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ABSTRACT 
 

Simulation of drought is needed for proper planning and management of water resources. This 
study has been developed using the following five key points: a) primarily from rainfall Standard 
Precipitation Index (SPI), Percentage to Normal (PN), Decile based drought index (DI), Rainfall 
Anomaly Index (RAI), China Z Index (CZI), and Z-score are estimated on yearly basis (1901-2017), 
those indices are added and a new index standardized total drought (Sd) has been established. b) 
Considering Sd as the input parameter a comparative assessment has been made between 4 
individual models (3 models from exponential smoothing, 1 model from machine learning) in 
simulation and prediction of drought status of next 18 time steps (years) in Bankura District and 
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Winexpo model outperforms the other models as it obtains minimized Standard Error (SE), Random 
Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error 
(MAPE) and highest Correlation coefficient (R

2
) value. c) The cumulative drought proneness of the 

region is also assessed and it is found that the whole district will be drought-prone within the year 
2100. This region is historically a drought prone region and agricultural shock is the common issue. 
In such a circumstance simulation of drought is a good attempt. Though a lot of models already 
developed in case of simulation of drought but still a perfect, continuous long term prediction is a 
big issue to solve. This study provides a comparative study between exponential smoothing and 
machine-learning procedures and also introduces a new combined index standardized total 
drought. 
 

 
Keywords: Simulation; meteorological drought; Winexpo. 
 

1. INTRODUCTION 
 
Drought is one of the natural disasters that 
human being has been suffering since the 
ancient era [1,2,3,4] and it is the costliest [5,6], 
long-lasting most severe natural hazard [7,8,9]. It 
is recurrent natural phenomena associated with 
the lack of water resources for a prolonged 
period of dryness [10,11,12] can occur in arid, 
semi-arid and rain-forested region [13,14] 
however confusion and debates among scholars 
prove that there are no universal accepted 
definitions of drought. Drought forecasting is a 
critical element in drought risk management [15]. 
Meteorological drought that transforms in a 
hydrological, agricultural and socio-economic 
events, onsets with a marked reduction in rainfall 
sufficient to trigger hydro-meteorological 
imbalance for a prolonged period [16,17,18,19]. 
Thus drought monitoring and assessment are hot 
topics among hydrologists and meteorologists 
and attract world-wide attention [18,19,20,21]; its’ 
preparedness and mitigation depends upon the 
large scale drought monitoring and forecasting 
over a large geographical area [19,20,22]. Many 
drought forecasting models already develop in 
the field of civil engineering. Mishra and Desai 
[23] developed ARIMA and multiplicative 
seasonal ARIMA models to forecast drought 
using SPI series. These models are able to 
simulate drought up to 2 months lead time. Morid 
et al. [17] simulated Effective Drought Index 
(EDI) and SPI using Artificial Neural Network 
(ANN). They compared linear stochastic models 
with recursive multistep neural network model to 
the 6 months lead time. Barros and Bowden [22] 
employed self-organizing maps (SOM) and 
multivariate linear regression analysis to forecast 
SPI of Murray Darling basin of Australia in 12 
months of forthcoming scenarios. Many scholars 
worldwide tested SVM in climatological and 
hydrological applications [24,25]. There are 
several scholars used SVM to predict drought. 

Belayneh and Adamowski in 2012 [26] 
forecasted meteorological drought using neural 
network, wavelet neural network and SVM.  
Exponential smoothing is quite new in this field 
originally developed in the field of business 
mathematics in 1960. Exponential smoothing is 
able to simulate drought in a long term time 
frame. This study attempts to simulate drought 
using exponential smoothing in a long-term time 
frame. 
 

2. STUDY AREA AND BACKGROUND 
INFORMATION 

 

The District Bankura is bounded by 22°38’ N to 
23°38´ N and longitude 86°36’ E to 87°47’E 
covering an area of 6,882 square Kilometers 
(2,657sq. mile). River Damodar creates the north 
and north-east boundary of the district [27,28,29]. 
The neighboring districts are Bardhaman in the 
north, Paschim Medinapore in the south, Hoogly 
in the east and Purulia in the west (Fig. 1). 
Bankura is a historically a drought prone district 
and if no supportive action taken quickly in this 
regard the condition will get much severe in the 
upcoming periods [30,31,32,33]. 
 
