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Abstract 
 

In this research article, a model for the transmission dynamics of haemorrhagic conjunctivitis disease is 
presented. The tool of dynamical system is employed in investigating the potency of the spreading of the 
epidemic. The analysis revealed the likelihood of the epidemic to spread when the basic reproduction 
number exceeds one. The model is reformulated as optimal control problem to assess the effectiveness of 
the proposed control strategy. Maximum Principle was employed to derive the necessary conditions for 
the existence of optimal control. Numerical solution of the optimality was derived and computed to 
investigate the optimum control strategy that would be efficacious to be implemented in reducing the 
number of exposed and infected individuals. Stochastic version of the model is deduced by introducing 
stochastic perturbations in the deterministic one. Numerical simulations are provided to illustrate the 
differences in the dynamics of the models and to understand the epidemic phenomenon. 
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1 Introduction 
 
Recent research has revealed a surge in the number of researchers interested in the modeling of infectious 
diseases. Factors behind this surge include the solid reputation of disease modeling to lay foundational 
structures such as the estimation of the threshold parameters, elucidation of the transmission dynamics of the 
disease, predicting the likelihood of the dying out of the epidemic or its ability to remain endemic in the 
population, combined with the fact that disease modeling has the ability to provide feasible control strategies 
[1]. 
 
Mathematical modeling of infectious diseases has been an epidemiological revolution for providing 
bucketing rains of  treatment and prevention strategies of infectious diseases, and has been an alternative tool 
that is being in exploit in the approach of fighting infectious diseases [2]. 
 
Conjunctivitis or “Pink eye”, is an acute condition characterized by redness of the eye(s). The infection is 
caused by both viral and bacterial. The disease is transmitted from an infected person to a susceptible 
individual through contact with discharge from conjunctivae or upper respiratory tracts of infected persons, 
contact with contaminated foreign bodies of clothing, fingers, and other articles, especially those in contact 
with the eyes such as make-up applicators and allergies may cause the condition. The disease can also be 
transmitted vertically to newly born babies due its direct relation between maternal gonococcal and 
chlamydial infection. The incubation period of bacteria conjunctivitis ranges from 1-3 days. Symptoms of 
the disease includes tearing, irritation, photophobia; which usually results in swelling of the lids or a 
purulent discharge [3]. 
 
According to Médecins Sans Frontiéres [4], Conjunctivitis is highly contagious among children and endemic 
in the poorest rural areas of Africa, Asia, Central and South America and the Middle East, and is 
increasingly becoming serious public health problem in communities where the appropriate drugs for 
treatment are not readily available. Conjunctivitis infection is commonly contracted in the early ages of 
children either by direct or indirect contact with contaminated materials. The burden of the disease includes; 
loss in contact hours of pupils, as a results of isolation of the infected persons until examination and 
treatment has been provided by health care provider, loss of savings through treatment and drug cost, loss in 
worker productivity due to exclusion from active work environment until treatment has been provided. 
Gonococcal Conjunctivitis in newly born babies may lead to severe corneal lesions and blindness. 
Recommended control measures of the disease include prevention of direct contact with towel, clothing, 
discharge of the infected persons, encouragement of frequent hand-washing, isolation of newborns for 24 to 
45 hours, cleaning of eyes 4 to 6 times with boiled water, avoidance of cosmetics during the acute phase, 
application of antihistamines. 
 
