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Abstract 
 

The proportiones perfectus law states that ��
�
=

��������

�
 is a proportione perfectus if  1 ≤ � ≤ � such 

that for an arbitrary positive integer ℎ�, there exists an integer sequence �� defined simultaneously by the 

quasigeometric relation ℎ��� = ��������
�
ℎ��,� ≥ 1  and the arithmetic relation                           

 ℎ��� = �ℎ��� + �ℎ�,� ≥ 1.  When � = � = 1, �_�^� is the golden mean. When � = 2,� = 1,��
� is the 

silver mean. In previous works we introduced the theory of number genetics – a framework of logic 
within which the golden section is studied. In this work we apply the concept to all proportiones 

perfectus. Let �� be defined as above. Furthermore, let ℎ� satisfy �
������

��

��
�� = �

������� ��
��≠ ℎ�

.  �Now let ��
� be 

��  with ℎ� = 1. Again let ��  be defined as ��. A robust universal computing machine is herein 
developed for the purpose of establishing the relationship         ℎ� = ������ ± ℎ�

�,�,� ≥ 1, which 
relationship is key to the logic protocol. It is clear therefore that this system of logic presents ��

� as the 

building block of every �� (including itself) within a particular ��
� regime. Clearly number genetics takes 

central place in the proportiones perfectus theory. 
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1 Introduction 
 
Let  
 

��
� =

��������

�
                   (1.1) 

 
��
� is a proportione perfectus if  1 ≤ � ≤ �. For an arbitrary positive integer ℎ�, there exists 

 
�� = ℎ�,ℎ�,�ℎ� + �ℎ�,…                   (1.2) 

 
such that 
 

ℎ��� = ��������
�ℎ��,� ≥ 1                  (1.3) 

 
But in practice we do not need arbitrary ℎ�. Let ℎ� satisfy 
 

�������
��

��
�� = �

�����(� ��
�
)≠ ℎ�

�                  (1.4) 

 
Let us have the base sequence for ��

�
 with ℎ� = 1 designated ��

′ . Let ℎ� = �; designate this sequence ��. 
Let ℎ� = �; giving rise to ��. The object of number genetics is to establish the relationship 
 

ℎ� = ������ ± ℎ�
′,�,� ≥ 1                  (1.5) 

 
In [1] we studied number genetics for Equation (1.3) with � = 1,� = 1. In this work we develop a robust 

universal computing machine that establishes equation (1.5) for a given  ℎ�  in a particular ��
�

  regime,      
1 ≤ � ≤ �. 
 

2 Universal Computing Machine 
 
Axiom 2.1 
 
Let ��

�
 be a proportione perfectus. Let  

 

���
′ = ℎ�

′ ,ℎ�
′ ,�ℎ�

′ + �ℎ�
′ ,… ,ℎ�

′ = 1

ℎ���
′ = ��������

�ℎ�
′ �,� ≥ 1

�                (2.1) 

 

If � ≤
�

�
 , then ℎ�

′ = �.  If � >
�

�
, then ℎ�

′ = � + 1. 

 
Lemma 2.1 
 
Let ��

�
 be a proportione perfectus. Let equation (2.1) apply. Let ��

′ = ℎ�
′ ℎ�

′ − (ℎ�
′ )�.  

If � ≤
�

�
, then ��

′ = �.  If � >
�

�
, then ��

′ = � − � − 1. 
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Proof 
 

For � ≤
�

�
, from axiom 2.1, 

 
��

′ = 1,�,�� + �,…                   (2.2) 
 
It follows ��

′ = ℎ�
′ ℎ�

′ − (ℎ�
′ )� = 1(�� + �)− �� = �. 

 

For � >
�

�
, from axiom 2.1, 

 
��

′ = 1,� + 1,�� + � + �,…                  (2.3) 
 
It follows ��

′ = ℎ�
′ ℎ�

′ − (ℎ�
′ )� = 1(�� + � + �)− �� − 2�− 1 = � − � − 1. 

