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Abstract

Rabies is a zoonotic viral disease that affects all mammals including human beings. Dogs are
responsible for 99% of human rabies cases and the disease is always fatal once the symptoms
appear. In Kenya the disease is still endemic despite the fact that there are efficient vaccines for
controlling the disease. In this project, we developed SIRS mathematical model using a system of
ordinary differential equations from the model to study the transmission dynamics of rabies virus
in dogs using public health education as a control strategy. The reproduction number R0 was
calculated using the Next Generation Matrix. Both disease free and endemics equilibrium points
were determined and their stability analysis performed. From the stability analysis results it was
found out that the disease free equilibrium point is both locally and globally asymptotically stable
when R0 < 1 and the endemic equilibrium point is both locally and globally asymptotically stable
when R0 > 1. Numerical simulations done using Matlab indicated that education of the public
on administration of both pre and post exposure vaccines to dogs and responsible dog ownership
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leads to a decrease in the numbers of rabies virus infected dogs which shows that public health
education is an efficient means for controlling rabies.

Keywords: Rabies; reproduction number; stability; numerical simulation.
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1 Introduction

Rabies is an infectious zoonotic viral disease that pose a great threat to public health in the whole
world [1]. It is spread through the scratch or bite of a rabid animal as reported by [2]. The main
carrier of the virus remains to be dogs and are responsible for most human rabies death worldwide.
Rabies virus infects the central nervous system leading to the inflammation of brain, paralysis and
death. Once symptoms of the disease develop, rabies is always fatal.

According to [3], Rabies virus affects both wildlife and domestic mammals such as foxes ,skunks,
raccoons, bats, cats ,dogs and human being. According to [1], the time between exposure to the
virus and when symptoms start showing up varies depending on the location of the bite,intensity of
wound and immunity of affected animal but in most cases its usually four to ten weeks. [3] points
out that rabies virus symptoms resemble those of flu-like infection,when the disease progress the
affected individual may experience discomfort at the sight of exposure,cerebral dysfunction, anxiety,
confusion and even abnormal behaviors. [1] observed that rabies virus may cause the paralysis of
the muscles from the point of bite or scratch which leads to coma and then death.

In Kenya,the first rabies case in a dog was reported in the outskirts of Nairobi in 1912,and a human
case was reported in 1928, since then it has remained to be a public health problem [4]. Rabies is
estimated to cause 2,000 human deaths per year and its placed among the top five animal diseases
that affects people in the country [1]. Although there is effective vaccine for controlling rabies ,the
disease is still endemic in Kenya as well as in other developing countries. The poor and vulnerable
individuals are the most affected by the disease especially children below 15 years because of their
free interactions with dogs [5].

Mathematical modelling serves as a very important tool in analysing and understanding epidemio-
logical characteristics of infectious diseases and helps proving useful control methods for such
diseases. Many scholars have used several models to help understand dynamics of rabies in wildlife
like [6],[7], [8], [9] and [10]

Although there are several mathematical models, that describe various aspects of rabies in wildlife,
domestic animals especially dogs which is main carrier of rabies virus in Kenya and even transmission
dynamics between dogs and human beings incorporating mass vaccination, pre-exposure prophylaxis
and post exposure prophylaxis as possible ways of eradicating rabies, the impact of public health
education has not yet been considered which marks the motivation behind this study.

This study therefore aim at investigating the dynamics of rabies in which the impact of public
health education is incorporated as a possible way of eradicating rabies among dog population. A
case study of Makueni county.

2 Model Formulation

In this model, dog population of size N(t) is considered and it is divided into three classes. These
are Susceptible class-S(t) which include health dogs but have probability of contracting the disease,
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the Infected class- I(t) is made up of the dogs which have contracted the rabies virus and are
infectious and Recovered class-R(t) includes dogs that have recovered from the virus exposure due
to administration of pre-exposure vaccine which is as result of public education. Dogs are recruited
to the susceptible class S(t) at the rate µ through births. We let 0 < α < 1 to be the rate at
which public is educated on the administration of both pre-exposure vaccination and post-exposure
vaccination of dogs, responsible dog ownership and creation of awareness on the impact of rabies
virus on human health. Therefore susceptible dogs move to the infected class-I(t) at the reduced
rate of infection (1−α)βSI, where β is the probability of being with rabies virus due to interactions
between susceptible dogs and infected dogs. Dogs in all classes experience natural death at the rate
ρ and in addition, infected dogs die at the rate σ due to the rabies disease. When public is educated,
a portion of susceptible dogs αS move directly to the recovered class-R(t) due to administration
of pre-exposure vaccination because public education involves creation of awareness to the public,
administration of both pre-exposure and post-exposure vaccines and responsible dog ownership.
Recovered dogs become susceptible at the rate ϵ as the impact of public education dies off with
time.