The application of mathematics into the modeling of infectious disease has been a tool of providing 
empirical and insightful explanations to the transmission dynamics of infectious disease and has provided 
feasible control intervention strategies [5]. Unyong and Naowarat [6], proposed a simple SEIR model of 
conjunctivitis that considers a nonlinear incidence term. The local stability of the model was performed. It 
was deduced that an increased in the infected humans was dependent on the decrease in the fraction of the 
infected individuals. Suratchata et al. [7], formulated a deterministic mathematical model for the dynamics 
of conjunctivitis disease that assessed the effect of educational campaign on the spread of the disease. The 
model ascertained that an effective educational campaign has the effect of decreasing the number of 
infectives. Hurtado [8], presented and analyzed a mathematical model of the vertebrate immune response of 
conjunctivitis in wild passerine birds. The model was used to investigate which pathogen and host immune 
characteristics drive patterns of Mycoplasma galliseptitcum infections is observed by house finch and other 
passerine birds. Chowell et al. [9], modelled an outbreak of acute haemorrhagic conjunctivitis by considering 
a model that was categorized into susceptible, infectious, reported and recovered compartments respectively. 
They investigated the impact of underreporting and behavior changes on the transmission rate in Mexico. 
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Optimal control models have produced another dimension in the modeling of infectious diseases, as it has 
come with insightful models that focus on variant control strategies for quality decision making on control 
intervention strategies with minimal cost [10,11,12]. Even though an imperative contributions have been 
made by researchers in explaining the bacteria interaction with human and their biology, the complexities in 
the life cycle of the bacteria, highly environmental factors that to a larger extent affects the transmission 
dynamics of the disease, coupled with the evolutionary challenge posed by the bacteria in drug resistance has 
thrown a challenge to researchers and modelers to come up with a combination of different methodologies, 
rather than the single type of deterministic models which have been applied in the attempt to eliminate the 
epidemic. It is felt that a combination of different methodologies may bring the most laudable and long term 
feasible control strategies which could be applied by public health professionals in finding a lasting solution 
to the disease. In this research article, we formulate an optimal control model for bacteria conjunctivitis 
disease as studies in section 2. The section 3 deduces an optimal control problem that assesses the impact of 
prevention and treatment control strategies by using time dependent control functions. The necessary 
conditions for an optimal and the corresponding states are then derived by employing the Pontryagin’s 
Maximum Principle. Finally, in section 4, the resulting optimality system is numerically solved and 
computed to investigate the optimum control strategy that would be efficacious to be implemented in 
reducing the number of exposed and infected. The model is modified into stochastic version and solved 
numerically to deduce the explicit differences between them.   

  

2 Epidemic Model Formulation 

 
This section presents a model for conjunctivitis disease with nonlinear incidence rate. The population at time 
� is categorized into four compartments: susceptible individuals �(�), exposed individuals �(�), infected 
individuals �(�)  and recovered individuals �(�) . Hence the total population at any time �  is given by 
� = �(�) + �(�) + �(�) + �(�). The model assumed that people enter the susceptible class either through 
birth or immigration at a recruitment rate �� . When an infectious individual makes a contact with a 
susceptible individual, there is some finite likelihood that the bacteria will be passed on to the susceptible at 

the rate  
��

�
, and the person will move to the exposed class. Individuals from the exposed class enter the 

infectious class at a rate �. Recovered individuals move to the recovery class at a rate � and die from the 
infection at a rate �. Further, it is assumed that recovered individuals have temporary immunity that can be 
lost and are again susceptible to reinfection at a rate �. All individual classes leave the population through 
the same natural death rate �. The mathematical differential equations of the dynamics of the conjunctivitis 
model are: 

 
��

��
= �� + �� − �

��

�
− ��  

��

��
= �

��

�
− (� + �)�  

��

��
= �� − (� + � + �)�                    (1) 

��

��
= �� − (� + �)�  

 

2.1 The basic Reproduction Ratio and the Stability of the Disease-free Equilibrium  

 

The conjunctivitis model (1) has a unique disease-free equilibrium (DFE), �� = �
��

�
,0,0,0�. The basic 

reproduction ratio, �� , which is defined as infection sourcing from an infected pathogen in the mist of 
uninfected population, is determined by the next generation matrix approach [13]. Here, the matrices � and 

� evaluated at �� = �
��

�
,0,0,0� are 
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� = �
0

��

�

0 0
� and  � = �

(� + �) 0

−� (� + � + �)
� 

Hence  �� = �(����) =
���

�(���)(�����)
                 (2) 

 
The disease-free equilibrium (DFE), is locally asymptotically stable if 	�� < 1 and unstable if  �� > 1. 
 

