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Abstract

In this manuscript, the methods, Optimal Homotopy Asymptotic Method (OHAM), Homotopy
Perturbation Method (HPM) and Homotopy Analysis Method (HAM) are applied to solve various order
boundary value problems. These techniques give solutions in the form of a series. Their solutions and
graphs are compared with their exact solutions and graphs. All these give profitable results, but the
Optimal Homotopy Asymptotic Method is more precise, whose convergence is restrained optimizations
and the convergence area can be accustomed affording to the problem concerned. The results show that
the suggested scheme is more active and relaxed to routine.

Keywords: OHAM; HPM; HAM; various order boundary value problems.

*Corresponding author: E-mail: shermuhammad@cecos.edu.pk, shermphill23@gmail.com;



Naeem et al.; JAMCS, 28(2): 1-18, 2018, Article no.JAMCS.42407

1 Introduction

Differential equations can be used to model various types of physical structures such as sociological,
economical, biological and chemical, etc. Also in literature, physical problems are investigated by
differential equations, which are mostly handled by the common methods, Splines (S) [1], Homotopy
perturbation method (HPM) [2], Homotopy Analysis Method (HAM) [3,4]. The non-perturbed techniques
(DTM) [5], and ADM) [6,7] concern nonlinear problems, but the region of convergence of their series
solution is generally small. Freshly Herisanu and Marinca et al. [8-10] familiarized OHAM for approximate
solution of nonlinear problems of shrill film flow of a fourth grade fluid down an upright cylinder. They used
the whispered method for understanding the conduct of nonlinear mechanical vibration of an electric
contraption. By using this method they investigated the solution of nonlinear equations ascending in the
study of state-run flow of a fourth grade fluid past a porous plate. This method supplies the need to switch
the convergence. In general the OHAM solution settles with the exact solution. The graphs of the two
solutions are conterminous. We have smeared OHAM to various types of boundary value problems and have
investigated that the original exact solution approves with the numerical solution, the error noted is small.
This method is operational and is relaxed to routine. The other relevant work [5,11-16] has been observed in
these articles. Moreover the analytical solution of various differential equations are discussed in [17,18,
19,20,21,22,23,24,25,26,27,28,29,30] and [31-34] in detail.

2 Analysis of the Method OHAM

Considering the boundary problem of the arrangement
dF
L(F(y)+eg)+N(F(y)=0,B F’E =0 (2.02)

Where L is taken as linear operator ) is independent variable F'(y) is an unknown function g(y) is a

notorious function, N (F'(y))is a nonlinear operator and B is a boundary operator. According to the idea
of OHAM we construct a homotopy as given below

H(H(y,p),p):Rx[O,l]—)R

That satisfies the homotopy functional as given below
(1= PLLOG p) + 80N = PO, p)) + 80 + Nw(y,p))],B[e(y, p),%j —0, (20)

Where, y ER p € [0,1 ] is an embedding parameter, A(p) is a nonzero auxiliary function for p#0, A

(0)=0 and & ( Y, p)is an Unknown function .Evidently, for p=0 and p=1.Manifestly, for p=0 and p=1 it
restrains that @(y,1) = F(y) respectively. Thus as p varies from 0 to 1 , the solution &(y, p)
approaches from ()

to F;(y)where F{() is obtained from Equation (2.0 b) for p =0 and we have.

dF
L(F,(y)+g(y)= O’B(Fo’d_yoJ =0, 2.0¢)
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Now choosing auxiliary function A( p) in the following pattern
h(p)=pC +p°C, +...., (2.0d)

Where C,,C, - -are constants to be determined later. /1( p)can be uttered in many customs as investigated

by V. Marinca [8-10]. To acquire an approximate solution one can expand & ( ¥, p,C i) in Taylor’s series
about p in the following Pattern.

