy + xz + yz, x2 + xy + y2}. Explicit equivalences to these forms can be read
off from Section 5 by considering forms and their isomorphs that only involve three variables. For,
example x2 + xy+ y2 is equivalent only to x2 + y2 + z2 + xy+ xz and x2 + y2 + z2 + xy+ xz + yz.
We note also that the orthogonal groups of 0, x2, xy, xy + xz + yz, x2 + xy + y2 are, respectively,
GL(3,Z2), S3 ▹ (Z2 ⊕ Z2), D8, S3, S3 ▹ (Z2 ⊕ Z2).

7 Conclusion

In this article we have extended the study of quadratic forms in three variables [10] to four variables.
At the end we discern a list of precisely seven such inequivalent forms. We have also studied the
orthogonal group of each such form. In the future we hope to be able to extend our work so as
to include quadratic forms with more than four variables. It is clear, however, that some new
techniques will be needed since the problem is of a completely different magnitude.
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