From the above description we have the following assumptions and flow diagram;

Assumptions:

i Dogs are the only carriers of rabies and so the susceptible compartment consist of dogs that
are likely to be exposed to rabies virus.

ii Once a dog is infected by rabies it dies because immediately the symptoms appear the disease
is always fatal.

iii Once the public is educated on the dangers associated with rabies,they take precaution
measures such as provide pre and post exposure vaccines and also practice responsible dog
ownership and as such the recovered compartment consists of dogs that recover immediately
precaution measures are put in place.

iv A portion of recovered dogs is recruited to the susceptible compartment because of their
reduced immunity over rabies.

v The precaution measure taken after the public is educated include administration of both
pre and post exposure vaccine and responsible dog ownership.

Fig. 1. Flow diagram
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From figure 1 the following equations are developed:

dS

dt
= µ+ ϵR− (1− α)βSI − ρS − α S

dI

dt
= (1− α)βSI − σI − ρI

dR

dt
= αS − ρR− ϵR

(2.1)

3 Model Analysis

Since the system (2.1) describes Dog population, all the solutions of state variable with non-
negative initial conditions are non-negative ∀ t > 0 and they are bounded in the feasible region
Γ = {(S, I,R) ∈ R3

+;N ≤ µ
ρ
}

3.1 Existence of Equilibrium points

In order to determine Disease free equilibrium point (DFE) E0, we equate the right-hand sides of
the equations of system 2.1 to zero and substitute (S = S0, I = 0, R = 0) for S,I,R, to get
E0 = ( µ

ρ+α
, 0, 0)

Now we obtain Endemic equilibrium point (EE) E∗(S∗, I∗, R∗) by setting the right-hand sides of
the equations of system 2.1 to zero and substituting for S,I and R with S∗, I∗ and R∗. Thus

E∗ =

 S∗

I∗

R∗

 =


σ+ρ

(1−α)β

(ρ+ϵ)(1−α)βµ+(σ+ρ)αϵ−(ρ+ϵ)(ρ+α)(σ+ρ)
(σ+ρ)(ρ+ϵ)(1−α)β

(σ+ρ)α
(ρ+ϵ)(1−α)β


3.2 The basic reproduction number

Basic reproduction number is R0 is a dimensionless number that is defined as the expected number
of secondary cases produced by a single infected individual in a completely susceptible population.

The Next generation Matrix method by [11] is used to find R0.nThe Next generation matrix is given
by G = FV −1 where F and V are Jacobian matrices of fj and vj vectors respectively at E0, where
fj is the rate of appearance of new infections in class j and vj is the rate of transfer of dogs into
and out of class j. The infected dog population is captured in the following equation.

dI

dt
= (1− α)βSI − (σ + ρ)I (3.1)

Clearly equation (3.1) can be expressed as

dI
dt

= fj − vj where fj = (1− α)βSI and vj = (σ + ρ)I

By definition

F = (1−α)βµ
ρ+α

and V = (σ + ρ)

since S = S0 = µ
ρ+α
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hence

FV −1 = (1−α)βµ
(ρ+α)(σ+ρ)

Since FV −1 is a 1× 1 matrix, in view of the definition of R0, we have

R0 = (1−α)βµ
(ρ+α)(σ+ρ)

4 Stability Analysis

4.1 Local stability of the disease free equilibrium point

The DFE point of the model is the steady state solution in the absence of the infection. Therefore
local stability analysis is presented in the theorem (1) below.

Theorem 1. The DFE of the system (2.1) is Locally asymptotically stable whenever R0 < 1

Proof. The Jacobian of the system (2.1) is given as

J =

 −(1− α)βI − (ρ+ α) −(1− α)βS ϵ
(1− α)βI (1− α)βS − (σ + ρ) 0

α 0 −(ρ+ ϵ)

 (4.1)

We evaluate the Jacobian matrix (4.1) at E0 to get

J(E0) =

 −(ρ+ α) − (1−α)βµ
ρ+α

ϵ

0 (1−α)βµ
ρ+α

− (σ + ρ) 0

α 0 −(ρ+ ϵ)


The characteristic equation of J(E0) is given by

[−(ρ+ α)− λ][(
(1− α)βµ

ρ+ α
− (σ+ ρ))− λ][−(ρ+ ϵ)− λ]− [(

(1− α)βµ

ρ+ α
− (σ+ ρ))− λ]αϵ = 0 (4.2)

