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ABSTRACT 
 
This study was carried out to determine the initial efficiency of commonly used practices to control 
soil erosion from Maize and Banana based cropping systems in Lwiro micro catchment in the Lake 
Kivu basin. Soil, runoff and nutrient losses were determined using runoff plot approach. 
Instrumentalised runoff plots of 2X15m were installed on maize intercropped with beans and banana 
gardens. Two soil erosion management practices, namely; Tithonia and contour bunds were tested 
on Maize intercrop with Beans and mulch for Banana. The experiment included a control practice for 
each crop. Each treatment and control was replicated four times. Runoff and soil loss were 
estimated for each rainfall event and aggregated on seasonal basis. Nutrient (N, P and K) losses 
were estimated per season. Results of the long and short rains of the first year of experimentation 
show that soil and runoff losses did not significantly change with practices and seasons (P>0.05) for 
both banana and maize based systems. Soil and runoff losses ranged from 15.73 to 32.93 Mg/ha, 
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and from 168.14 to 322.17 m3; respectively. Nutrient losses varied with practices and seasons 
(P<0.05) and ranged from 54.68 to 112.34 Kg/ha, 87.7 to 409.4 Kg/ha; 24.5 to 94.22 Kg/ha for K, N 
and P; respectively. Soil and runoff losses ranged from 8.99 to 20.6 t/ha, and from 85 to 152 m

3
; 

respectively. Only K losses changed significantly with season (P<0.05) and ranged from 17.8 to 
53.9 Kg/ha under Banana cropping system.  
 

 

Keywords: Land degradation; Lake Kivu Basin; pollution loading; Bukavu; D.R. Congo. 
 

1. INTRODUCTION 
 

Soil loss and land degradation are considered as 
challenges of global dimension [1]. Soil erosion is 
widespread [2-5] and varies in magnitude from 
place to place depending on the land-use 
system, population pressure, community wealth, 
management, relief, and vulnerability of the soil 
to climate aggressivity [6-8]. [3] predicted about 
15 Mg/ha/yr in Kondoa Eroded Area in Tanzania. 
[9] observed that soil loss was 30 times on road 
embankments in eastern Spain than on 
vegetated land. [10] observed that rills on roads 
in south eastern región of South Africa. Their 
dimension was significantly determined by 
gradient and percentage of vegetation cover of 
the roadcut while their widths and depths 
increased with the slope gradient and decrease 
with percentage of vegetation cover. The 
diversity of species in the vegetation covers also 
plays a role in the magnitude of soil loss [2] and 
increased soil erosion might lead to reduced 
plant diversity Due to increased grazing intensity 
soil erosion is becoming serious in the Tibetan 
grassland [11]. In several regions across the 
globe areas, steep sloepe with low vegetation 
cover including those with relatively bareland due 
to fire experience severe erosion [12], In Europe, 
soil erosion is most prone on vineyard [13,14] 
and on agrosilvopastooral mountainous 

ecosystems [5]. 
 

On the African continents, soil erosion is also 
alarming. In Ethiopia, many reservoirs 
constructed for hydropower generation, wáter 
supply have been siltated due to the alarming 
rate of soil erosion in some parts of Ethiopia [15].  
In DRC, and particularly in Kivu mountain areas, 
soil erosion is believed to be one of the major 
processes of soil degradation [6]. The latter is 
reported to have reached catastrophic 
proportions on agricultural lands in the Kivu 
mountainous region [6,7,16]. 
 

Subsequently, the region is threatened by famine 
and food insecurity, it is reported that 70% of the 
population is affected by food insecurity [17]. Yet, 
the region has a great agricultural potential. 
Under rain-fed conditions, DRC can feed more 

than two billion people and 50% of its agricultural 
potential is located in the great Kivu region (Sud-
Kivu, Maniema and Nord-Kivu). This situation is 
likely to exacerbate and reinforce the cycle of 
poverty-poor management- natural resources 
degradation [18-20]. On the other hand, soil 
erosion in the Kivu mountain region contribute to 
increased pollution loading into Lake Kivu, one of 
the deadly Lakes in the world. The Lake has 
reached critical concentration of CH4 and CO2 
which can lead to an increased instability of the 
Lake which can trigger an explosion if any action 
is not taken to control the flow of carbon into the 
water bodies [21,22]. Lake Kivu is critical for the 
survival of millions of people around its basin and 
beyond [23]. It is a biodiversity hotspot area [24] 
and a source of protein and income for 
communities around it.  
 