Bankura is located in the south western central 
part of the State of West Bengal belonging 
transition zone between the plains of Bengal on 
the east and Chhota Nagpur plateau on the West 
[32,33]. It is a part of Midnapur Division of the 
State and a part of “Rarh” region thus can be 
stated as “Rarh in Bengal’ [29,30]. The areas to 
the east and north-east are rather flat belonging 
to the low lying alluvial plains, known as rice bowl 
of Bengal [31,32,33]. 
 

3. MATERIALS AND METHODS 
 
Fig. 2 constructively describes the 
methodological overview of this paper. Monthly 
rainfall data 1901-2017 has been used for overall 
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analysis and 1901 to 1978 data obtained from 
Govt. of India water portal website. From 1979 to 
2014 daily station wise rainfall data obtained 
from National Centres for Environmental 
Protection (NCEP) official website. The rainfall 
data were collected from Disaster Management 

Plan of Bankura District 2017 published by 
District Disaster Management Cell (Table 1) and 
got 6 individual rainfall stations available for 
Bankura District and monthly and daily rainfall 
data have been added to get yearly rainfall trend. 
Thus 117 years are taken into consideration. 

 

 
Fig. 1. Bankura location map and location of meteorological stations 

 

 
 

Fig. 2. Methodological overview 
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Table 1. Station list according to the NCEP data set 
 

Id of stations associated Bankura Longitude Latitude Elevation(m) 
229869 86.875 22.9488 133 
229872 87.1875 22.9488 61 
229875 87.5 22.9488 34 
233869 86.875 23.261 127 
233872 87.1875 23.261 95 
233875 87.5 23.261 46 

 

3.1 Formation of Standardized Total 
Drought (Sd) 

 

There are several indices developed to assess 
meteorological drought but the most common are 
SPI [34,35], DI [36,37], PN [5], Z-Score [5], RAI 
[38,39] and CZI [40]. First of all, from the rainfall 
data, the above mentioned 6 well-known indices 
i.e. SPI, DI, CZI, PN, Z-score, and RAI have 
been estimated on yearly basis and later those 
are combined and formed a new Index 
Standardized Total Drought (Sd). So, those six 
indices are utilized to estimate the true nature of 
meteorological drought and standardized total 
drought (yearly basis) becomes the sole input 
variable for every models of our study. 
 

It can be computed as follows: 
 
Total Drought(T� ) = (SPI + DI + PN +  ZScore +
RAI + CZI)                          (1) 
 

Standardized Total Drought(S�) =  
�� �������

δ
           (2) 

 
Where, T�  is the total drought. 
T�
��� is the mean of T�  
δ  is the standard deviation of the total drought. 
 
Based on estimated Sd values the individual 
drought categories are subdivided into 9 sub-
groups. He whole subgroups are ranging 
between <-10 to >10 category and <-10 denotes 
the most extreme category whereas >10 denotes 
wet category. Every 9 sub categories are coded 
as 1 to 9 (Table 2).  
 

3.2 Exponential and Holt-Winter Forecast 
and Winexpo Method 

 
Exponential smoothing is the technique to 
smoothing the time series in exponential window 
function. Exponential smoothing assigns 
decreasing weights over time. Holt in 1957 and 
Winter in 1960 developed smoothing technique 
and later their method was combined and making 
Holt-Winter smoothing technique to forecast the 

recursive trend from the historically observed 
data series [41]. Here we use the single 
exponential smoothing technique as Kaleker in 
2004 [42] used in his thesis: 
 

S��� = α ∗ y� + (1 − α) ∗S�   0 < α < 1, t > 0 
                                      (3) 
 

Eq. (3) can be written as 
 

S��� − S� = α ∗ €�                                    (4) 
 

The Holt-Winter method time series can be 
represented using the following model: 
 

y� = (b� + b�t) ∗ S� + €�             (5) 
 

Where b� is the permanent component, b�  is the 
linear trend component, S�  is the multiplicative 
seasonal factor, €�  is the random error 
component, t is the time and t+1 is the lead time 
from t. 
 