Upon expansion of equation (4.2), we obtain

[( (1−α)βµ
ρ+α

− (σ + ρ))− λ]{λ2 + [(ρ+ α) + (ρ+ ϵ)]λ+ ρ2 + ρϵ+ ρα} = 0
Implying that

(1− α)βµ

ρ+ α
− (σ + ρ)− λ = 0 (4.3)

or

λ2 + [(ρ+ α) + (ρ+ ϵ)]λ+ ρ2 + ρϵ+ ρα = 0 (4.4)

Clearly one of the eigenvalues is given by equation (4.3), that is

λ =
(

(1−α)βµ
ρ+α

− (σ + ρ)
)
< 0 for R0 < 1

And other eigenvalues are obtained from equation (4.4). Using the Routh Hurwitz criterion for the
second order polynomial, we investigate the signs of eigenvalues given by equation (4.4).

Now we begin the investigation by writing equation (4.4) as

λ2 + aλ+ b = 0 (4.5)
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where
a = (ρ+ α) + (ρ+ ϵ)
b = ρ2 + ρϵ+ ρα

Clearly a > 0 b > 0 and ab > 0. Hence the Routh Hurwitz criterion for the second order polynomial
is satisfied, implying that the roots of equation (4.5) lie in the left half of the complex plane. That
is, the other eigenvalues are negative. Therefore the DFE is locally asymptotically stable whenever
R0 < 1

4.2 Global stability of the disease free equilibrium point

In this section the global stability of the disease free equilibrium point of the system (2.1) is
investigated using Theorem (2).

Theorem 2. E0 is globally asymptotically stable provided that R0 < 1

Proof. Consider the following Lyapunov function

V (S, I) = I (4.6)

Differentiating equation (4.6) with respect to t gives;

dV

dt
=

dI

dt
(4.7)

In view of the second equation of system (2.1), equation (4.7) assumes the form

dV
dt

= (1− α)βSI − (σ + ρ)I

Since R0 = (1−α)βµ
(ρ+α)(σ+ρ)

we have (1− α)β = R0(ρ+α)(σ+ρ)
µ

Therefore

dV
dt

= R0(ρ+α)(σ+ρ)SI
µ

− (σ + ρ)I

or

dV
dt

≤ (σ + ρ)(R0 − 1)I

for

S < S0 = µ
(ρ+α)

dV
dt

≤ 0 for R0 < 1 and dV
dt

= 0 if and only if I=0. This implies that the only trajectory of the
system (2.1) on which dV

dt
= 0 is E0. Therefore by Lasalle’s invariance principle, E0 is globally

asymptotically stable in Γ.

4.3 Local stability of endemic equilibrium point E∗(S∗, I∗, R∗)

The persistence of a disease in a population implies that the disease is endemic. The study of the
stability analysis of the endemic equilibrium point is done using the theorem below.

Theorem 3. The endemic equilibrium E∗ of the system (2.1) locally asymptotically stable whenever
R0 > 1
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Proof. To prove this theorem, we express Jacobian matrix (4.1) at endemic equilibrium E∗ to obtain

J(E∗) =

 −((1− α)βI∗ + (ρ+ α)) −(1− α)βS∗ ϵ
(1− α)βI∗ (1− α)βS∗ − (σ + ρ) 0

α 0 −(ρ+ ϵ)


or

J(E∗) =

 −
(

(ρ+ϵ)(1−α)βµ+(σ+ρ)αϵ−(ρ+ϵ)(ρ+α)(σ+ρ)
(σ+ρ)(ρ+ϵ)

+ (ρ+ α)
)

−(σ + ρ) ϵ
(ρ+ϵ)(1−α)βµ+(σ+ρ)αϵ−(ρ+ϵ)(ρ+α)(σ+ρ)

(σ+ρ)(ρ+ϵ)
0 0

α 0 −(ρ+ ϵ)


The eigenvalues of J(E∗) are given by |J(E∗)− Iλ| = 0, that is∣∣∣∣∣∣∣

−
(

(ρ+ϵ)(1−α)βµ+(σ+ρ)αϵ−(ρ+ϵ)(ρ+α)(σ+ρ)
(σ+ρ)(ρ+ϵ)

+ (ρ+ α)
)
− λ −(σ + ρ) ϵ

(ρ+ϵ)(1−α)βµ+(σ+ρ)αϵ−(ρ+ϵ)(ρ+α)(σ+ρ)
(σ+ρ)(ρ+ϵ)