H(yspaci):Fo(y)+ZE(()/»CuCz»---Ck)pka (2.06)
k=1

Making use of equation (2.0 e) in equation (2.0 b) and comparing the coefficients of resembling powers of
P we have the following linear equations zeroth order problem is given by equation (2.0 ¢) and the first and
second order problems are given by equations (2.0 f) and (2.0 g)
dF,
L)) +g(y)=CN,(F,(»), B E’d_y =0, (201

LE() - LIEW) = GN(FD) + GLLE ) + N (5 (), F ()], B [Fz ,%J =0, (209

The general governing equations for ﬂ (») are given by
L(E(0) = L(F_,(y) = C,N,(F,(») +

k-t dF, (2.0 h)
> CIL(E_ ()N + N, (F,(0), Fy()sees B, (0),k=2,3...,B F,{g =0,
i=1

Where N, (£, (), F;(¥)...,F,_,(¥)) is the coefficient of p" in the expansion of N (6(y, p))about the

embedding Parameter p

N O p.C)) = Ny(Fy(3) + Y N, (Fy. F F) " 20i)

m=1

It has been investigated that the convergence of the series (2.0 ¢) depends on the auxiliary constants C;, C,..
If it is convergent. At p =1 then we have

0(»,C)=F,(»)+ Y F,(5.C,,C,..C,), 2.0i)
k=1

The upshot of the mth order approximations are

F(3,C,G,,..C,) = F(»)+ Y F(1,C,C,,..C)), 2.0k

i=1
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Using equation (2.0 k) into equation (2.0 a) we get the residual

R(».C,,C,...,C,)=L(F(y,C,,C,....C, )+ g(»)+ N(F(y,C,,C,...,C,)), 2.01)

If R =0 then F be the exact solution. Generally it does not happen especially in nonlinear problems .In
order to get the Optimal Values of Cl.’s i=1,2,3... we first construct the Functional Values of Cl.’s
i=1,2,3... we first construct the Functional.

b
J(C,,Cy.sC,) = [ R(3,C,, G, C, )b, (2.0 m)

And then minimizing it using the basic calculus we get

a—Jzo,a—Jzo,...,a—Jzo. (2.0n)
oC, oC, oC

m

Knowing the values of C,,C,:--C,. The approximate solution of order m is determined. Where a, b lie in
domain of the concerned problem using the least square method we get OHAM solution.

2.1 Fundamentals of HPM

We show the basic idea of the homotopy perturbation method [2] and considering the nonlinear differential
equation of the form:

C(z)—g(s)=0,s€Q (2.1a)

With boundary conditions

G(z,ﬁjzo,ser (2.1b)
dn

Where C'is a general differential operator, G'is a boundary operator, Z is a known analytical function, I is
the boundary of the domain Q. The operator C can be divided into two parts, £ and W 4.6 finear and
nonlinear. Equation (2.1a) takes the form:

E(z)+W(z)—g(s)=0, @2.1¢)
By the homotopy method proposed by Liao [4]. A homotopy can be constructed as

v(s, j) : Qx[0,1] > R This satisfies:
T (v, j) == NIEW)=-E(z)]+ JIC()-g(s)] =0, 214

or T(v, j) = E(v)=E(z,) + JE(z)) + jIW () =g (5)] =0, 2.1e)
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Where s € T and j €[0,1]is an embedding parameter, Z,is an initial approximation of [3] which satisfies
the boundary conditions using (2.1 d) we can easily guess that

T(v,0)=E(v)—-E(z,)=0, (2190
Tv,)=C(v)—g(s)=0, 2.1g

And the altering technique of j from zero to one is just that of 7'(v,j) from E(v)—E(z,) to

C(v)—g(s) . In the Topology, this is called deformation, where C(v)—g(s) and E(v)—E(z,) are

called homotopic. The embedding parameter j is known initially. For 0 < j <1equation (2.1 d) can be
given as

V=v v, e, (2.1h)
The approximate solution of equation of (18) can be obtained as follows:

z=lim v=v,+v,+v, +--, (2.11)

ol
2.2 Fundamentals of HAM
We start by considering

Nlu(x)]=0, (2.2 a)

Where N a nonlinear operator is #(x) is an unknown function and x denotes independent variable. For
simplicity we ignore all boundary conditions. We construct zeroth order functional as:

(A=) L[#(x, q) —uy(x)] = ghH (x)N[(x, )], (22b)