From the Eq. (5) 
 

S� =
��

������
+ €�                                      (6) 

 

Sum of all the seasons can be written as 
 

∑ S����� = M                                       (7) 
 

Where �  is the length of the year. 
So, the Eq. (7) can be written as, 
 

∑ y�
��
��� = (b� + b� ∑ t) ∗ ∑ S� +��

���
��
��� €�           (8) 

 

Assuming, ∑ y��
��� �

= Y  , ∑ t��
��� = � and ∑ S��

��� �
=

M  we get from Eq. (8) 
 
Y� = (b� + b�T) ∗ M + €�                         (9) 
 

And Eq. (9) can be written after the sum of all the 
seasons 
 

 M =
���€�

������
                                   (10) 

 

Winexpo method has been developed by us to 
combine the traditional exponential and Holt-
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Winter method. Combining Eq. (4) and Eq. (10) 
we get, 
 
��� ����

 �
=

α∗€�
���€�

��� ���

                                    (11) 

 

Or,  
  

 
��� ����

 �
=

α∗(������)

(���€�)
+ €�                                   (12) 

 
Winexpo is one of the integrative models as it 
holds the combination of Holt-Winter exponential 
smoothing and traditional exponential smoothing. 
 

3.3 Support Vector Machine Model (SVM) 
 
Support Vector Machine (SVM) is the supervised 
learning models that analyse data used for 
classification and regression analysis [41,42,43, 
44,45,46]. The x related all points can be 
mapped in the hyperplane can be defined by the 
relation ∑ α�k(x�,� x) = constant where k (xi, x) is 
the kernel function used to suit the problem. 
Kernel function becomes small where y grows 
further away from x so it becomes the matter of 
closeness of each point of y to x. With the kernel 
function SVM actually use the relative closeness 
between the each point in the feature space. The 
detailed method of analysis can be expressed as 
following: 
 
Suppose our training data is consist of N pairs 
(X1,Y1), (X2, Y2)………….. (Xn, Yn); where Xi € 
Rp and Yi € {-1, 1}. Define a hyperplane by, {x: 
f(x) = xTβ + β0 = 0}, where β is a unit vector. A 
classification rule induced by f(x) is G(x) = sign 
{xTβ + β0}. Now the signed distance from the 
point x to the hyperplane is 0. Here we are able 
to find the hyperplane that creates biggest 
margin between training points for class 1 and -1. 
So, the optimization problem just reverses and 
forms the following dimension: 
 

max β,β�,‖β‖��
= M                                    (13) 

 

subject to, y��x�β +  β
�

� ≥ M    ;  i = 1,2,… … … . . ,N  

Least Square Support Vector Machine is used 
here based on structural risk minimisation in the 
model weight. It counters convex quadratic 
programming associated with Support Vector 
Machine (SVM). The least square version of the 
SVM classifier is obtained by reformulating the 
minimization problem as 
 

min J� (w,b,e) =
µ

�
x�β +

∞

�
∑ e�

��
���                    (14) 

 
Subject to equality constraints, 
 
y��x�β +  β

�
� = 1 − e�, i=1,2,……….n        (15) 

 
Eq. 15 can be written as 
 
e� = 1 − y��x�β +  β

�
�                       (16) 

 
The eq. 16 hold the case of regression. To solve 
the eq. 16 we use Lagrangian multiplier by which 
it can be solved. 
 
L�(w,β,e,α) = J�(w,e) − ∑ α�

�
��� {[β +  β

�
] + e� −

y�}                                     (17) 
 
Where, α�€ R   the Lagrangian multipliers. For 
evaluation performance test of SVM we use the 
error estimation and Kappa Coefficient statistic 
as well as the accuracy. The definition of 
Cohen’s Kappa is as follows: 
 

k =
�����

����
                                    (18) 

 

Where, P0 is the relative observed agreement 
among variables; Pe is the hypothetical 
probability of chance agreement. If the rates are 
in the complete agreement then k =1 and if there 
is no agreement then k = 0. 