Although soil erosion is considered to be a major 
cause of land degradation in Kivu mountain 
region, very few studies have been conducted in 
the region to determine its magnitude and 
evaluate practices currently used for its control. 
Limited studies were conducted during the 
colonial time and in the 80s [25], and in Rwanda 
[26,27,28]. Acceptability, maintenance and 
replicability of some of these technologies has 
been challenging in the Kivu. Farmers’ poverty 
and a long time span return of these 
technologies being the most determining factors. 
For many farmers adoption and continuous 
investment in these practices also depend on 
their short time performance on yield [29] which 
to some extent associated with their efficiency to 
control soil and nutrient losses, and enhance 
moisture conservation in the soil [30]. This study 
intended to determine the initial efficiency of 
commonly used practices to control soil erosion 
from Maize and Banana based cropping systems 
in Lwiro micro catchment in the eastern D.R. 
Congo side of the Lake Kivu basin.   
 

2. METHODOLOGY 
 

2.1 Description of the Study Site 
 

This study was conducted in the River Lwiro 
micro-catchment within Lake Kivu Basin. The 



River Lwiro is located on the eastern flank of 
Lake Kivu between latitudes 2°15’ and 2°30’ S 
and longitudes 28°45’ and 28°85’ E. Its 
headwaters are in the Kahuzi-Biega 
Park mountain region; at an altitude of 2000 m.  
The 84 km2 river basin is bordered on the east by 
Lake Kivu and on the west by the Kahuzi 
mountain forest (Fig. 1). This watershed of Lwiro 
river, the principal tributary of the Lake Kivu, 
covered 4 localities namely Irhambi/Katana, 
Bugorhe, Luhihi and Bushumba in the territory of 
Kabare, province of South-Kivu, Democratic 
Republic of Congo. Annual rainfall varies 
between 1134 mm and 1689 mm with an 
average of 1411 mm. The rainfall is bimodal with 
a dry season from June and July. The soil 
comprises of clay and rich volcanic soil, which is 
easily eroded. The geological composition is of 
Precambrian metamorphoses sediments 
(metamorphic rocks) and Preterozoic platform 
sediments [31]. [32]; describes meta
limestone and numerous travertines along Lake 
Kivu and Lake Edward. Carbonates for the 
production of cement are also found north and 
north-west of Lake Kivu [7]. 
 
The micro-catchment is dominated by small 
scale farming, forest and built-up area. Fo
cover is more located in the mountainous area 
and is part of the Kahuzi Biega National Park. 
The geology of Lake Kivu has been described by 
[33] and [28]. It is a rolling landscape of convex 
 

 
Fig. 1. Lwiro micro-
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River Lwiro is located on the eastern flank of 
Lake Kivu between latitudes 2°15’ and 2°30’ S 
and longitudes 28°45’ and 28°85’ E. Its 

Biega National 
Park mountain region; at an altitude of 2000 m.  

river basin is bordered on the east by 
Lake Kivu and on the west by the Kahuzi 

1). This watershed of Lwiro 
river, the principal tributary of the Lake Kivu, 

localities namely Irhambi/Katana, 
Bugorhe, Luhihi and Bushumba in the territory of 

Kivu, Democratic 
Republic of Congo. Annual rainfall varies 
between 1134 mm and 1689 mm with an 
average of 1411 mm. The rainfall is bimodal with 

dry season from June and July. The soil 
comprises of clay and rich volcanic soil, which is 
easily eroded. The geological composition is of 
Precambrian metamorphoses sediments 
(metamorphic rocks) and Preterozoic platform 

; describes metamorphic 
limestone and numerous travertines along Lake 
Kivu and Lake Edward. Carbonates for the 
production of cement are also found north and 

catchment is dominated by small 
up area. Forest 

cover is more located in the mountainous area 
and is part of the Kahuzi Biega National Park. 

been described by 
. It is a rolling landscape of convex 

and elongated hills, developed on the weathered 
lavas. In the Bukavu area, folded and faulted 
Precambrian strata are covered by thick Tertiary 
and Quaternary lava flows. The oldest series, not 
present at Bukavu itself, predates local rifting and 
is dated between 7 and 10 millions of years [34]. 
The middle and upper series are present at 
Bukavu. The middle series, of Mio
[35,34], is intimately related to the rift faults. The 
upper series started during the Pleistocene and 
continued to the last century. The chemical 
composition of these three series evolv
sub-alkaline over moderately alkaline to strongly 
alkaline [36]. Every lava series consists of many 
individual flows, separated in time [37]. The 
complex geometry of the present lava layers 
resulted from successive rifting and eruptive 
episodes. Weathering and erosion, as well as 
normal faulting, occurred between successive 
lava flow series, explaining the occurrence of 
palaeo-relief, contact metamorphism, smectite 
layers, probably Vertic palaeosoils, and clastic 
deposits having an alluvial and coll
 