3 Optimal Control Strategies 
 
In this section, the state system (1) is modified to assess the impact of some control strategies: prevention 
and treatment. The associated force of infection is reduced by a factor (1 − ��(�)), where ��(�) denotes the 
effort to prevent contact between susceptible and infected individuals. The control variable ��(�) denotes 
the rate at which infected individuals are treated at each time of infection.  Further, we assume that ��� 
individuals at any time (t) are removed from the infective class and added to the removed class. With regards 
to these underlying assumptions, an optimal control model for conjunctivitis disease is formulated that 
deduces prevention and treatment strategies with a minimal cost of implementation. Hence, the dynamics of 
system (1) are modified to the following system of equations:   
 

��

��
= �� + �� − (1 − ��(�))�

��

�
− ��  

��

��
= (1 − ��(�))�

��

�
− (� + �)�  

��

��
= �� − (� + � + � + ��)�                   (3) 

��

��
= �� + ��� − (� + �)�  

 
The objective of our work is to minimize the number of exposed and infected individuals and treatment of 
infected individuals through preventive and treatment strategies, by employing feasible minimal time 
dependent control variables ��(�) and ��(�) respectively.   
 
With appropriate initial conditions, we consider an optimal control problem to minimize the objective 
functional given by 
 

�(��,��) = ∫ ���� + ��� +
�

�
(����

� + ����
�)���

��
��

                (4) 

 
The quantities ��and �� represent the weight constant of the exposed and infected individuals. Further, the 
quantities �� and 	�� are weight constant for minimizing the number of exposed and infected individuals 

and treatment of the infected. Again, the terms  
�

�
����

� and  
�

�
����

� represent the cost associated with the 

minimizing the exposed and infected and treatment of infected individuals. 
 
We choose a quadratic cost on the controls as a reflection of what is in other literature on epidemic control 
models [14, 15, 16]. Now, we seek an optimal control  ��

∗ and  ��
∗ such that 

 
�(��

∗	,��
∗) = ���{�(��,��|��,�� 	∈ �)}                 (5) 

 
Where 
 

            (6) 
 
Applying the Pontryagin’s Maximum Principle [17], the system (3) and (4) are converted into minimizing 
the Hamiltonian � , with respect to  �� and  �� where 
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� (�,�,�,�,�,⋋�,	⋋�,	⋋�,	⋋ �,�) = ��� + ��� +
�

�
����

� +
�

�
����

� +  

⋋�
��

��
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��

��
+⋋�

��

��
+⋋�

��
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where  ⋋ � for �= 1,… … ,4 are adjoint variables to be determined.  
 
Theorem 3.1:  There exist an optimal control �∗ = (��

∗,��
∗) ∈ � such that 

 
 �(��

∗,��
∗) = min(� �,� �)∈� �(��,��)  

 
subject to the control system (3) with initial conditions at  � = 0.  
 
Proof: The existence of an optimal control is proved by applying the result in [18]. It is evidence that the 
control and state variables are nonnegative values. Hence, the necessary convexity of the objective 
functional in ��  and ��  are satisfied in this minimizing problem. The set of all control variables 
(��

∗,��
∗) ∈ �  is also convex and closed by definition. The optimal control system is bounded which 

determines the compactness needed for the existence of the optimal control. In addition, the integrand in the 

functional  ��� + ��� +
�

�
(����

� + ����
�) is convex on the set �. Also, we can easily see that there exist 

a constant � > 1 and positive numbers  ��, �� such that 
 

�(��,��) ≥ ��(|��|
� + |��|

�)
�
�� − ��, 

 
because, the state variables are bounded, which completes the existence of an optimal control. 
 