Table 2. Probable classes of standardized total drought (Sd) 
 

Categories of Drought Code Ranges of Drought 
Most Extreme  1 <-10.00 
Extreme  2 -3.00 to -10.00 
Severe 3 -2.99 to -2.50 
Severe Moderate  4 -2.49 to -2.35 
Moderate 5 -2.35 to -1.15 
mild drought 6 -1.15 to 1 
Normal 7 1-5 
Extreme Normal 8 5-10 
Wet  9 >10 
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3.4 Estimation of Cumulative Hazard 
Proneness 

 

To estimate the cumulative drought-proneness of 
the study region over the years we took help of 
the hazard function and survival analysis. Let T 
be a non-negative random variable representing 
the waiting time until the occurrence of an event. 
For simplicity we can adopt the term ‘survival 
analysis’ referring to the event of interest as 
‘hazard proneness’ and to the waiting time we 
state as ‘survival time’. We can assume T is a 
continuous random variable with probability 
density function (p.d.f.) f(t) and cumulative 
distribution function (c.d.f.) Pr {k < �}  given that 
probability that the event has occurred by 
duration t. Complement of c.d.f. the survival 
function becomes 
 

S(t) = Pr{T ≥ t} = 1 − F(t) = ∫ f(x)dx
∞

�
         (19) 

 

Which gives probability of being ‘less drought 
prone’ just before duration t more generally the 
probability that the event of interest has not 
occurred by duration t. Here we use the following 
distribution of T is given by hazard function or 
instantaneous route of occurrence of the event 
defined as 
 

Ώ(t) = lim
��→�

�� {��������,���}

��
=

�(�)

�(�)
                      (20) 

 

Where f (t) is the derivative of S (t) 
 

S� = exp{− ∫ Ώ(x)}
�

�
dx                       (21) 

 

3.5 Error Estimation 
 
3.5.1 Standard error (SE) 
 
The standard error can be stated as [47,48] 
 

SE =
�

√�
                                     (22) 

 
Where ∂the standard deviation of the distribution 
and n is is the number of samples. 

 
3.5.2 Root of Mean squared error (RMSE) 
 

Root of mean squared deviation can be stated as 
 

RMSE =
�∑ (��������)��

���

√�
                       (23) 

 
Where, the RMSE of predicted values for yt times 
t of a regression's dependent variable y�  with 
variables observed over T times. 

3.5.3 Mean absolute error (MAE) 
 

MAE measures average magnitude errors in the 
set of predictions without considering their 
direction. It is the average over the test sample of 
the absolute differences between prediction and 
actual observation where all individual 
differences have equal weight: 
 

MAE = 1/n ∑ �y� − y����
���                        (24) 

 

Where y�  is the observed value and y��  is the 

predicted value. 
 

3.5.4 Mean absolute percentage error (MAPE) 
 

Mean Absolute Percentage Error (MAPE) is a 
measure of prediction accuracy of a forecasting 
method of accuracy. MAPE can be stated as 
 

MAPE =
���%

�
∑ �

�����

��
��

���                        (25) 

 

Where, y�  is the actual value and Ft is the 
forecasted value. 
 

3.6 Significance Test 
 
3.6.1 Anderson-darling test 
 

The Anderson-Darling test is the hypothesized 
distribution is F, and cumulative distribution is Fn 
and the formula can be written as 
 

A� = n ∫
(��(�)��(�)�

�(�)����(�)�

∞

�∞
w(x)dF(x)                      (26) 

 
3.6.2 Kolmogorov-smirnov test 
 
Kolmogorov Smirnov test is a nonparametric test 
of the equality of continuous one dimensional 
probability distribution with compare of a sample 
with reference probability distribution [49,50]. 
Kolmogorov Smirnov test statistic can be 
expressed as  
 
F�(x) = 1/n ∑ I[�∞,�](X�)

�
���                       (27) 

 
Where I[�∞,�](X�) is the indicator function, equal 1 

if (X�)≤ x and equal to 0 otherwise. 
 