Where ¢ €[0,1] is an embedding parameter, /4 # Qis a nonzero auxiliary parameter H (x) is an auxiliary
function L

Is a linear operator u,(x) is an initial guess of u(x), ¢(x,q)is an unknown function , from equation

(2.2b) g =0and g =1 we get
#(x,0) and @(x,1), 2.2¢)

Thus as ¢ increases from 0 to 1, the solution @(x,q) varies from the #,(X) to u(x) . Expanding ¢(x,q)
in Taylor series

We have

) =)+ 3 1, (", @24)
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Where

1 9"P(x,q)

t,, () = m! ogq"

, atg=0 (2.2¢)

If the linear operator, initial guess, the auxiliary parameter and auxiliary function are so properly chosen the
series (2.3 e) Converges at g =1

We have
u(x) =1, (x)+ Y u, (x), 229
m=1

Which is one of the solution of the original non-linear equation approved by Liao [3] choosing h=-1 and
H(x)=1
Equation (2.2 b) becomes

(l—q)L[¢(X, Q)_uo(x)]JFqN[(ﬁ(X, q)] =0, (229
Which is used mostly in Homotopy Perturbation Method (HPM) whereby the solution is obtained directly,
without using Taylor series the comparison between HPM and HAM can be found in [3]. As H(x)=1
equation (2.2 b) becomes

(1 - q)L[¢(X, q) —U, ()C)] = th[¢(x9 q)]a (2.2 h)

This is often used in (HAM). In this case H(x) will not be involved in setting of the base function.

!
Differentiating equation (2.2b) m times with respect to q and the g=0 and finally dividing them by M we
have the so called m"-order deformation equation

Llu,, (x) = x,u,(x)] = hH(x)R,,(u,,_, x), 2.2)
_ 1 0"'N[g(x,9) _
Bl )= g 70 (2]
1/7,,1 = {MO(X), ul (.X),"',um(X)}, (22 k)
And x= {0’ m<l, x= {l’m >1 putting equation (2.2 d) in (2.2 j) we have
PSS NN L S R
ot = g N & a4 22

It should be restrained that “m () for ™ 1 is governed by the linear equation (2.2 i) with the linear
boundary condition that is obtained from the original problem which can be solved by Matlab.
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3 Numerical Problems

Problem 3.1.
Consider the following linear differential equation
F'(y)-F(y)—ycosy+ ysiny—siny=0,F(0)=0, (3.1a)

The exact solution of the problem is

F(y)=ysiny, (3.1b)
Applying the method mentioned above, the zeroth order problem is
F(y)=0,F,(0)=0, G.1¢)

Its solution is
£ () =0, G.1d)
First order problem is
Fl'(y,Cl) =—ycosyC,—sinyC, +ysinyC,—CF,(y)+(1+C)F,(»),F(0)=0, 3.1¢)
Its solution is
F(y,C))=-ycosyC, +sinyC, —ysinyC,, (3.1
Second order problem is

—ycos yC, =sinyC, + ysiny G, ~GF (N -CEW+CE WM+1+CF | (3.1 g)

F;I (y> C1 > CZ) =
E(0)=0
Its solution is

F,(y,C,,C,)=—ycos yC, +sinyC,— ysin yC, =2C> +2cos y C;> —2ycos y C;> +2sin y C,>
—ycosyC,+sinyC, —ysinyC,,

(3.1h)
Third order problem is
F3,(y,C1,Cz,C3)=—yCOSyC3 —siny G+ ysiny G, - CF,(») - GE(y) - CF () (3.11)
+CF) (0)+CF () +(1+C)F (1), F(0),
Its solution is
Fi(y.C.C,,C) =
—ycosyC, +sinyC, — ysinyC,—4C;> +4cos yC,” —4ycos yC;”> +4sinyC;> - 6C,
+2yC>+6¢c0osyC’>—2ycosyC’ +2ysinyC,>—ycosyC, +sin yC, — ysin y C, G-1))

—-4C,C,+4cosyC,C,—4ycosyC,C, +4sinyC,C,—ycosyC, +sin yC, — ysin y C,,
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Now we use equations (3.1 d), (3.1 f), (3.1 h), (3.1 j), and the third order approximate solution by OHAM for
p=lis