In order to find an optimal solution, we apply Pontryagin’s Maximum Principle [19] as follows: 
 
Given that (�,� ) is an optimal solution of an optimal control problem, then there exist a non-trivial vector 
function ⋋= (⋋�,⋋ �,… … ,⋋�) which satisfies the inequalities 
 

��

��
=

�� (�,�,� ,⋋)

�⋋
  

0 =
�� (�,�,� ,⋋)

��
                     (8) 

⋋ ′=
�� (�,�,� ,⋋)

��
  

 
Now, we apply the necessary conditions to the Hamiltonian �  in (7). 
 
Theorem 3.2: Given that  (�∗,�∗,�∗,�∗) are optimal state solutions and (��

∗,��
∗) are associated optimal 

control variable for the optimal control problem (3)-(4), then , there exists adjoint variables  ⋋�, for  �=
1,2,… … 4, which satisfies 
 

⋋�
′= (1 − ��)(⋋�−⋋�)��

(�� ���)

�� +⋋� �  

⋋�
′= −�� + (⋋�−⋋�)� +⋋� �                   (9) 

⋋�
′= −�� + (1 − ��)(⋋�−⋋�)��

(�����)

�� + (⋋ �−⋋�)� + (⋋�−⋋�)�� +⋋� (� + �)  

⋋�
′= (⋋ �−⋋�)� +⋋� �  

 
with the boundary conditions 
 

⋋�	(��) = 0, for �= 1,2,… 4.                (10) 
 
Furthermore, optimal controls ��

∗ and ��
∗ are given by 
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��
∗ = ��� ���� �

(⋋��⋋�)��
∗�∗

���
,1�,0�                (11) 

 

��
∗ = ��� ���� �

(⋋��⋋�)�
∗

��
,1�,0�                (12) 

 
Proof: The adjoint equations and the transversality conditions are determined by using the Hamiltonian (7). 
By putting � = �∗(�), � = �∗(�), � = �∗(�) and � = �∗(�) and differentiating the Hamiltonian with respect 

to  �, �, � and � respectively, we obtain (9). Further, by solving the equations   
��

�� �
= 0  and  

��

�� �
= 0  on 

the interior of the control set and using the optimality condition and the property of the control space �, we 
obtain (11)-(12). 
 
Here, we empty the formulas (11)-(12) for  � ∗ = (��

∗,��
∗) the characteristic of the optimal control. The 

optimal control and the state are found by solving the optimality system, which consists of the state system 
(3), the adjoint (9), initial condition at  � = 0, boundary conditions (10), and the characterization of the 
optimal control (11)-(12). To solve the optimality system, we use the initial and transversality conditions 
together with the characterization of the optimal control (��

∗,��
∗) given by (11)-(12). In addition, the 

second derivative of the Langragian with respect to  �� and  �� respectively, are positive, which shows that 
the optimal problem is minimum at controls 	��

∗ and  	��
∗. 

 

4 Numerical Examples and Discussion 
 
In this section, we assess numerically by investigating the effect of control strategies on the transmission 
dynamics of conjunctivitis disease. The optimal control is deduced by solving the optimality system; state 
system and adjoint system. We then employ an iterative scheme in solving the optimality system. First, we 
solve the state systems of equations with a guess for the controls over the simulated time frame using fourth 
order Runge-Kutta scheme. Due to the boundary conditions (10), the adjoint system is solved by backwards 
fourth order Runge-Kutta by employing the current iterative solutions of the state equation. The controls are 
then updated by means of a convex combination of the previous controls as well as the characterizations (11) 
and (12). The whole process is repeated until the values of the unknowns at the previous iterations are closed 
to the one at the current iterations. 
 
The model investigates the transmission dynamics of Conjunctivitis disease by using the tool of optimal 
control. We study the control effects of prevention of the interaction between the susceptible and the infected 
individuals and treatment control on the spread of the disease. We ascertain the effects of the control 
strategies by comparing numerically the results of the stated scenarios with simulated values taken from [7], 
and �(0) = 1000, �(0) = 50, �(0) = 10, �(0) = 5. 
 
