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Abstract 
 

The concept of ‘ -Caputo’ fractional derivative is discussed in this article. This method is based on the 

fractional derivative in Caputo sense of a function with respect to another function  , called kernel. The 

kernel function  , is any increasing function such that    0,  ,x x a b     . Experimental studies are 

used to support the fact that fractional approach of solving differential equations is often better than the 
classical ordinary approach. The solution to two exponential decay models and one exponential growth 
model are built using the classical approach and the kernel approach. Several kernel functions are 
considered and their performances evaluated. 
 

 
Keywords: Exponential decay; exponential growth;  -Caputo fractional derivative; optimization; initial 

value problems. 
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1 Introduction 

 
Fractional calculus was discovered more than three centuries ago. Earlier works on Fractional calculus 
focused only on theories. Hence, existence and uniqueness of solution to problem were studied, without 
further materialization. [1-5] are some known references where the theory of existence and the uniqueness of 
fractional differential equations and their solutions are found. 
 

The classical approach involving system of integer-order of differentiation may sometime provide solution 
with high magnitude error term. However, fractional order of differential equation has been proven efficient, 
and may produce lower magnitude error term in many situations where the classical approaches fail to do so. 
The efficiency of the fractional differentiation approach has been proven in various fields of sciences such as 
physics, chemistry, epidemiology, finance and biology sciences [6-12], these are few of them just to 
mention. 
   

It is sometime difficult to find the analytical solution of some differential equations. Difficulty arises usually 
in nonlinear cases. To overcome such difficulty, numerical approaches are recommended. The solution of an 
equation using numerical approach is obtained through iterations. In [13-18], the authors discussed some 
numerical approaches to solve fractional differential equations and to optimize the fractional order of 
derivative.  
 

In this work, we added our contribution to what have been done so far by many researchers such as Almeida 
[19] who introduced fractional derivative of a function with respect to another function, called the  -

Caputo. Almeida et al [12,19] have proven further that the fractional order of differential equation is better 
than the classical in modeling  the population growth, a country’s GDP, the Newtown law of cooling and 
many others real world phenomena. We proved that, the  -Caputo fractional differential equation is better 

than their integer-order counterpart for modeling the radioactivity decay and the RC circuit charging and 
discharging processes, provided that a suitable kernel   is selected [20].  

 

2 Preliminaries 

 
Definition 2.1 [20] The Riemann-Liouville fractional integral of order 0   for a function  : 0, Rg    

is defined as 
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Definition 2.2 [20] The Caputo derivative of order 0   for a function  : 0, Rg    is defined as 
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Where    1,  n    is the integer part of  . 

 

Definition 2.3 [19] Let 0  ,  1 ,g L a b and  1 ,C a b  be an increasing function with 

   0,  ,x x a b      then  ,

0
I g t 

   denotes the fractional integral of g  w.r.t  and it is given by  
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Definition 2.4 [19] Let 0  ,  , ,ng C a b  with be an increasing function and    0,  ,x x a b       

then  ,

0C D g t 
  denotes the fractional derivative of g w.r.t   and it is given by 
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Lemma 2.1 [19] Let 0  , n  a natural number such that ( 1, )n n    if  , ,ng C a b  then 
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3 Methodology 

 
To investigate the power of the -Caputo  fractional differential equation over the classical differential 

equation, we considered some linear model differential equations whose classical solutions are given either 
in the form of exponential decay or exponential growth curve model. For each model, the true data obtained 
from experimental study is considered, and then the model based on classical approach of differential 
equation is defined alongside its counterpart derived from the -Caputo fractional differential equation. 

Both models are used to fit the original data set.  The percentage of the root square deviation error is used to 
compare the performance of each of the methods applied.  

 

Consider an experimental data vector of size n, obtained from a time dependent process such that the ith 

value is denoted by  i iy y t  . If the original data is predicted by a function ŷ , in a way that the ith fitted 

data value is denoted by  ˆ ˆ
iy y t , the root-mean-squared  deviation  is computed (see [21] ) by  
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The quantity given by (1) can be used to evaluate the percentage of error that occurs while using predicted 
data instead of original data.  The ratio below is used for the purpose 
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Equation (2) gives the magnitude of the error that occurs when the estimated values are used in place of the 
original values. 

 

4 Examples 

 
In this section, we proved by the mean of examples that the -Caputo fractional differential equation can fit 

the data better than the classical differential equation, provided that a suitable kernel  is selected.   