F(y,C.,C,,C)=F,(»)+ E(»,C)+FE(»,C,,C,)+ F(»,C,,C,,C,). (1K)

Using the technique mentioned in section 2 on the domain @ = 0,b = 1.we use the residual

R=F'—F—ycosy+ysiny—siny (3.11)
The following values of C, ,C,,C; are obtained

C, =-1.1763684395430054, C, = 0.11688800369849017, C, = —-0.0026970142170896472

> (3.1 m)
Considering the values of C,,C,,C;, the approximate OHAM solution becomes
F(y)=
1.01231y° —0.0480322 y° —0.105409 y* —0.0223286 3° +0.00421533 y° +0.00112045 )
—0.0000878039 »* —0.0000237398 y° +1.11482x10° 1'* +2.90161x107" "' (3.1n)

—9.50035x10™° »* —2.33658x10™° y** +5.79949x10™" y'* +1.3396x10™" 3 + O(1'°),

The HPM solution is

F(y)=
y* —0.333333y° —=0.166667 y* +0.033333y° + y0.008333y° —0.001190y" —0.000198y* + O(»°), (3.1 0)

The HAM solution is
I:"(y) =1.0026)" —0.021482y* —0.12265y* —0.0223774y° +0.00539169° +0.001091173" + O(*). (.1p)

The following Table 3.1 displays values of exact solution (3.1 b) OHAM solution (3.1 n) and the error.

In the Table 3.1 the values of HPM, HAM and their errors are also given. From the table given above we
conclude that the errors of the technique, OHAM are smaller than the errors of HPM and HAM.

Table 3.1.
y Exact sol OHAM sol HPM sol HAM sol Er OHAM Er HPM  Er HAM
0.0 0.000000 0.000000 0.000000 0.0000000 0.0 E-0 0.0 E-0 0.0 E-0
0.1 0.00998334 0.0100643 0.00965034 0.00999199 8.0 E-6 33 E4 8.0 E-6
0.2 0.0397379 0.0399325 0.0370779 0.0397289 1.9 E-4 2.6 E-3 4.9 E-6
0.3 0.0886561 0.0889059 0.0797368 0.0886099 2.4 E-4 8.9 E-3 4.6 E-5
0.4 0.155767 0.155987 0.134773 0.155695 2.1 E-4 2.0 E-2 72 E-5
0.5 0.239713 0.239861 0.199079 0.239691 1.4 E-4 4.0 E-2 2.1 E-5
0.6 0.33785 0.333884 0.269344 0.338939 9.8 E-5 6.9 E-2 1.5 E-4
0.7 0.450952 0.451076 0.342124 0.451411 1.2 E-4 1.0 E-1 4.5 E-4
0.8 0.573885 0.574113 0.413894 0.574712 2.2 E-4 1.5 E-1 8.2 E-4
0.9 0.704994 0.705338 0.481116 0.706085 3.4 E-4 22 E-1 1.0 E-3
1.0 0.841471 0.841762 0.540302 0.842428 2.9 E-4 3.0 E-1 9.5 E-4
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(a) Graph of exact and OHAM solutions
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(b) Graph of exact and HPM solutions (c) Graph of exact and HAM solutions

Fig. 3.1.

From the Fig. 3.1 (a) we investigate that the graphs of OHAM and exact solutions coincide while in Fig. 3.1
(b) the graphs of HPM and exact solutions are not coincident completely and the graphs of Fig. 3.1 (c) are
again coinciding but generally the graphs of OHAM are in best agreement with their exact solutions. From
the Table 3.1 given above we conclude that the exact and OHAM solutions are in best agreement in the

domaina =0,b =1, solid curve elucidates exact solution, dotted curve provides OHAM solution. We
conclude that the two curves coincide.