Further, we assume that the weight factor, ��,  associated with control 	�� is greater than ��,  ��  and  ��  
respectively, which are association of control  ��. This is due to the fact that the cost of implementing �� 
includes, the cost of health education and training of personnel on screening and surveillance techniques and 
educational campaign of educating the general public against practices extensive make-ups application, 
preventing the eye from becoming contact with foreign contaminated bodies or materials  and the need to 
avoid if possible, becoming exposed to various eye fluids of  infected persons and the need of pregnant 
women having safe sex with outsiders and even long term partners to avoid vertical transmission of the 
disease to new born babies, as sexually transmitted diseases such as gonococcal and chlamydial infection in 
pregnancy may cause neonatal conjunctivitis. The cost of treatment includes hospitalization, medical 
examination and the logistics supply of antibiotic drugs to the infected person. Here, we illustrate the effect 
of various optimal control strategies on the spread of Conjunctivitis epidemic model in an endemic 
population.  
 
The parameter values used in the simulations are estimated based on the Conjunctivitis disease as provided 
in Table 1. Other parameters were chosen arbitrary for the purpose of the numerical simulation. 
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Table 1. Description of variables and parameters of the conjunctivitis model (1)  
 

 
 
Figs. 1-2 represent the number of susceptible individuals (�) without and with controls for  �� = 1000 and 
�� = 50. In the absence of control, the susceptible (dashed curve) decreases sharply in the first thirty days 
until all the susceptible population are infected with the disease and leaves no population of susceptible. In 
the presence of controls, the susceptible (solid curve) decreases sharply in the first thirty days. This could be 
possible in the early days of the implementation of the control strategies, as there could be errors and 
ineffective implementation.  However, when these errors are checked, the situation is reversed and the 
susceptible population never degenerated due to the presence of control strategy. 
 

 
 

Fig. 1. The plot represents population of susceptible without control 
 

Similarly, Figs. 3-4 represent the number of Exposed individuals (�) without and with controls for �� =
1000 and �� = 50. When there are no controls, the exposed (dashed curve) increases steadily in the first 
twenty-five days, and maintained the level for the rest of the days. In the presence of control, the number of  
� (solid curve) decreases gradually, but are not entirely removed from the population for the rest of the days, 
even though it is drastically deceased from the population.  
 



 
 
 

Nana-Kyere et al.; JAMCS, 31(3): 1-19, 2019; Article no.JAMCS.40408 
 
 
 

8 
 
 

Further, Figs. 5-6 give the dynamics of the infected individuals (�) without and with controls for �� = 1000 
and �� = 50. In the absence of controls, the infected (dashed curve) increases steadily for the first forty 
days, and maintains that level for the rest of the days. However, the population of infected remains in the 
population. The presence of control is witnessed by the number of infected �   (solid curve) decreasing 
sharply in the early days of the infection and decreasing gradually for the rest of the time frame of hundred 
days. This is due to the fact that the control strategies proposed were effective in reducing the infected 
population drastically. 
 

 
 

Fig. 2. The plot represents population of susceptible with control 
 

 
 

Fig. 3. The plot represents population of exposed without control 
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Fig. 4. The plot represents population of exposed with control 
 
Fig. 7 presents the optimal control plots of the effort to prevent contact between susceptible and infected 
individuals �� and the treatment control  �� for �� = 50000. We see that the preventive control (magenta 
solid curve) is at the upper bound at � = 2, and then slowly drops to the lower bound at � = 100, while the 
optimal treatment (green solid curve) is at the lower bound throughout the time frame of 	�	= 100.  
 