 

4.1 Radioactivity experiment 

 
Atoms present in the matter are characterized by their nuclear state. The nuclear state of an element can 
change due to some chemical reaction or even when it is heated to some extent.  Radioactivity studies focus 
on nuclear state change. In general, the nuclear state change of an atom produces either electromagnetic 
radiation or some particles. In the process of nuclear state change, the number of atoms involve in the 
process may change as well. Hence one can observe for instance a fusion of two neutrons with two protons 
or fission of nucleus. The known forms of radiation are Alpha, Beta and Gamma. An experiment found in 

[22], studies the radioactivity of Silver and Aluminum ( 110 gA   , 108 gA  and 28 lA  ) , which represents a 

decay model, since particles are emitted over the time. The experimental data of  28 lA  is found in [6, page 
6]. A scatter plot of the data shows that an exponential decay model is suitable to fit the data set.  The 
analytic form of the model is given by  
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The classical solution to the differential equation (3) is given by 
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Where
1




  , t is the time elapsed, n is the number of particles yet to disintegrate at the time t. The quantity

0n   is the initial number of particles at 0t  , and  is the mean life-time.  The purpose of the experiment is 

to estimate the value of  that would lead to a best fit of the experimental data using formula (4). 

Experimental data and Matlab optimization routine lsqcurvefit [23], returned 0.0121 82.6446     as 
the best value that would help in minimizing the error while fitting the original data using (4).  

 

Let us now admit that the Radioactivity model defined above is ruled by the  -Caputo  fractional 

differential equation. This equation is derived from the classical equation (3), with the assumption that the 
order of derivative is not integer. The fractional counterpart of (3) using  -Caputo derivative is given by  
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applying the fractional integration ,

0
I   to both sides of (5) and considering theorem (7.2) in [24], the exact 

solution of (5) can be written as  
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of derivative and  is the inverse of the mean life-time .  

 

Two parameters are to be optimized in equation (6).  These are the fractional order of derivative  and the 

inverse of the mean life-time . Moreover, the kernel function is selected in a way to verify properties listed 
in definition 2.4. For each selected kernel function, corresponding optimal parameters are obtained. Table 1 
is a summary of a sample of kernels, their corresponding optimal parameters and their root mean squared 
deviation. 
 

Table 1. Radioactivity error comparison 
 

 Classical  model Kernel  x x    Kernel   1x x     Kernel    ln 1x x     

  
0.0121 0.0314 0.1177 0.1046 

  1 0.8252 1.0571 1.6420 

SSE 1.17*105 2.9*103 8.87*103 2.65*104 
RMSD 67.2560 10.5557 18.4694 31.9074 
R 18.58% 2.92% 5.10% 8.81% 

 
The optimal parameters minimize the total error term when the original data is fitted by the fractional model 
defined by equation (6). 
 
Fig. 1a, 1b and 1c below show the original experimental data, the fitted model using classical and  -

Caputo
 

fractional order of derivative approaches with different kernels as defined in Table 1.  It is 
observable that in general fitting the data with the fractional approach provides less sum of squared error 
than the classical approach. The performance is evaluated in Table 1.  
 

 
 

Fig. 1a 

 
 

Fig. 1b 



 

Fig. 1a-c. Radioactivity decay with different kernels 
 

From both Table 1 and Fig. 1. It is observable that the

rate smaller than the classical method of differential equations. 
 

4.2 RC circuit 
 
The RC circuit is a well known experimental setting that is used to measure the charging and discharging 
time of a capacitor, C.  Fig. 2 shows the experimental setting of an RC circuit. 
 

 

Fig. 2a. RC in charging mode
  
In the charging mode, see Fig. 2a, The capacitor
connected. This leads to an accumulation of electric charges in the capacitor C over the time. In the 
discharging mode, the potential source is removed from the circuit. Only a capacitor initially full of electric 
charges Q is directly connected to a resistor R. Such s
An experimental data set of both charging and discharging of a RC circuit is found at [
 
Any electric component that resists to electric charges flow in an electric circuit is called resistor.
component usually produces heat as a results of it electric resistance. That is the principle used in electric 
heater, iron for instance.  A resistor of resistance R in a circuit obeys to the Ohm’s law
 

  V I R   ,                                                               
 
where V is the voltage applied to the resistor, I is the rate at which electric charges flow through the resistor, 
and  R  is a constant called the resistance.

Awadalla and Yameni; JAMCS, 28(2): 1-13, 2018; Article no.

 
 

Fig. 1c 

c. Radioactivity decay with different kernels  

1. It is observable that the  -Caputo fractional differential equation has an error 

rate smaller than the classical method of differential equations.  

The RC circuit is a well known experimental setting that is used to measure the charging and discharging 
ws the experimental setting of an RC circuit.  