Problem 3.2:
For y €[0,1] we consider the following differential equation
F'"O)+2F'(»)+F(y»)=0,F(0)=1,F'(0)=0, (32a)
The exact solution of the problem is
F(y)=e?+ye”, (3.2b)
Applying the technique, OHAM our zeroth order problem is
F,"(y)+ 2F, (y)+ Fy(y)=0,F,(0)=1,F,(0) =0, (32¢)
Its solution is

Fy(y)=cosy, (3.2 d)
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First order problem is

F'(3,C)=-F,(») -2F () + 1+ C)IF,(»)+2F(»)+ F;(»],F(0)=0,F (0) =0, (3:2e)

Its solution is

F(3.C) 1({2ycosy—siny+cos2ysiny—cosysin2y+2ycosyC, —sin yC, 321

Y, == . . > .

] " 2 +cos2ysin yC, —cos ysin2yC,

Second order problem is
"

F, (y7C17C2)=
CF (1) = F,(0) +2C,F) (9) =25 (1) + C,F" (») + 1+ COIFR (1) + 2F (») + F' ()] (329
F,(0)=0,F,'(0)=0

Its solution is

F,(»,C.,C,)=
cosy+4ycosy+2y>cosy—cosycos2y—2siny+2cos2ysiny+2ycos2ysiny—
2cos ysin2y —2ycos ysin2y —sin ysin2y+2cosyC,+8ycosyC,+4y>cosyC, —
2cosycos2yC,—4sinyC,+4cos2ysinyC, +4ycos2ysinyC,—4cosysin2yC, - (3:2h)

% 4ycosysin2yC,—2sin ysin2yC,+cosyC > +4ycosyC,>+2y>cosyC,>— s
cosycos2yC,>—2sinyC,>+2cos2ysinyC,>+2ycos2ysinyC,>—2cosysin2yC,’
—2ycosysin2yC,> —sin ysin2yC,;>+4ycosyC,—2sin yC, +2cos2ysin yC, —
2cosysin2yC,

Third order problem is
"

E) (yanCpC3)=

CF () + C,F(y)— F(») + 2CF{(y) + 2C2Fll(y)—2F3l(y)+ CF(y)+ CzFlﬂ(y) (3.21)
(1+ CHIF,(P) + 2F) (») + F," (1), F;(0) = 0, F,(0) = 0

Its solution is

Fi(y,C,,C,,C)

C,F,(y)[-cosy—2ycosy+2cos’ y—cosycos2y+siny—2ysiny+2cos’ ysiny—
cos2ysin y+2sin’ y —sin ysin2y]+ C,C,F,(y)[-cosy—2ycosy+2cos’ y-—

cos ycos2y+siny—2ysin y+2cos’ ysin y —cos2ysin y+2sin’ y —sin ysin2y]+ (3.2)
C,Fy(y)[-2cosy+2cos’ y+2sin’® y]+ F,(y)[-cosy—2ycosy+2cos’ y—cosycos2y
+siny—2ysiny+2cos’ ysiny—cos2ysiny+2sin’ y—sin ysin2y]+ C,F,(y)[-2cosy

N | =

—4ycosy+4cos’ y+2cosycos2y+2siny—4ysiny+4cos’ ysiny—2cos2ysiny+
4sin’ y - 2sin ysin2y]+ C*F(y)[-cosy—2ycosy+2cos’ y —cos ycos2y+siny—
2ysin y+2cos’ ysin y —cos2ysin y+2sin’ y —sin ysin2y]+ C,F(y)[-2cos y +
2cos *y+ 2sin’ y]

10
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We use equations (3.2 d), (3.2 ), (3.2 h) and (3.2 j) we get third order approximate OHAM solution for
p=1

F(y’CI’C2’C3):E)(y)+E(yacl)+F2(y’cl,C2)+Pv3(y’C1,C2’C3)9 (3~2k)

Using the OHAM technique of section mentioned above on domain @ = 0,b =1 we use the residual R that
is

R=F"()+2F () +F(y), (321)
We have obtained the following values of C|,C, ,C;.where
C, =-0.6157891011374226,C, =—1.648024704278988,C, =—0.48317914168990783, (3.2 m)

From the above values of Cl.’s we get the following approximate OHAM solution

F(y)=1-0.424995> —0.161002 y°, (3.21n)