 
 

Fig. 5. The plot represents population of infected without control 
 
Similarly, Fig. 8 presents the optimal control plots of the effort to prevent contact between susceptible and 
infected individuals �� and the treatment control  �� for �� = 50000. We see that the preventive control 
(magenta solid curve) is at the upper bound at � = 2 , and then slowly drops to the lower bound                                  
at � = 100, while the optimal treatment (green solid curve) is at the lower bound throughout the time frame 
of 	�	= 100.  
 
Further, Fig. 9 presents the optimal control plots of the effort to prevent contact between susceptible and 
infected individuals ��  and the treatment control  ��  for �� = 500000. We observe that the preventive 
control (magenta solid curve) is at the peak of 100%   for  � = 68, and then drops sharply to the lower bound 
at � = 100, while the optimal treatment (green solid curve) is at the lower bound throughout the whole time 
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frame of 	�	= 100. This implies that least effort would be required in employing the strategy of preventive 
control  for �� = 50000. 
 
Finally, Fig. 10 presents the optimal control plots of the effort to prevent contact between susceptible and 
infected individuals ��  and the treatment control  ��  for �� = 500000. We observe that the preventive 
control (magenta solid curve) is at the upper bound until  � = 68, and then drops sharply to the lower bound 
at � = 100, while the optimal treatment (green solid curve) is at the lower bound throughout the whole time 
frame of 	�	= 100. This implies that least effort would be required in employing the strategy of preventive 
control  for �� = 500000. 

 

 
 

Fig. 6. The plot represents population of infected with control 
 

 
 

Fig. 7. The plot represents optimal control � � and � � with �� = �����  
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Fig. 8. The plot represents optimal control � � and � � with �� = ������  
 

 
 

Fig. 9. The plot represents optimal control � � and � � with �� = �����  

 
 

Fig. 10. The plot represents optimal control � � and � � with �� = ������  
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5 The Stochastic Model 
 
5.1 Introduction 
 
Stochastic mathematical modeling of infectious disease has been an umbrella-like covering for incorporating 
random effects in the differential equation syetem where stochastic effects are ignored. These models 
realistically give empirical reflection of the nature of the epidemic in its early stages, and provide a 
considerable insight into the qualitative behaviour and dynamics of the epidemic of stochastic differential 
equations (SDEs) [20]. 
 
Stochastic perturbations are normally considered in a system of equations of either initial or boundry 
condition problems, or in a function that describes the physical system which are usually modelled by 
ordinary differential equations (ODEs) [21]. 
 
Recently, stochastic epidemic models are being prefered to deterministic models, due to the fact that 
stochastic models response to stochastic environmental factors, as deterministic models are robustic to 
stochastic perturbation. These models have revealed many imperative applications as well as designing 
effective numerical methods for efficient computation of the sample paths of solutions to SDEs [22]. 
Sacrifice et al. [23], considered stochastic optimal control model of malaria disease with standard incidence 
rate. The Maximum Principle of the model was applied to derive the necessary conditions for the existence 
of optimal control. Stochastic version of the model was derived by introducing a random perturbation in the 
main parameters of the model equations. Numerical solution of the optimality was derived and computed to 
investigate the optimum control strategy that would be efficacious to be implemented in reducing the 
number of exposed and infected humans as well as illustrating the explicit differences in the dynamics of the 
models. Maroufy et al. [24], studied a classical model of a SIRS epidemic in an open population where 
explicit formula by which the lower bound of the density of the infectives can be computed was deduced. 
The Model was then extended to stochastic version and Lyapunov functional was employed to investigate 
the global stability of both the deterministic and the stochastic model. Lahrouz et al. [25], presented an 
epidemic SIRS model with saturated incidence rate and disease-inflicted mortality. The model was modified 
into stochastic version and the global stability of the models were studied using the tool of Lyapunov 
function. Further, the global existence and positivity of the solution were studied coupled with the global 
stability in probability was proved by  perturbing the system with white niose. Murkherjee [26], considered 
deterministic and stochastic models for prey-predator system where the prey population is infected by micro 
parasite. The stochastic stability properties of the models were investigated which suggested the robustness 
of the deterministic model to stochastic fluctuations. Clancy [27], formulated a stochastic SIS epidemic 
model for transmission of infectious disease through a population, considering direct host transmission and 
indirect transmission through free-living infectious stages. Sacrifice et al. [28], studied a nonlinear analysis 
of stochastic SI vaccination model. The global stability of the disease-free and the endemic equilibrium of 
the deterministic model were studied by using the theorem of a Lyapunov function. The stochastic version of 
the deterministic model was adopted and the stability of the stochastic positive equilibrium was analyzed . 
Numerical simulation was done for the models which showed the population dynamics of the SI models in 
the different compartments. Guoting and Tiecheng [29], investigated a stochastic version of the SIR model. 
The stability in probability of the steady state of the system was proved under favorable conditions with 
white noise perturbations.  Mukherjee et al. [30], studied the behaviour of a plant herbivore for both discrete 
and continuous model with stochastic perturbation. The existence and stability of two fixed points were 
investigated which suggested local asymptotic stability in probability for the stochastic model for certain 
strengths of white noise. Bifurcation diagrams and time series plots were obtained for the model. 
 