 
Theorem 2.1 
 
Let ��

� be a proportione perfectus. Let equation (2.1) apply. Let ��
′ = ℎ�

′ ℎ�
′ − (ℎ�

′ )� be positive. Let 
 

�
�� = ℎ�,ℎ�,�ℎ� + �ℎ�,ℎ� ≥ 1

ℎ��� = ��������
�ℎ��,� ≥ 1

�                 (2.4) 

 
ℎ� − ℎ�ℎ�

′ = �����                  (2.5) 
 

such that  
 

ℎ� = ������ ± ℎ�
′,�,� ≥ 1                  (2.6) 

 
Proof 
 
Scenario I: �� = �� − ℎ�

′ ,���� − ℎ�
′ ,���� − ℎ�

′ ,…   
 
From axiom 2.1 and lemma 2.1, ℎ�

′ = �. It follows 
 

�ℎ� = �� − 1
ℎ� = ���� − �

�                   (2.7) 

 
Therefore, 
 

ℎ� − ℎ�ℎ�
′ = (���� − �)− (�� − 1)�  

                                = ���� − �− ��� + � 
                                  = ���� − ���                  (2.8) 
 
But  
 

���� = ��� + �����                   
(2.9) 

Thus equation (2.8) becomes 
 

��� + ����� − ��� = �����               (2.10) 
      
Scenario II: �� = �� + ℎ�

′ ,���� + ℎ�
′ ,���� + ℎ�

′ ,…   
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From axiom 2.1 and lemma 2.1, ℎ�
′ = �. It follows 

�ℎ� = �� + 1
ℎ� = ���� + �

�                 (2.11) 

 
Therefore, 
 

ℎ� − ℎ�ℎ�
′ = (���� + �)− (�� + 1)�  

                                  = ���� + � − ��� − � 
                                = ���� − ���                (2.12) 
 
and from equation (2.9),  equation (2.12) reduces to 
 

��� + ����� − ��� = �����               (2.13) 
 
Theorem 2.2 
 
Let ��

�
 be a proportione perfectus. Let equation (2.1) apply. Let ��

′ = ℎ�
′ ℎ�

′ − (ℎ�
′ )�  be negative. Let 

equation (2.4) apply. 
 

ℎ�ℎ�
′ − ℎ� = �� − �����                (2.14) 

 
such that equation (2.6) holds.  
 
 
Proof 
 
Scenario I: �� = �� − ℎ�

′ ,���� − ℎ�
′ ,���� − ℎ�

′ ,…   
From axiom 2.1 and lemma 2.1, ℎ�

′ = � + 1. It follows 
 

� ℎ� = �� − 1
ℎ� = ���� − � − 1

�                (2.15)

           
Therefore, 
 

ℎ�ℎ�
′ − ℎ� = (�� − 1)(� + 1)− (���� − �− 1)  

                  = ��� + �� − ���� 
                                   = ��� + �� − (��� + �����) 
                                  = �� − �����                (2.16)
                   
Scenario II: �� = �� + ℎ�

′ ,���� + ℎ�
′ ,���� + ℎ�

′ ,…   
 
From axiom 2.1 and lemma 2.1, ℎ�

′ = � + 1. It follows 
 

� ℎ� = �� + 1
ℎ� = ���� + � + 1

�                (2.17)

           
Therefore, 
 

ℎ�ℎ�
′ − ℎ� = (�� + 1)(� + 1)− (���� + � + 1)  

                                = ��� + �� − ���� 
                                = ��� + �� − (��� + �����) 
                                = �� − �����                (2.18) 
 
The universal computing machine in Fig. 2.1 is based on Lemma 2.1 and Theorems 2.1 and 2.2. 
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Fig. 2.1. Universal computing machine 
 

3 Discussion: Bio-logical Paradoxes 
 
3.1 Daughter cell from two mother cells 
 
For illustration we use σ�

�.  
 