The HPM solution is

F(y)=1-0.5)" +0.333333)° +0.04167y* + 0()°), (3.20)

The HAM solution is

F(y)=1-0.464612y +0.209414 ) —0.007422241* —0.00671979y° + O(»°). (3.2 p)

The following Table 3.2 displays values of the exact solution (3.2 b), OHAM solution (3.1 n) and Error of
OHAM. We compare the two solutions there exists similarity approximations between them also the values
of HPM, HAM along with their errors are considered and the comparison is established between the errors of
OHAM, HPM and HAM the errors of the technique, OHAM are smaller than the other two. All the
mentioned values are described in the following table 3.2, their graphs are drawn in Fig. 3.2 below.

Table 3.2.
y Exact sol OHAM sol HPM sol HAM sol Er OHAM Er HPM Er HAM
0.0 1.000000 1.000000 1.000000 1.000000 0.0 E-0 0.0 E-0 0.0 E-0
0.1 0.995321 0.99591 0.995338 0.995562 59 E-4 1.6 E-5 2.4 E-4
0.2 0.982477 0.984288 0.982733 0.983077 1.8 E-3 2.5 E-5 5.9 E-4
0.3 0.963064 0.966098 0.964338 0.963763 3.0 E-3 1.2 E-3 6.9 E-4
0.4 0.938448 0.942305 0.9424 0.938806 3.8 E-3 39 E-3 35 E4
0.5 0.909796 0.923877 0.919271 0.90935 4.0 E-3 9.4 E-3 44 E-4
0.6 0.878099 0.881778 0.8974 0.876489 3.6 E-3 1.9 E-2 1.6 E-3
0.7 0.844195 0.846976 0.879337 0.841258 2.7 E-3 3.5 E-2 2.9 E-3
0.8 0.808792 0.810436 0.867733 0.804626 1.6 E-3 5.8 E-2 4.1 E-3
0.9 0,772482 0.773125 0.865338 0.76749 6.4 E-4 92 E-2 49 E-3
1.0 0.735759 0.736007 0.875 0.73066 24 E4 1.3 E-1 5.0 E-3

11
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(b) Graph of exact and HPM solution (¢) Graph of exact and HAM solutions
Fig. 3.2.

From the Fig. 3.2 (a) we conclude that the two graphs are coincident and also from the above Table: 3.2 We
investigate that the OHAM solution and exact solution are in very good agreement on domain a = 0,b =1

showing that the method is effective. Solid curve shows exact solution dotted curve shows OHAM solution,
HPM solution and HAM solution. From figure 3.2(b) the HPM and exact solutions are not coincident again
the HAM and exact solutions are coincident as shown in figure 3.2(c) , However generally the OHAM errors
are smaller and there exists accuracy in the values of OHAM and the method is reliable and effective.

Problem 3.3:
For y €[0,1] we consider the following linear differential equation
F"(y)+F(»)—(7-y")cos y—(y* —=6y—1)siny=0,F(0)=0,F'(0) =1, F'(1) = 2sin(1), (3.3 a)
The exact solution of the problem is
F(y)=(y*-1)siny, (3.3b)
Applying the technique of OHAM that is described in the above section. The Zeroth order problem is
F(3)=0,F,(0)=0,F(0)==1,F (1) = 2sin(D), (33¢)

Its solution is

12
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Fy(») =%(—2y+y2(1+2sin(1))), (334d)

First order problem is

” C[-7cosy+y*cosy+sin y+6ysiny—y*sin y+F, +(1+C)HE"
F"(5,C) = I yry eosytsiny+6ysiny =y siny+ K]+ CIE D) | 55

F(0)=0,F (0)=0,F (1)=0

Its solution is

1
F,C)=—-C

{—3120—240y+135y2 —-10y* +2y° - 480y cos(1) + 3120 cos y — 240y’ cosy+] (3.3 1)
240 '

950y sin(1) + 4y’ sin(1) + 240sin y + 1440y sin y — 240y sin y

Second order problem is

m

” C,[=7cos y+ y*cos y+sin y+6ysiny—y2sin y+ F,(»)+ F." ()] +
F (yanCz):[ [ y+ycosy+siny+6y y’ y y, o+ E ()] J (339
CERW+(1+C)F (»),F(0)=0,F(0)=0,F, (1)=0