The Kolmogorov-Smirnov statistic of a given 
cumulative function F(x) is 
 
D� = sup�(F�x − F�)                       (28) 
 
Where sup is the supremum of the set of 
distance between the F�x and F�. In our case this 
model has been run at 95% significance level. 
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3.6.3 Shapiro-wilk test 
 

Shapiro and Wilk test of the normality formula  
can be written as, 
 

W =
(∑ ����)^��

���

∑ (�����)^��
���

                                    (29) 

 

a� is the (a1………an), x� is the mean. 
 

The constants ai can be written as  
 

(a� … … … . . a�) =
�����

�����������
�

/�
 here m =

(m � … … … . . m �)^T and m � … … … . . m �  
 

are the expected values of the order statistics of 
independent and identically distributed random 
variables sampled from the standard normal 
distribution, and V is the covariance matrix of 
those order statistics. 
 

4. RESULTS AND DISCUSSION 
 

Fluctuation of rainfall and a negative exponential 
trend are specified in Fig. 3 (Yt = 1418.88 × 
(0.999642^t). Rainfalls are more or less normally 
distributed at 95% confidence interval (Fig. 4a). 
Residuals versus fit plot (Fig. 4b) displays that 
the points are randomly distributed on both sides 
of zero with no recognisable patterns thus our 
rainfall data are having a constant variance. 
Residuals of rainfall are having a mean close to 
zero and the histogram is symmetric close to 
around zero (Fig. 4c). Residuals versus order fit 
(Fig. 4d) shows that the residuals fall randomly 
around the centre line. Before proceed with 
rainfall and estimated 6 indices the reliability of 
those 6 indices are judged using Cronbach’s 
Alpha. The overall value of Cronbach’s alpha is 
0.9694. Average SPI and Z-score between the 
time frame 1901-1939 are -0.06 and 0.299, in 
between 1940 -1980, 0.037 and 0.382 

respectively and from 1980-2035 the average 
SPI and Z-score becomes -2.345. Average PN 
value from 1901-1939 is 100.792%, 1940-1980 
PN becomes 100.641%; 1980-2035 it is 
diminished and become 98.967%. In the same 
way average DI is estimated and from 1901-1939 
DI 5.76%, 1940 to 1980 5.73% and DI from 1980 
to 2035 4.64% value of DI is obtained. CZI and 
RAI are also decreased from 0.32 (1901-1939) 
and 0.38 to 0.26 (1940-1980), 0.28 and later 
1980-2035 it reaches to 0.14 and 0.19. Overall 
all the indices attain negative trend. SPI, PN, DI, 
RAI, CZI and Z-score are added and a new index 
Standardized Total Drought (Sd) has been 
formed to estimate overall trend of 
meteorological drought of Bankura District. 
Estimation and prediction of the trend of Sd using 
the traditional exponential smoothing has been 
done and a slightly negative trend is obtained 
(Values reach to -0.143 in 2035) (Fig. 5a). The 
residuals of traditional exponential smoothing 
trend values are ranging between -15 to +5 (Fig. 
5b). In case of traditional exponential smoothing 
the average value between 1901-1939 
experiences -0.170, 1940 to 1980 the value 
reaches to -0.034 whereas between the 1980 to 
2035 the average value attains -0.134 thus 
overall trend is seemed to be more drought 
prone in recent upcoming periods. Similarly using 
Holt-Winter exponential smoothing analysis and 
prediction of drought has been done (Fig. 5c) 
and residuals are fitted randomly as histogram 
plot based on the centre line (ranging between -2 
to +5 range) (Fig. 5d). In case of Holt-Winter 
exponential smoothing the average value 
between 1901-1939 achieve -0.163, between the 
time frame 1940-1980 and 1980 to 1935 it attain 
0.061 and -0.261 values respectively. The 
combined model Winexpo attains 0.423 for 1901-
1939, 0.51 for 1940-1980 and -1.423 for 1980-
2035. 