��
′ = 1,3,8,22,60,…                 (3.1) 

 
Let  
 

��� = 6,16,44,120,328,…
�� = 7,19,52,142,388,…

�                             (3.2) 

 
Notice that both  
 

�� = ℎ���
′ − ℎ�

′,� ≥ 1                (3.3) 
 
and 
 

�� = �� + ℎ�
′,� ≥ 1                (3.4) 

 
hold.  
 
Here, both ℎ�

′  and ��claim �� as their daughter cell. Indeed the computing machine confirms that ℎ�
′  and �� 

are legitimate mother cells of ��. For interest’s sake let’s assign gender (polarity) to these sequences. Let 

ℎ� = ������ − ℎ�
′  be feminine and ℎ� = ������ + ℎ�

′  be masculine. Equations (3.3) and (3.4) indicate that �� 
is both feminine and masculine. We must therefore appreciate the machine’s calibration. The machine is 
calibrated to detect ��  such that equation (1.5) holds. But first of all, the machine detects that                  

ℎ�
′ = ������ + ℎ�

′,� ≥ 1, where �� = 0,0,0,0,…  is the null sequence. In some cases ��
� assembles itself from 

both the null sequence and the sequence 2(ℎ�
�,ℎ�

�,ℎ�
�,… ), giving another example of the paradox discussed 

above. So the base sequence ��
′  is the building block of every ��, including itself.  
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3.2 Mother cell springing from daughter cell 
 
For illustration we use ��

�.  
 

��
′ = 1,4,14,50,178,…                  (3.5) 

 
Let 
   

��� = 2,7,25,89,317,…
�� = 3,11,39,139,495,…

�                             (3.6) 

 
Notice that  
 

�� = �� − ℎ�
′,� ≥ 1                (3.7) 

 
and 
 

�� = �� + ℎ�
′,� ≥ 1                              (3.8) 

 
Equations (3.7) and (3.8) indicate that ��  and ��  spring from each other. So ��  is both mother cell and 
daughter cell of �� and vice-versa.  
 

4 Application: Silver Pyramids 
 
��
� is the silver mean and by definition, a proportione perfectus. Using this proportion, from relation (1.3) we 

assemble the first sequence 
 

�� = 1,2,5,12,29,…                   (4.1) 
 
This sequence is well known in literature as the Pell sequence. The next few in this class, call them silver 
sequences, are: 
 

�

3,7,17,41,99,…  
4,10,24,58,140,…
6,14,34,82,198,…
8,19,46,111,268,…
9,22,53,128,309,…⎭

⎪
⎬

⎪
⎫

                  (4.2) 

 
The third sequence in equation (4.2) is the Pell-Lucas sequence.  
 
Let �� be an arbitrary silver sequence. To compute the “mother cell” of ℎ�, let 
 

�ℎ� − 2ℎ� = ����
��
����� = ��

�                               (4.3) 

 
such that 
 

ℎ� = �� ± 1                    (4.4) 
 
and 
 

ℎ� = ������ ± ��,� ≥ 1,� ≥ 2                 (4.5) 
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where �� = (4.1) and �� is a silver sequence. This definition shall not be repeated hereinafter. From the 
computing machine presented in Section 2, we state the following four Axioms: 
 
Axiom 4.1 
 
Given an arbitrary Pell sequence ��, (ℎ�,ℎ�,… )± (��,��,… )≠ (��,��,… ),�� is a Pell sequence. 
 
Axiom 4.2 
 
When a Pell sequence �� is such that ℎ� = ������ + ��,� ≥ 1,� ≥ 2, then 
 (ℎ�,ℎ�,… )+ (��,��,… )= (��,��,… ),�� is a Pell sequence. 
 
Axiom 4.3 
 
When a Pell sequence �� is such that ℎ� = ������ − ��,� ≥ 1,� ≥ 2, then 
 (ℎ�,ℎ�,… )− (��,��,… )= (��,��,… ),�� is a Pell sequence. 
 
Axiom 4.4 
 
Given an arbitrary Pell sequence ��, (ℎ�,ℎ���,… )± (��,��,… )= (��,��,… ),� ≥ 3,�� is a Pell sequence. 
 