2.2 Design, Treatments and Replications
 

Soil, runoff and nutrient losses were determined 
using runoff plot approach. All the plots were 
established on a slope of 15%. A total of 12 Plots 
measuring 2X15 m were established on
garden at “Centre de Recherche en Science 
Naturelles” (CRSN-Lwiro) used for
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composition of these three series evolves from 

alkaline over moderately alkaline to strongly 
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resulted from successive rifting and eruptive 
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Design, Treatments and Replications 

Soil, runoff and nutrient losses were determined 
using runoff plot approach. All the plots were 
established on a slope of 15%. A total of 12 Plots 
measuring 2X15 m were established on a farmer’ 
garden at “Centre de Recherche en Science 

Lwiro) used for  

 

 



Fig. 2. Annual rainfall in the Lwiro micro

Fig. 3. Monthly rainfall in Lwriro micro

 

growing maize and beans. Eight (8) other plots 
were established on a banana plantation. Each 
of the plots was equipped with dividers and 
collecting tanks. Two treatments an
were imposed on the maize intercropped with 
beans garden; namely tithonia 
bunds. On the banana garden one treatment 
(mulch) and a control were imposed. The runoff 
transfer coefficients were estimated in the field 
using water and an accurate balance. Local 
varieties of maize, beans and banana were used 
for the experiment; and banana was cultivated in 
monoculture. Each treatment and control was 
replicated four times. 
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Annual rainfall in the Lwiro micro-catchment  

(Source Merra Data) 
 

 

Monthly rainfall in Lwriro micro-catchment  
(Source Merra data) 

growing maize and beans. Eight (8) other plots 
were established on a banana plantation. Each 
of the plots was equipped with dividers and 
collecting tanks. Two treatments and one control 
were imposed on the maize intercropped with 

tithonia and contour 
bunds. On the banana garden one treatment 
(mulch) and a control were imposed. The runoff 
transfer coefficients were estimated in the field 

an accurate balance. Local 
varieties of maize, beans and banana were used 
for the experiment; and banana was cultivated in 
monoculture. Each treatment and control was 

2.3 Measured Parameters 
 

The measured parameters included soil loss, 
runoff, nutrient losses and the crop yield. Runoff 
and soil loss were estimated for each rainfall 
event. Samples of collected runoffs were 
measured using a graduated cylinder and total 
runoff for the rainfall events were estimated by 
multiplying the collected runoff by the deviser’s 
transfer coefficient. The collected runoff was 
thoroughly mixed and a 100 ml sample was 
collected for sediment concentration 
determination in the laboratory. In the laboratory, 
sediment concentration was determined by 
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filtration. The total soil loss for the rainfall event 
was determined by multiplying the total runoff 
volume by the associated sediment 
concentration. Seasonal runoff  was computed 
as the sum of the different event runoff [38]. The 
same was done for soil loss. Seasonal nutrient 
(N, P and K) losses were estimated for the short 
rainy season of year 2012 and the long rainy 
season of the year 2013. Plot composite soil 
samples were obtained by putting together 
sediment collected after each rainfall event for a 
given season. The composite samples were 
taken to the laboratory for N, P and K analysis.  
N, P and K were analysed using standard 
procedures [39]. Total N were analysed using 
Kjeldahl digestion method. Available P was 
extracted by Bray II method [40]. The 
exchangeable K+ cation was determined by a 
flame photometer. Total N and total                     
available P was determined by multiplying their 
respective concentration with the total season 
soil loss.  
 
2.4 Data Analysis 
 
The survey questionnaires were coded and 
entered in PASW statistics version 18 for 
analysis. Frequencies, tables and graphs were 
obtained using descriptive statistics and cross 
tabulation. For the experiment, Analysis of 
Variance was used for mean separation at 
p<0.05 in GenStat 13

th
 edition.   