 

RC in charging mode 
 

Fig. 2b. RC in discharging mode

2a, The capacitor C, the resistor R, and the DC/voltage source 
is leads to an accumulation of electric charges in the capacitor C over the time. In the 

discharging mode, the potential source is removed from the circuit. Only a capacitor initially full of electric 
charges Q is directly connected to a resistor R. Such setting leads to a loss of electric charges over the time.  
An experimental data set of both charging and discharging of a RC circuit is found at [25].  

Any electric component that resists to electric charges flow in an electric circuit is called resistor.
component usually produces heat as a results of it electric resistance. That is the principle used in electric 
heater, iron for instance.  A resistor of resistance R in a circuit obeys to the Ohm’s law 

                                                                                                                 

where V is the voltage applied to the resistor, I is the rate at which electric charges flow through the resistor, 
alled the resistance. 
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ferential equation has an error 

The RC circuit is a well known experimental setting that is used to measure the charging and discharging 

 

RC in discharging mode 

, and the DC/voltage source   are 
is leads to an accumulation of electric charges in the capacitor C over the time. In the 

discharging mode, the potential source is removed from the circuit. Only a capacitor initially full of electric 
etting leads to a loss of electric charges over the time.  

Any electric component that resists to electric charges flow in an electric circuit is called resistor. Such 
component usually produces heat as a results of it electric resistance. That is the principle used in electric 

                                                                     (7) 

where V is the voltage applied to the resistor, I is the rate at which electric charges flow through the resistor, 
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A capacitor is any electric  circuit component with the ability to store from a circuit connected to a voltage 
source  and  to supply electric charge Q, in a circuit without voltage source. When it is attached to a resistor, 
the capacitor will push the electric charges through the resistor, creating electric current. Capacitors obey the 
equation 
 

  
Q

V
C

  ,                                                                                                                                              (8) 

 
where Q  is the charge stored in the capacitor, C is a constant called the capacitance of the capacitor, and V  

is the resulting voltage. 
 
Setting the formulas (7) and (8) for V equal to each other gives 
 

   
Q

I R
C

   .                                                                                                                                         (9)   

   
Moreover, the rate I  at which charges flow through the resistor is the same as the rate at which charges 
flow out of the capacitor, so 
 

  
dQ

I
dt

   .                                                                                                                                        (10)   

  
A combination of (9) and (10) introduces the RC circuit model which can be written as 
 

1
  

dQ
Q

dt RC
   .                                                                                                                                (11)    

  
It is familiar that the solution for the differential equation   (11) is given by 
 

1

0 ,
t

RCQ Q e



                                                                                                                                      (12)        

 

where 0Q  is the amount held in the capacitor at 0t  , using the fact that Q CV , (12) becomes 

 
1

0 .
t

RCV V e



                                                                                                                                         (13)      

 
It is common in RC circuit to estimate the capacitance C. Experimental data retrieved from [25], has the 

following initial parameters. The resistance 2200R    and the potential of the voltage source 0 4.897V  . 

The purpose of the experiment is to estimate the value of the capacitance C found in (13).  Based on 
experimental data and optimization routine, the value of C=0.0057 appears to be the best that would help 
minimizing the total error if equation (13) is used to fit the original data.  
 
Let us assume now that the RC circuit model (11) is built based on a fractional differential equation.  Such 
equation can be written using the  -Caputo derivative as  
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Applying ,

0
I   to both sides of (14) and using theorem (7.2) from [24], the exact solution of (14) can be 

written as 
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using the relation Q CV , equation (15) becomes,  
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Different kernel functions  are considered for experiment. Table 2 summarizes the experiments results 

providing optimal values of the parameters involved alongside the error rate obtained when fitting the 
original data by a model. The estimated parameters in this experiment are the capacitance value C and the 
fractional order of derivative .  
 

Table 2. RC discharging performances 
 

 Classical  model 
 

Kernel  x x    Kernel   1x x     Kernel                  

   ln 1x x     

C 0.0057 0.0051 0.0014 0.0018 
  1 0.9871 1.1798 1.5855 

SSE 0.8503 0.0098 0.7431 1.5906 
RMSD 0.0922 0.0099 0.0862 0.1261 
R 5.43% 0.58% 5.08% 7.43% 

 

It is observable from Table 2 that the kernel function  x x    performs better than others. Indeed it 

requires an optimal capacitance which is almost equal to the capacitance value of the classical approach, a 

fractional order of derivative close to 1, and a 0% error rate. The kernel    ln 1x x   , produces an error 

rate slightly greater than the rate of the classical approach. The other kernel namely   1x x     has an 

error rate which is almost equal to the 5% obtained in the classical approach. 
 