Axiom 4.4 shows the symmetry due to �� that exists for � ≥ 3 in every silver sequence. 
 

4.1 Master silver pyramid 
 
We construct a remarkable numerical structure, taking note of Axioms 4.1 to 4.4. If ��  is such that           
ℎ� = �� − 1, then ℎ�  is placed to the left hand side and in the same level with ��. If ��  is such that         
ℎ� = �� + 1, then ℎ�  is placed to the right hand side and in the same level with ��.  All sequences are 
entered vertically. The master pyramid is that of ��, given in Table 4.1. 
 
                                                     Table 4.1: Master Silver Pyramid  
 

            1               
            2 3              
           4 5 7 6 8            
        16 11 9 10 12 17 14 19 13 15 18 20        

 
We have given only the first four pyramid levels in table 4.1 due to space restrictions. The number and sum 
of elements per level are very important properties of the pyramid. Herein we are interested in the number of 
elements. We prove an important result: 
 
Theorem 4.1 
 
Let �� be the number of elements in level � of the pyramid of ��.  For  � ≥ 1, 
�� = ��                                   (4.6) 
 
Proof 
 
From axioms 4.1 to 4.4, ��  does not produce any sequence, ��  produces one sequence, and ��,� ≥ 3, 
produces two sequences. But these sequences produced also produce other sequences in the same manner as 
��. Take an arbitrary pyramid level �. Let the number of elements in this level be ��. We need the constituent 
components of ��.  
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Component I 

 

Firstly we have ���� elements; guaranteed. 
 

Component II 
 

The ���� elements, from axiom 2.3, all produce two elements each, therefore we have 2���� elements. 
 

Component III 
 

The elements that produce one element according to axioms 4.2 and 4.3 are those produced in the (� − 1)��  

level, and these are given by ���� − ���� . 
 

These three components constitute ��. Therefore, 
 

�� = ���� + 2���� + ���� − ����  
    = 2���� + ����                    (4.7) 
 

But equation (4.7) is subject to this constraint: �� = 1,�� = 2. It follows that �� = ��.   
Proof is complete. 

 

4.2 Other silver pyramids 
 
The same construction procedure is followed as that of the master pyramid. From axioms 4.1 to 4.4, every 
silver sequence in principle behaves in the same manner as �� with regard production of other sequences, 
therefore Corollary 4.1 arises from Theorem 4.1. 

 

Corollary 4.1 
 

Let �� be an arbitrary Pell sequence.  The number of elements in level � of the pyramid of �� is given by ��, 
where �� = (4.1). 

 

Theorem 4.1 and Corollary 4.1 show that ��  models the number of elements in the levels of any silver 
pyramid, a law of mathematical beauty.  

 

5 Conclusion 
 
The universal computing machine developed herein applies to any arbitrary proportione perfectus. Since 
number genetics is the creation of a system of logic, it takes central place in the proportiones perfectus 
theory. Most striking is the number of elements in the pyramid levels of silver pyramids which follows the 
sequence  �� = (4.1), thereby representing an important law of mathematical beauty. These silver pyramids, 
like the golden pyramids [2], have got important applications, the obvious ones being in communication. 

 
The reader shall see [3-21] for some works on number theory and its applications. 
 

Competing Interests 
 
Author hereby declares that no competing interests exist in the publication of this work. 
 



 
 
 

Mamombe; JAMCS, 31(3): 1-10, 2019; Article no.JAMCS.37598 
 
 
 

9 
 
 

References 
 
[1]  Mamombe L. Proportiones Perfectus law and the physics of the golden section. Asian Research 

Journal of Mathematics. 2017;7(1):1-41. 
 

[2]  Mamombe L. From Pascal Triangle to golden pyramid. Asian Research Journal of Mathematics. 
2017;6(2):1-9. 

 
[3]  Arslan S, Koken F. The Pell and Pell-Lucas numbers via square roots of matrices. Journal of 

Informatics and Mathematical Sciences. 2016;8(3):159-66. 
 