 

3. RESULTS 
 
3.1 Soil and Runoff Losses under Maize 

Based Cropping System 
 
Soil and runoff losses for both season I (long 
rainy) and season II (short rainy) are presented 
in –Figs. 4 and 5 respectively. Soil loss and 
runoff losses did not significantly depend on soil 
erosion practices and rain seasons (P>0.05). 
However, soil loss under contour bunds was 
relatively the lowest followed by Tithonia and 
control for both seasons. A similar trend to that of 
soil loss was observed for runoff. The long rains 
season tended to have relatively higher value of 
soil loss and runoff for all practices. Soil loss 
under contour bunds varied between 15.73 t/ha 
and 20.49 t/ha, 19.29 t/ha and 23.33 t/ha under 
Tithonia and 30.91 and averaged 32.93 
t/ha/season for the control for the two seasons.  
Runoff under contour bunds was also the lowest 
followed by Tithonia and control for both 
seasons. Runoff ranged between 168.14 and 
203.22 under contour bunds, 206.60 and 240.13 

under Tithonia and 264.29 and 322.17 
t/ha/season under control. 
 

Table 2 shows nutrient concentration under 
different practices and across seasons. Different 
nutrients were affected differently by practices 
and seasons. Practices effects was observed 
only on K while seasons affected N and P 
concentration in the sediment lost (P ≤0.05). The 
interaction between seasons and practices was 
significant for K an P concentration in sediment 
lost (P ≤0.05). Contour bunds tended to have a 
relativly high concentration of  N and K and lower 
value of P compared to other technologies for the 
short rain season. All technologies had less 
variation in concentration of nutrients during the 
long rain season. Nitrogen concentration in 
sediments was relatively higher during the first 
season compared to the second season for all 
practices. Phosphorous concentration was 
relatively constant under Tithonia and control 
during the  two seasons. It is important to 
observe that P concentration increased during 
the second season for contour bunds. K 
concentration increased  under Tithonia and 
control during the second season. It is also 
important to note that K concentration decreased 
under contour bunds during  the season. 
 
Table 3 shows nutrient losses under                  
different practices and across seasons. Nutrient 
losses from different land-use varied with 
practices and seasons (p < 0.05). Practices 
effects was observed  on K, while N loss was 
only affected by season (P<0.05). K loss and P 
loss was also affected by season (P<0.05). The 
interaction between seasons and practices was 
significant for K and  P losses  (P<0.05).  
Contour bunds tended to have a relativly                  
high amount of  K  and N losses and                       
lower value of P loss compared to                          
other technologies for the short rainy season                 
(P <0.05). Contour bunds had also relativlely                
low amount of K loss, N loss and P loss 
compared to other technologies in the long                 
rain season (p<0.05). The amount of K and                    
N losses decreased for plots with contour               
bunds during the long rain season while                          
it increased for P loss. The amount of K loss                
and P loss increased for control and Tithonia 
during the long rain season while N loss 
decreased. 
 

3.2 Soil and Runoff Losses under Maize 
Based Cropping System 

 

Soil and runoff losses for both season I (long 
rainy) and season II (short rainy) are presented 



in Figures 6 and 7 respectively. Soil loss and 
runoff losses did not significantly depend on 
land-use practices and rainy seasons (P>0.05). 
However soil loss on mulched banana was 
relatively the lowest compared to the control 
(banana unmulched) for both seasons. A similar 
trend to that of soil loss was observed for runoff. 
The long rainy season tended to have relatively 
higher value of soil loss and runoff for bo

Fig. 4. Soil losses under Maize cropping system
 

Fig. 5. Runoff under 
 

C
u
m
/h
a

Control 

Adidja et al.; JEAI, 23(6): 1-13, 2018; Article no.

 
6 
 

in Figures 6 and 7 respectively. Soil loss and 
runoff losses did not significantly depend on 

use practices and rainy seasons (P>0.05). 
mulched banana was 

relatively the lowest compared to the control 
(banana unmulched) for both seasons. A similar 
trend to that of soil loss was observed for runoff. 
The long rainy season tended to have relatively 
higher value of soil loss and runoff for both 

practices. Soil loss under mulched banana varied 
between 89.93 and 15.77 t/ha/season and 
between 13.88 and 20.61 t/ha/season under 
unmulched (banana).  Runoff under mulched 
banana was also the lowest compared to the 
unmulched banana. Runoff varied also 
85 and 134 under mulched banana and between 
118 and 152 t/ha/season under unmulched 
banana. 
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Table 1. Nutrient concentration under different practices and across seasons

Land use practices  

 

 
N

Control 0.87

Contour bunds 1.94

Tithonia 0.75

LSD-landuse NS

LSD Season 0.56
LSD Landuse*season NS

*: Seasonal effects at P<0.05; NS = Not significant
 

 