Fig. 3 is a set of graphs displaying the behavior of the original data and the experimental results.  
 

 
 

Fig. 3a 

 
 

Fig. 3b 
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Fig. 3c 
 

Fig. 3a-c. RC discharging with different kernels 
 

For the charging mode the RC circuit has the following  elements, a capacitance C, the resistor R  and a 
potential source  , that maintains the potential leading to the accumulation of electrical charges in the 
circuit (see Fig. 2a). The Kirchhoff’s current law of the circuit is written as 
  

0 0
Q

V IR
C

    ,                                                                                                                                 (17)      

          

Since    Q t I t   the charging differential equation model is derived from (17) as  

 

0 0
dQ Q

V R
dt C

    .                                                                                                                              (18)   

    

The exact solution of the ordinary differential equation (18) is given by 
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which is equivalent to  
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 .                                                                                                                         (20)    

 

The use of experimental data retrieved from [25], gives a same value of C=0.0057 as obtained in the 
discharging process.  
 

To solve the fractional counterpart model equation derived from (18), let us defined (18) using the              
 - Caputo derivative as 
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Applying ,

0
I    to both sides of (21)   and using theorem (7.2) in [24] the exact solution of (21) can be 

written as 
 

      0
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1 0Q t CV E t

RC
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which is equivalent to 
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1
1 0V t V E t
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Different kernel functions   are considered for experiment. Table 3 summarizes the experimental results 

providing optimal values of the parameters involved alongside the error rate obtained when fitting the 
original data by a model. The estimated parameters in this experiment are the capacitance value C and the 
fractional order of derivative . 
  

Table 3. RC charging performances 
 

 Classical  model Kernel  x x   Kernel   1x x     Kernel 

   ln 1x x    

C 0.0057 0.0051 0.0014 0.0018 
  1 0.9962 1.1864 1.5904 

SSE 1.2646 0.0127 0.7277 1.5925 
RMSD 0.1125 0.0113 0.0853 0.1262 
R 2.83% 0.28% 2.15% 3.18% 

 

It is observable from Table 3 that the kernel function  x x    performs better than others. Indeed it 

requires an optimal capacitance which is almost equal to the capacitance value of the classical approach, a 

fractional order of derivative close to 1, and a 0% error rate. The kernel   1x x    also performs better 

than the classical approach. However using the kernel    ln 1x x    , leads to a solution which is a bit 

weaker than the classical approach solution.   
 

Fig. 4 is a set of graphs displaying the behavior of the original data and the experimental results of the 
charging process.  
 

 
 

Fig. 4a 

 
 

Fig. 4b 
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Fig. 4c 
 

Fig. 4a-c. RC charging performances 
 

5 Discussion 
 
1) Interpreting the meaning of a fractional derivative is often difficult. In the physical sense for instance, the 
first derivative found in the RC and radioactivity differential equations represent the speed at which charges 
flow in the circuit and the number of radioactive element decrease respectively. It is therefore important to 
give a meaning to the fractional derivative order , found in the counterpart fractional differential equation 
of a given problem.  It is not easy to provide a meaning to , without considering the classical model of the 
same problem. It is worth note the fact that the fractional order derivative of the problem studied in this 
paper is a value approaching one. Moreover,  if =1  , then the Mittag Leffler function coincides with the 

classical exponential function. That is  
 0

,  
1

i
t

i

t
E t e t R

i








  
 

   . It follows that the solution to the 

classical approach coincides exactly with the solution of to the fractional approach. The statement above 
shows that fractional derivative is effective and meaningful.   
 
2) In this work, we considered differential equations whose fractional model are easily obtained from their 
classical counterpart. However, this should not be used as a property. The Carleman Embedding technique 
[26], which is applicable to classical linear systems, is not always applicable to fractional system. For 
instance  West. B  [27] proposed a function to be the exact solution to the fractional logistic equation , his 
allegation was later proven incorrect by Area et al. [28]  because the function proposed by West was derived 
using the Carleman Embedding technique. 
 

6 Conclusion 
 
The goal of this work was to prove the efficiency of the  -Caputo method in solving fractional differential 

equations upon the classical approach. This was done through experimental study. Several kernels were 
used. It appeared in general that the  -Caputo  method produced a smaller magnitude error than the 

classical method, provided that the right kernel is selected. Moreover there exists no rule based on which the 
suitable kernel is selected. The selection is done based on the criteria in definition 2.3 and the variation of 
experimental data.  
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