 

 

Fig. 3. All station combined accumulated rainfall according to yearly time steps (1901-2017) 
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Fig. 4a Normal probability Plot of Rainfall Fig. 4b Fitted value of rainfall vs. Residual value 
Fig. 4c Residual value versus Frequency value Fig. 4d Observation order vs. Residual value 

 

Fig. 5. Exponential Smoothing models and associated Residual Plots a) Exponential 
Smoothing c) Holt-Winter Smoothing e) Winexpo Simulation 
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From the true classes determined from the 
categories of Sd SVM is capable to predict the 
nature of drought category. A user friendly SVM 
tool LSSVM is used to implement the 
classification of drought status of Bankura 
District. At data pre-processing stage raw values 
of Sd are linearly rescaled into [-1, 1] using the 
ranges of their minimums and maximums for 
binary distribution of classifiers. Applying the 
SVM each category against all is estimated in 
every case. In case of Extreme vs. others the 
model is obtained 43 support vectors, for 
extreme normal the model is obtained 33      
support vectors, for mild drought the model 
obtains 34 support vectors, most extreme the 
model obtains 28 support vectors, normal vs. 
others obtains 51 support vectors, severe vs. 
others obtains 8 support vectors and wet vs. 
others obtains 20 support vectors. From the 
observed true classes of 135 observations (used 
simulated value using Winexpo) drought 
probability classes are predicted by SVM. SVM 
performs with a medium accuracy level. 
According to SVM identified drought categories 
over years over 80% years are concentrated 
within severe moderate, severe, extreme and 
most extreme categories and about 20% years 
are concentrated within Moderate, Normal, and 
Extreme Normal, wet categories (Fig. 6a) 
whereas according to Winexpo identified drought 

categories 36% years are mingled with severe 
moderate, severe, extreme, most extreme and 
moderate categories and over 64% are mingled 
with normal, mild, extreme normal and wet 
categories (Fig. 6b). The extreme normal versus 
others, wet versus others, mild versus others, 
normal versus others training sample sets 
achieve over 90% accuracy whereas extreme 
and most extreme versus others and severe 
moderate versus others category training 
samples achieve less than 30% accuracy (Table 
3). Overall average SVM achieve 0.724 as 
Cohen’s Kappa and overall 60% accuracy has 
been achieved. So, SVM has performed 
moderately well in prediction of drought of our 
study area. 
 
The significance test using three individual tests 
has been run at 95% and 99% confidence 
interval. The traditional exponential smoothing 
experiences probability value 0.004 for 
Anderson-Darling test, 0.005 for Shapiro-Wilk 
test and 0.004 by Kolmogorov-Smirnov test. The 
Holt-Winter exponential smoothing attains 0.003 
probabilities for Anderson-Darling test, 0.004 for 
Shapiro-Wilk test and 0.001 for Kolmogorov-
Smirnov test. Winexpo model also attains 
probability value 0.002 for Anderson-Darling test, 
0.004 for Shapiro-Wilk test and 0.003 for 
Kolmogorov-Smirnov test. The Bayesian model

 

 
 

Fig. 6. Frequency of drought under each drought categories a) based on simulation model of 
SVM b) based on simulation of Winexpo 
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of LSSVM extreme category vs. other categories 
experiences 10.275 as Anderson-Darling test 
statistic value, 0.527 as Shapiro-Wilk test statistic 
value and 0.435 as KS test statistic value. 
LSSVM Bayesian most extreme vs. other 
category is mingled with 5.543 as Anderson-
Darling test statistic, 0.727 as Shapiro-Wilk test 
statistic and 0.316 as KS test statistic. SVM 
extreme normal vs. other categories achieves 
2.165 as Anderson-Darling test statistic, 0.904 as 
Shapiro-Wilk test statistic and 0.482 as KS test 
statistic value. Similarly, Mild versus others, 
severe versus others, severe moderate versus 
others and wet versus others are also calculated 
(Table 4). All the Anderson–Darling test is 
successful and valid at 95% confidence interval 
as the significance level P-value achieves <0.005 
value in all the nine combinations. Shapiro-Wilk 
and KS test for all the SVM nine possible 
combinations the probability value is <0.010 that 
means those values are significant at 99% 
confidence interval. Overall SVM model is 
significant at 95% confidence interval (in case of 
Anderson-Darling test) and 99% significance 
level (in case of Shapiro-Wilk test and KS test). 
As P values are <0.005 and <0.010 for all the 
cases the distribution is not normal here and null 
hypothesis that there were no difference between 
the observed class and predicted class can be 
rejected and the alternative hypothesis is 
accepted. The error estimation and goodness of 
fit statistics (Table 5) of the individual models 
indicate that Winexpo attains the lowest error 
and highest R-square value in comparison with 
the other models altogether.  
 