Fig. 6. Soil losses under banana cropping system

 
Fig. 7. Runoff under banana cropping system
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Nutrient concentration under different practices and across seasons
 

Short   rainy  2012 Long  rainy 2013

N P K N P 

% 

0.87 0.23 0.19* 0.36 0.28 

1.94 0.16* 0.58 0.38 0.28* 

0.75 0.24 0.20* 0.4 0.26 

NS 0.06 0.34 NS NS 

0.56 
NS 0.06 0.23  

*: Seasonal effects at P<0.05; NS = Not significant 

Soil losses under banana cropping system 
 

Runoff under banana cropping system 
 
 

Season II

Seasons

Banana

Banana

Season II

Seasons

Banana

Banana
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Nutrient concentration under different practices and across seasons 
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Table 2. Nutrient losses under different practices and across seasons 
 

Land use practices Short   rainy  2012 Long  rainy 2013 
N P K N P K 

Kg/ha/season 
Control 291.8 68.01 54.68 125.9 94.22 112.34 
Contour bunds 409.4* 24.5 103.74 71.5* 55.5 72.92 
Tithonia 131.1 45.47 35.96 87.7 59.68 83.06 
LSD- landuse NS 25.26 28.81 NS NS NS 
LSD Season 178.3 20.45 23.32  
LSD landuse*season 311.2 NS 40.72  

* Seasonal effects at P<0.05 
 

Table 3. Nutrient concentration under different practices and across seasons for Banana 
 

Land use practices % 
Short   rainy  2012 Long  rainy 2013 

N P K N P K 
Banana unmulched 0.74 0.24 0.19 0.39 0.23 0.28 
Banana mulched 0.55 0.26 0.21 0.42 0.24 0.32 
LSD- landuse 0.08 NS NS  
LSD-season 0.07 NS 0.04 
LSD landuse.season 0.11 NS NS 
 

Table 4. Nutrient losses under different practices and across season for Banana 
 

Practices Kg/ha/season 
Short   rainy  2012 Long  rainy 2013 

N P K N P K 
Banana unmulched 107 35.2 25.7 79 48.1 53.9 
Banana-mulched 46 23.6 17.8 69 37.6 51.6 
LSD-landuse NS NS NS  
LSD Season NS NS 11.3 
LSD Landuse.Season NS NS NS 

 
Table 4 shows nutrient concentration                        
under different practices and across                           
seasons. N and P were not signicantly affected 
by different practices and seasons (P>0.05). 
Only K was affected by the season (P<0.05). All 
the nutrients tended to have relatively the same 
concentration during the long rainy season  for 
the different practices  except the N 
concentration which decreased under control 
(banana unmulched) during the long rain             
season. Table 7 below shows nutrient                           
losses under different practices and across 
seasons. Most of the nutrient losses were not 
affected signicantly by practices and 
seasons(P>0.05). Only K losses were 
significantly affected by the season(P<0.05). 
Mulched banana plots tended to have a relatively 
low nutrient losses in both seasons. K and P 
losses increased during the long rainy season for 
all practices while N losses  decreased during 
the long rainy  season for the unmulched 
banana. 

Fig. 8. shows monthly rainfall amount in the 
catchment during the two seasons. Peak rainfall 
amount were observed in October 2012 and 
December 2012. Monthly rainfall amoun 
remained less than 150 mm from february to 
April 2013. 
 

4. DISCUSSION OF RESULTS  
 
The annual soil and runoff losses from both 
maize and banana cropping systems are severe 
and moderate; respectively [41], [42]. Nutrient 
losses are relatively lower under Banana 
compared to Maize. Soil and water management 
practices effects were not felt during the first year 
of experimentation for soil and runoff but was 
significant for nutrient losses under Maize and 
only for K under banana (P<0.05).  
 