These models are unveiling of important qualitative concepts for understanding stochastic processes as well 
as tools for designing  effective numerical methods for SDEs. This work focuses on presenting basic 
information on stochastic modelling and simulation as well as designing and simulating one of the effecient 
methods for computing the sample paths of solutlion to stochastic differential equations. The stochastic 
system is obtained by introducing perturbation of white noise on the main parameters of the deterministic 
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model (1). Numerical simulations are carried out to exhibit the differences in the deterministic and stochastic 
models. 
 

5.2 The Stochastic Model Formulation 
 
The stochastic model is formulated by perturbing the deterministic system (1) with white noise in the main 
parameters of system (1). This is done by permitting stochastic perturbations of the variables �, �, � and � 
around their values at positive equilibrium �∗ ([31]). Additionally, we assume that the white noise of the 
stochastic perturbations of the variables around values of  �∗ are proportional to the distances  �, �, �, � 
from  �∗, �∗, �∗, �∗. Thus, the stochastic version of the deterministic model is given by 
 

�� = ��� + �� − �
��

�
− ����� + ��(� − �∗)���  

dE = ��
��

�
− (� + �)���� + ��(� − �∗)��� 

�� = [�� − (� + � + �)�]�� + ��(� − �∗)���                (13) 
�� = [�� − (� + �)�]�� + ��(� − �∗)���   

 
with ��, for �= 1,2,… … 4 are real constants and �� = 1,2,3,4 are independent wiener processes. 
 

5.3 Numerical SDEs Method-Newton’s Method 
 
This section carries information on design of numerical method; Newton method, for computing the sample 
paths of solution to stochastic differential equations. This work applies Newton’s method that seeks to 
design efficient numerical methods with small local error coefficients [32]. Here, we seek to present some 
basic information on stochastic modelling and simulation as well as designing and simulating one of the 
effecient methods for computing the sample paths of solutlion to stochastic differential equations. We 
consider a non-autonomous Ito SDEs in the form  
 

��(�) = �(�,�(�))�� + ���,�(�)��� (�),	 with �(0) = ��, 0 ≤ � ≤ �           (14) 
 
where � is the deterministic continuous component called the drift coefficient (an � -vector-valued function), 
� is the stochastic continuous component called the diffusion coefficient (an  � × � matrix-valued function) 
and �(�) = (��(�),… .,��(�))

�  is a �- dimensional process having independent scaler wiener process 
componenets for � ≥ 0. Setting the columns of � as ��(�,�), then (14) becomes 

��(�) = �(�,�(�))�� + ∑ ����,�(�)����(�)
�
��� , �(��) = ��             (15) 

 
The differential equation (15) can be written in integral form as 
  

�(�) = �� + ∫ �(�,�(�))
�

��
��+ ∑ ∫ ����,�(�)����(�)