Its solution is

1

F.(3.C.C}) = ——
(166D =00

C,[-52416-40320y +22680y" —1680y* +336)° —80640y" cos(1) + 524160 cos y
403207 cos y +159600y° sin(1) + 672" sin(1) + 40320sin y + 241920y sin y —
403207 sin y]+ C,*[~1048320 +1209600y — 468801y —87360y° —3360y" + 714" —
8" + 1" + 44688017 cos(1) — 1344y’ cos(1) + 1048320 cos y + 483840y cos y —

806407 cos y +475502y* sin(1) + 3332y sin(1) + 2" sin(1) —1693440sin y +

483840y sin y]+ C,[-524160 — 40320y + 22680y —1680y* +336y°~80640y7 cos(1) +
524160 cos y — 40320y cos y +1596007° sin(1) + 672y’ sin(1) +40320sin y +

241920y sin y — 40320y sin y]

(33h)

Third order problem is

m

F(»,C.C,C)=
Cy[~7cos y+)7? cos y+sin y+6ysin y—y* sin y+ F, () + Fy (0]+C[F () +F" ()]+

>

CEM+1+C)E" (9).F0)=0,F(0)=0,F (1) =0 (3.3 1)

Its solution is obtained by using the method, OHAM. The optimal values of the auxiliary constants
C,.,C, and C, are obtained by using Galerkin’s method or least square method, using these values we get

the series solution.
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1

F.(y,C,C,,C.) =—
(6.6, 6) 159667200

C,[-2075673600-159667200y +89812800> — 6652800* +1330560°
—319334400y” cos(1) + 2075673600 cos y — 159667200 cos y +

632016000y sin(1) + 26611203’ sin(1) +159667200sin y + 958003200y sin y
~159667200y sin y]+ C,’ [~-8302694400 + 9580032000y — 3712903920y —
691891200y° —26611200y* +56548803° —63360y” +7920y° +

3539289600y° cos(1) — 10644480y cos(1) + 8302694400 cos y +

3832012800y cos y —638668800y° cos y +3765975840° sin(1) +

26389440y° sin(1) + 15840y sin(1) —13412044800sin y + 3832012800y sin y]
+C,’[8302694400 + 14689382400y — 6081277257 y> —1037836800y° +
186278400y* —281134263° —2882880y° —95040y" +12375y% — 44" + 4"
+74439921603 cos(1) +24171840y° cos(1) —15840® cos(1) — 8302694400 cos y
+5748019200y cos y —319334400y° cos y —1867972634y” sin(1) +

44577852y sin(1) + 47190 ° sin(1) + 8" sin(1) — 20437401600 sin y
+319334400y” sin y]+ C,[-2075673600 +89812800y> — 6652800y +1330560°
—-319334400y° cos(1) + 2075673600 cos y —159667200y° cos y +

6320160007 sin(1) + 2661120y’ sin(1) +159667200sin y + 958003200y sin y —
1596672007 sin y]+ C,C,[-8302694400 + 9580032000y — 3712903920y — (3.3§)
691891200y° —26611200y* +565880y° —63360y” + 79203 + 353928960077 cos(1)
—-10644480y° cos(1) + 8302694400 cos y +3832012800y cos y —

638668800y° cos y + 3765975840 sin(1) + 26389440 ° sin(1) + 15840 * sin(1) —
13412044800sin y + 3822012800y sin y]+ C,[-2075673600 - 159667200y +

89812800y° —6652800y* +1330560y° —3193344007 cos(1) + 2075673600 cos y +
159667200y> cos y + 632016000 ° sin(1) + 2661120y° sin(1) +159667200sin y +
958003200y sin y —159667200y° sin y]

Now we use equations (3.3 d), (3.3 ), (3.3 h) and (3.3 j) to get third order approximate solution by OHAM
for p =1 thatis

F(3,G,C,,C) = () + (. C)+E(,C.G) + F(1,C,,C,, G), (33K
Using the proposed technique of section described above on the domain a = 0, b = 1 we use the residual