[4]  Srisawat S, Sriprad W. On the (s,t)-Pell and (s,t)-Pell-Lucas numbers by matrix methods. Annales 

Mathematicae et Informaticae. 2016;46:195-204. 
 
[5]  Flaut C, Savin D. Quaternion algebras and generalized Fibonacci-Lucas Quaternions. Adv. Appl. 

Clifford Algebras. 2015;25(4):853-62. 
 
[6]  Guncan AN, Akaluman S. The q-pell Hyperbolic Functions. Appl. Math. Inf. Sci. 2014;8(12):185-91. 
 
[7]  Sahin A, Kaygisiz K. Inverse of triangular matrices and generalized bivariate Fibonacci and Lucas p-

polynomials. Notes on Number Theory and Discrete Mathematics. 2016; 22(1): 18-28. 
 
[8]  Tokeser U, Unal Z, Bilgici G. Split Pell and Pell-Lucas Quaternions. Adv. Appl. Clifford Algebras. 

2017;27:1881-93. 
 
[9]  Ozkok A. Some algebraic identities on quadra Fibona-Pell integer sequence. Advances in Difference 

Equations. 2015;148. 
 
[10]  Schuster S, Fichtner M, Sasso S. Use of Fibonacci numbers in lipidomics – Enumerating various 

classes of fatty acids. Sci. Rep. 2017;7:39821. 
 
[11]  Altinisik E, Yalcin NF, Buyukkose S. Determinants and inverses of circulant matrices with complex 

Fibonacci numbers. Spec. Matrices. 2015;3:82-90. 
 
[12]  Fang H, Xue H, Zhou T. The relationship between the sum of reciprocal golden section numbers and 

the Fibonacci numbers. AIP Conference Proceedings. 2017;1834. 
 
[13]  Panwar A, Sisodiya K, Rathore GPS. Identities Involving the Product of k-Fibonacci Numbers and k-

Lucas Numbers. MAYFEB Journal of Mathematics. 2016;4:1-6. 
 
[14]  Wani AA, Rathore GPS, Sisodiya K. On Some Identities and Generating Functions for Generalized k-

Fibonacci Sequence. MAYFEB Journal of Mathematics. 2016;3:1-9. 
 
[15]  Bednarz U, Wlochi A, Wolowiec-Musial M. Distance Fibonacci numbers, their interpretations and 

matrix generators. Commentationes Mathematicae. 2013;53(1):35-46. 
 
[16]  Singh M, Sikhwal O, Gupta YK. Identities of Generalized Fibonacci-Like Sequence. Turkish Journal 

of Analysis and Number Theory. 2014;2(5):170-5. 
 
[17]  Rathore GPS, Sikhwal O, Choudhary R. Generalized Fibonacci-Like Sequence and Some Identities. 

SCIREA Journal of Mathematics. 2016;1(1). 
 
[18]  Ramirez JL. Incomplete k-Fibonacci and k-Lucas Numbers. Chinese Journal of Mathematics; 2013. 
 



 
 
 

Mamombe; JAMCS, 31(3): 1-10, 2019; Article no.JAMCS.37598 
 
 
 

10 
 
 

[19]  Amdeberhan T, Chen X, Moll H, Sagan BE. Generalized Fibonacci Polynomials and Fibonomial 
Coefficients. Annals of Combinatorics. 2014;18(4):541-62. 

 
[20]  Kreutz A, Lelis J, Marques D, Silva E, Trojovsky P. The p-Adic Order of the k-Fibonacci and k-

Lucas Numbers. p-Adic Numbers, Ultrametric Analysis and Applications. 2017;9(1):15-21.  
 
[21]  Dafnis SD, Philippou AN. Infinite Sums of Weighted Fibonacci Numbers of Order k. The Fibonacci 

Quarterly. 2016;54(2):149-53. 
_______________________________________________________________________________________ 
© 2019 Mamombe; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
 
 
 
 
 
 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://www.sdiarticle3.com/review-history/37598 