Based on Winexpo and SVM model simulation 
the hazard prone zones have been estimated 
(Fig. 6). The southern and south-western blocks 
are extreme drought-prone and northern and 
north-western blocks are mild to normal mode. 
The whole regimes form the coherent clusters in 

space highlighted in Fig. 7. Most extreme to 
severe drought categories are clubbed into 
negative x, y direction and wet categories are 
clubbed into positive directions of x and y. Based 
on the whole aspects of meteorological drought 
the year wise hazard and cumulative failure 
functions are developed. The most extreme, 
extreme, severe, severe moderate, moderate 
and mild categories are included in the category 
of “hazard prone or failure “whereas normal, 
extreme normal and wet categories are included 
in “censored” category.  Winexpo attains the best 
result so this model has been used here. 
According to simulation of drought category 
using winexpo, almost 84 observations are fallen 
into “hazard-prone” category and 51 
observations have fallen into the “censored” 
group. The distribution of yearly censored and 
failure categories are compared based on 
Weibull and logistic probability fit but logistic 
probability fit gave us the better association  
(Correlation value 0.984 for logistic and 0.678 for 
Weibull). So, finally the logistic probability fit have 
been taken for year-wise estimation of 
cumulative hazard-proneness. The whole logistic 
model seemed to be more or less normal (Fig. 8a 
and 8b) and it had achieved the 3.223 value as 
the Anderson-Darling test. From the survival 
function (Fig. 8c) fitted based on logistic 
probability plot encounters the fact that as the 
time (year) will progress the drought proneness 
will increase and at the year 2100 the 
vulnerability will be almost intolerable that will 
lead to massive disruption over the local 
community. Reversely, the progression of hazard 
based on cumulative curve plotting (Fig. 9, Fig. 
8d) exhibits the fact that the whole district will be 
severely affected by drought within 2100. The 
significance test for hazard function is done in 
95% significance level. So, it can be concluded 
that the district will face extreme to severe 
drought hazard in the recent future. 

 
Table 3. Performance matrix of Support Vector Machine (SVM) 

 

Training set Accuracy Cohen's kappa 

Extreme versus Others 0.847 0.978 

Extreme Normal versus Others 0.187 0.086 

Moderate versus Others 0.987 0.987 

Most Extreme versus Others 0.847 0.978 

Normal versus Others 0.253 0.222 

Severe versus Others 0.987 0.998 

Severe Moderate versus Others 0.876 0.965 

Wet versus Others 0.153 0.042 

Mild versus Others 0.165 0.078 
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Table 4. Error Estimation and goodness of fit statistics (for error estimation 0.001 used as a multiplicative factor) 
 

Model Name SE Adjusted RMSE Adjusted MAE Adjusted MAPE R
2
(using Linear kernel) 

Traditional exponential smoothing 0.024 0.996 0.790 25.65 0.39 
Holt-Winter Smoothing 0.026 1.006 0.654 95.43 0.04 
Winexpo Model 0.111 1.64 0.445 49.53 0.35 
SVM-Most Extreme versus others  3.080 0.049 0.045 4.559 0.99 
SVM-Extreme versus others 1.303 0.038 0.019 2.048 0.94 
SVM-Severe versus others 11.180 0.026 0.026 1.915 0.95 
SVM-Severe moderate versus others 11.345 0.023 0.045 1.934 0.99 
SVM-Moderate versus others 5.533 0.015 0.008 0.833 0.99 
SVM-Mild versus others 5.333 0.020 0.013 1.413 0.97 
SVM-Normal versus others 1.668 0.033 0.019 2.048 0.52 
SVM-Extreme Normal versus others 7.580 0.018 0.014 1.487 0.35 
SVM-Wet versus others 83.724 0.001 0.008 0.900 0.34 
Overall SVM versus other  0.130 0.02175 0.022 1.904 0.78 