R=F"(y)+F(y)—(7-y*)cos y—(y* —6y—1)sin y, (331
The following values of C; s are found

C, =1.062670102836802,C, =—-2.208103637790291,C, = 0.33369993779942651,

14
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We use the above values of C,, C,, C; , the approximate OHAM solution is

F(y)=—y+0.0000488077)” +1.16623)" —0.173884)° —0.000926371° +0.00852856)" +0.000200624 1" —

0.000245363)° —1.12908x10°° y'* +4.06776x10°° y"' —=3.01577x107 "> —4.10508x10* y* + 3m)
1.67752x107°" +2.89409x107"° ' + O('°).
The HPM solution is
F(y) =—y+1.66667y> +0.008532y —0.0002201° + O(»'""). (3.3 1)

The HAM solution is
F(y)=-0.563288+32.3288y —0.776059 y> —2.25957 y* — 0.00180541y* + 0.026541y° + O(»*), (3.3 0)

The following table displays the OHAM, HPM, HAM exact solutions and their errors.

Table 3.3.
y Exact sol OHAM sol HPM sol HAM sol Er OHAM Er HPM Er HAM
0.0 0.000000 0.000000 0.000000 0.000000 0.0 E-0 0.0 E-0 0.0 E-0
0.1 -0.0988351 -0.0886448 -0.0988249 -0.0988314 1.9 E-4 1.0 E-5 3.6 E-6
0.2 -0.190723 -0.190034 -0.190682 -0.19071 6.8 E-4 4.0 E-5 1.2 E-5
0.3 -0.268923 -0.267535 -0.268833 -0.268899 1.3 E-3 9.0 E-5 2.4 E-5
0.4 -0.327111 -0.32492 -0.326954 -0.327074 2.1 E-3 1.5 E-4 3.7 E-5
0.5 -0.359569 -0.357602 -0.35933 -0.35952 3.0 E-3 2.3 E-4 49 E-5
0.6 -0.361371 -0.357602 -0.361042 -0.36131 3.7 E-3 32 E-4 6.0 E-5
0.7 -0.328551 -0.324145 -0.328131 -0.32848 44 E-3 42 E-4 7.1 E-5
0.8 -0.258248 -0.253368 -0.257746 -0.258169 4.8 E-3 5.0 E4 79 E-5
0.9 -0.148832 -0.143667 -0.148271 -0.148747 5.1 E-3 5.6 E-4 8.4 E-5
1.0 0.000000 0.0052575 0.00058439 0.0000869 5.2 E-3 5.8 E-4 8.6 E-5

We conclude that the errors of technique, OHAM are smaller than HPM and HAM solutions. From the above
Table 3.3 we conclude that OHAM and exact solutions are in best agreement and the values of the two
columns are nearly equal.

P 02 04 0.6 0.8 0
[0.05 |

[0.10 |
Coast
1020 |
025 b

030 F

035 F

(a) Graph of exact and OHAM solutions
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(b) Graph of HPM and exact solutions (c) Graph of HAM and exact solutions
Fig. 3.3.

In Fig. 3.3 (a), (b) and (c) we investigate that the graphs of OHAM, HPM and HAM are coincident with the
graphs of their exact solutions, but generally we conclude that the technique, OHAM is more effective than
the other two. From the above Fig. 3.3 we investigate that two graphs that is exact and OHAM solution
graphs are coincident, this shows that the method OHAM is effective and reliable. Solid curve= exact
solution, Dotted curve= OHAM solution, HPM solution and HAM solution.

4 Conclusion

The solutions of the problems 3.1, 3.2 and 3.3 are analyzed by using OHAM, HPM and HAM. The results
are given in Tables 3.1, 3.2 and 3.3. Their graphs are displayed in Figs. 3.1, 3.2 and 3.3. Moreover, the
solution of the problems are numerically and analytically by the above mentioned three techniques. These

solutions are compared with their exact solutions and there exists the good agreement. We can apply the
same techniques to all the initial and boundary value problems of all orders accordingly.
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