�

��

�
���               (16) 

 
According to Newton’s [33], with a strong order of 1.0 and � = 1, equation (15) becomes 
 

���� = �� +
�

�
ℎ(�� + ��) +

�

��
∆��(37�� + 30�� − 27��) +

�

��
√3ℎ(8�� + �� − 9��)            (17) 

with �� = �(��), �� = �(��) and 
 �� = �(�� + ℎ�� + ∆����), 

 �� = ���� −
�

�
�∆�� + √3ℎ����, 

 �� = ���� +
�

�
�3∆�� + √3ℎ����, 

 �� = ���� −
��

��
ℎ�� +

��

��
∆��(�� − ��) −

��

��
√3ℎ���. 

 
where  ∆�� are independent increments of the wiener process (see [34], [35], [36], [37], [38], [39]). 
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5.4 Numerical examples and discussion 
 
In this section, we present with figures the dynamics of the two models: deterministic and stochastic models 
and show explicitly the differences in the models by simulating numerically for the set of parameter values 
in Table 1, as well as choosing arbitrary values for the stochastic model. To illustrate these difference, white 
noises ��, ��, �� and �� of equal strength of  0.5 was employed in the simulation process, which displayed 
an exact behaviour in the stochastic plots as the deterministic one. Thus, even though fluctuations occurred 
in the sample paths of the stochastic plots, the behaviour of the plots were the same as the deterministic one. 
The differences in the dynamics of the models are given by the figures below. 
 

 
 

Fig. 11.  The plot represents population of susceptible human 

 
 

Fig. 12.  Stochastic plot of susceptible human 
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Fig. 13.  The plot represents population of exposed human 
 

 
 

Fig. 14.  Stochastic plot of exposed human 

 
 

Fig. 15.  The plot represents population of infected human 
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Fig. 16. Stochastic plot of infected human 

 
6 Conclusion 
 
As stated in the introduction, our main purpose is to study the transmission dynamics of the deterministic, 
Optimal control and stochastic models for Haemorrhagic Conjunctivitis Disease in order to understand the 
epidemic phenomenon and recommend strategies for its control. To understand the dynamics of the models, 
we formulated and studied the transmission dynamics of  Haemorghagic Conjunctivitis Disease which is 
deadly when not treated early by the infected person, due to its complicated effects on the host. The basic 
reproduction ratio was deduced which shows that the disease is locally stable when �� < 1 and unstable 
�� > 1.   
 
An optimal control model of the disease was deduced to analyze the optimum control strategy that would be 
efficacious to be implemented to control the disease at a minimal cost. Two control functions were 
introduced to assess and measure empirically the efficacy of the efforts to prevent contact between 
susceptible and infected individuals and the treatment control of giving therapeutic treatment to the infected 
individuals. The analysis proved that the optimal control strategies considered have an optimum and 
incomparable results on the reduction of the number of exposed and infected individuals as compared to the 
model without control as illustrated in the plot of figures for the models with and without controls. The 
numerical examples showed that the proposed strategies are effective in the reduction of the number of the 
exposed and infected individuals of the conjunctivitis disease. 
 
The stochastic version of the model was deduced by employing stochastic perturbations in the main 
parameters of the deterministic model. The dynamics of the deterministic and stochastic models were 
investigated by carrying out numerical simulations for the models. The numerical simulations for the models 
show that the sample paths of the stochastic plots were the same as the deterministic one. Thus, even though 
fluctuations occurred in the sample paths of the stochastic plots, the behaviour of the plots were the same as 
the deterministic one. Further, from the stochastic plots, the simulations show an initial random fluctuation 
of the sample paths until they eventually approach asymptotic level. The stochastic  model resulted as a 
result of stochastic environmental factors falling on the main parameters of the deterministic model. Hence, 
when there are no stochastic environmental factors, there would be no stochastic perturbations. 
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