 
Table 5. Significance test of the models 

 
Standardized Total Drought Anderson-Darling Test Shapiro-Wilk Test Kolmogorov-Smirnov Test Type of Model 

Test Statistic Significance Level Test Statistic Significance Level Test Statistic Significance Level   
Traditional Exponential Smoothing 8.827 0.004 (<0.005) 0.916 0.005 (<0.05) 0.169 0.004 (<0.005) Exponential smoothing 
Holt-Winter Exponential Smoothing 7.192 0.003 (<0.005) 0.917 0.004 (<0.005) 0.163 0.001 (<0.005) 
Winexpo Model 28.790 0.002 (<0.005) 0.529 0.004 (<0.005) 0.363 0.002 (<0.005) Combined model 
SVM-Extreme versus others 10.275 <0.005 0.527 <0.010 0.435 <0.010  

 
 
Machine Learning 

SVM- Extreme normal versus others 2.165 <0.005 0.904 <0.010 0.482 <0.010 
SVM-Mild vs. others 11.598 <0.005 0.482 <0.010 0.419 <0.010 
SVM-Moderate vs. others 10.550 <0.005 0.455 <0.010 0.427 <0.010 
SVM-Most Extreme vs. others 5.543 <0.005 0.727 <0.010 0.316 <0.010 
SVM-Normal vs. others 5.274 <0.005 0.827 <0.010 0.261 <0.010 
SVM-Severe vs. others 5.544 <0.005 0.597 <0.010 0.466 <0.010 
SVM-Severe moderate_vs._others 2.131 <0.005 0.662 <0.010 0.462 <0.010 
SVM-Wet vs. Others 1.108 <0.005 0.935 <0.05 0.236 <0.010 
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Fig. 7. Drought-prone zone identification (12 month time steps) using a) Winexpo b) SVM 
 

 
 

Fig. 8. Plotting of points in the coherent space 



 
 
 
 

Raha and Gayen; JGEESI, 22(1): 1-16, 2019; Article no.JGEESI.49074 
 
 

 
13 

 

 
 

Fig. 9a. Probability density function b Logistic probability fit c Survival function based on 
logistic probability fit d Progression of hazard rate with years 

 

5. CONCLUSION 
 
The evolution and quantification of drought are 
necessary for the proper planning and 
management of water resources to mitigate the 
hazard of future occurrences. By far the main 
challenge in this field is that a) to identify the 
correct method to analyze the meteorological 
drought b) to identify the spatial dimension over 
which the drought can be affected c) to simulate 
and predict the drought correctly as it is 
inherently needed for proper planning and 
management of water resources. Continuous 
year wise monitoring and simulation is also an 
important issue even seriously neglected in the 
drought monitoring and assessment. In most of 
the cases of drought monitoring and assessment 
historical rainfall data is one of the input factors. 
Our study is also not an exception with the above 
scenarios. Taking rainfall as the sole input factor 
we estimated 6 essential meteorological indices 
and from those indices we form a new index 
Standardized Total Drought (Sd) and simulate it 
up to 2035 and make a comparative assessment 
of exponential smoothing and machine learning 
procedures. Cumulative drought-proneness of 
the region using hazard function has been 
analysed and we found that the whole region will 
be severely drought affected within 2100. The 

extremities of rainfall and temperature drive a 
potential threat to agriculture, food security and 
socio-economic vulnerability. Thus a more 
detailed structural study is required to explore the 
synergetic effects of trends and patterns of other 
climatic variables. However the conclusion 
reached in this study can be an elementary step 
to improve the risk management strategy, review 
of agricultural practices and water use in this 
counterpart. 
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