Soil loss under maize and banana in the study 
area are comparable with results obtained in the 
region [43-45]. [43] obtained soil losses of 45 t/ha 



 
 
 
 

Adidja et al.; JEAI, 23(6): 1-13, 2018; Article no.JEAI.23636 
 
 

 
9 
 

on maize intercrop with beans under sub-humid 
conditions and on slopes of 22% in the Lake 
Victoria crescent. Measured average annual soil 
loss ranged from 86.8 t/ha/yr in Rakai; and 27.9 
t/ha/yr under banana [44]. Similar results were 
observed by [46] where annuals lost 71 
t/ha/season and 25.1 t/ ha/ season for banana. 
Runoff observed under this study was relatively 
very low compared to values obtained by [44] for 
the same land use. Runoff under maize and 
banana was a seventh and half of what was 
obtained by [44] for the same land use 
respectively. Nutrient losses were very high but 
less than values obtained by [44] in Rakai. 
Values of 0-2 and 0.1-13 kg ha-1 season-1for P 
and K, respectively, were reported on arable 
lands of sub-Saharan Africa [47]. A study by [48] 
showed that mulch could reduce up to 46% of 
runoff, and  soil losses up to 88.7% and sediment 
concentration up to 84.4 % through increased 
infiltration. They observed that infiltration rate 
increased on average up to 167 % with mulch.  
In ants infested up to 167 % with mulch.  In ants 
infested areas, up to 167 % with mulch.  In ants 
infested areas,application of mulch materials can 
attract increased ants activities which will 
increase the macro pores and hence water 
infiltration [49].  
 
Differences between the results of this study and 
aforementioned ones are attributed to slope, soil 
type and climatic conditions. However, very small 

values (1.4 t/ha/yr) of soil loss were measured by 
[50] in Kabale for similar slope of 10 % and quasi 
similar values of 30-t ha-1 yr-1 were recorded on 
slopes of 20%. Type of soil affects soil loss 
through infiltration and erodibility. The infiltration 
rate of the experimental soil was generally very 
rapid [51] compared to moderate and rapid rate 
under [44] and [52] soils. High infiltration rate 
contribute to reduced runoff, runoff sediment 
detachment [53] and nutrient loss [54], [55], [56]. 
Several studies demonstrate that runoff 
generation is driven by antecedent soil moisture 
[57-60], and soil management systems [61,62]. 
The latter generally affects soil surface structure 
[63,64], [53]. A strong relationship exists between 
soil structure, soil water retention and organic 
matter [65]. The experimental soils are deep and 
have high organic matter contents ranging from 
3.68 to 5.7 %. This explains the higher values of 
infiltration for these soils.   
 
Variation in runoff, soil loss and nutrient losses 
between the different studies is also due to 
aggressive climatic factors. The erosivity factor is 
relatively higher in the study area than in Uganda 
where Mulebeke and Majaliwa conducted their 
studies [44,52,25]. It was ranging from 170 and 
196 J m

-2 
in Uganda while in DR Congo it ranged 

between 220 and 300 J m
-2

.  This explain the 
need of soil and water conservation practices to 
control soil erosion which could be induced by 
such rainfall aggressivity [66,14,67]. 

 
 

Fig. 8. Rainfall data during the study period 
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It is worthwhile to note that maize and beans 
yields were generally high despite declining in 
the second season. In Ethiopia, [15] observed 
yield reduction due to contour bunds. The soil 
chemical and physical properties were not 
significantly influenced by practices. This is due 
to the fact that effects of these practices is long 
term [38] High maize and beans yields are due to 
the good fertility status of the soil. Most of the soil 
parameters were above the critical values, 
therefore adequate for plant growth. For banana, 
mulched plots had better yield reflecting the 
relative better nutrient conditions of the soils 
under mulch in terms of organic carbon, available 
phosphorus, extractable potassium and nitrogen. 

 
5. CONCLUSIONS AND RECOMMENDA-

TIONS 
 
In light of the above results and discussion, it 
was concluded that soil loss was generally 
severe on maize and moderate on banana; while 
runoff was relatively low ranging between 1 and 
3% on banana and maize intercropped with 
beans; respectively. The reduction in soil and 
runoff losses due to soil and water conservation 
practices was not significant during the period of 
the study.  Nutrient losses were generally high on 
both systems and varied from one practice to 
another under maize but only K under banana. 
Nitrogen, phosphorus and potassium losses 
under banana varied from 46-107 Kg/ha/season; 
23.6-48.1 Kg/ha/season; and 17 -53.9 
Kg/ha/season; respectively. They ranged from 
71-409 Kg/ha/season; 24-94 Kg/ha/season; 35-
112 Kg/ha/season for N, P, and under maize; 
respectively. Based on the results and 
observations made in the study area there is 
need to improve the extension services in the 
micro-catchment, and the country at large, in 
order to promote and increase the adoption of 
the tested soil erosion control practices; and to 
conduct long term experiments to assess the 
efficiency of existing soil erosion control  
practices in the Lwiro micro-catchment and the 
region.  
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