−λ 0

α 0 −(ρ+ ϵ)− λ

∣∣∣∣∣∣∣ = 0

This gives the characteristic equation below

−
[
(ρ+ϵ)(1−α)βµ+(σ+ρ)αϵ−(ρ+ϵ)(ρ+α)(σ+ρ)

(σ+ρ)(ρ+ϵ)
+ (ρ+ α) + λ

]
[λ(ρ+ ϵ) + λ2]

−[σ + ρ]
[
(ρ+ϵ)(1−α)βµ+(σ+ρ)αϵ−(ρ+ϵ)(ρ+α)(σ+ρ)

(σ+ρ)(ρ+ϵ)

]
[(ρ+ ϵ) + λ] + λαϵ = 0

(4.8)

Upon expansion of equation (4.8), we obtain

λ3 +
[
(ρ+ϵ)(1−α)βµ+(σ+ρ)αϵ

(σ+ρ)(ρ+ϵ)
+ (ρ+ ϵ)

]
λ2

+
[
(ρ+ϵ)[(1−α)βµ−(ρ+α)(σ+ρ)]

(σ+ρ)
+ (ρ+ϵ)[(1−α)βµ−(ρ+α)(σ+ρ)]+(σ+ρ)αϵ

(ρ+ϵ)
+ (ρ+ ϵ)(ρ+ α)

]
λ

+(ρ+ ϵ)[(1− α)βµ− (ρ+ α)(σ + ρ)] + (σ + ρ)αϵ = 0

(4.9)

Equation (4.9) can be written as

λ3 + aλ2 + bλ+ c = 0 (4.10)

where

a = (ρ+ϵ)(1−α)βµ+(σ+ρ)αϵ
(σ+ρ)(ρ+ϵ)

+ (ρ+ ϵ)

b = (ρ+ϵ)[(1−α)βµ−(ρ+α)(σ+ρ)]
(σ+ρ)

+ (ρ+ϵ)[(1−α)βµ−(ρ+α)(σ+ρ)]+(σ+ρ)αϵ
(ρ+ϵ)

+ (ρ+ ϵ)(ρ+ α)

c = (ρ+ ϵ)[(1− α)βµ− (ρ+ α)(σ + ρ)] + (σ + ρ)αϵ

Clearly a > 0, b > 0 and c > 0 for R0 > 1 (i.e (1− α)βµ > (ρ+ α)(σ + ρ))

And it follows that ab− c > 0

Hence by Routh-Hurwitz criterion for the cubic equation, the endemic equilibrium of the system
(2.1) is locally asymptotically stable.

4.4 Global stability of endemic equilibrium point E∗(S∗, I∗, R∗)

Now we investigate the global stability by use of Lyapunov function.

Theorem 4. E∗ is globally asymptotically stable provided that R0 > 1

Proof. Consider the Lyapunov function

V (S, I,R) =

(
S − S∗ln

S

S∗

)
+M

(
I − I∗ln

I

I∗

)
+N

(
R−R∗ln

R

R∗

)
(4.11)
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Differentiating equation (4.11) with respect to t, gives;

dV

dt
=

(
1− S∗

S

)
dS

dt
+M

(
1− I∗

I

)
dI

dt
+N

(
1− R∗

R

)
dR

dt
(4.12)

From system (2.1), we substitute for dS
dt
, dI

dt
and dR

dt
in equation (4.12) to obtain

dV
dt

=
(
1− S∗

S

)
[µ+ ϵR− (1− α)βSI − (ρ+ α) S]

+M
(
1− I∗

I

)
[(1− α)βSI − (σ + ρ)I]

+N
(
1− R∗

R

)
[αS − (ρ+ ϵ)R]

(4.13)

Upon rearrangement of equation (2.1) at endemic equilibrium , we obtain

µ = (1− α)βS∗I∗ + (ρ+ α)S∗ − ϵR∗

(σ + ρ) = (1− α)βS∗

αS∗

R∗ = (ρ+ ϵ)

(4.14)

Now we substitute system (4.14) in (4.13) to get

dV
dt

= (1− S∗

S
)[(1− α)βS∗I∗ + (ρ+ α)S∗ − ϵR∗ + ϵR− (1− α)βSI − (ρ+ α)S]

+M(1− I∗

I
)[(1− α)βSI − (1− α)βS∗I] +N(1− R∗

R
)[αS − (αS∗

R∗ )R]
(4.15)

Upon substitution of x = S
S∗ , y = I

I∗ and z = R
R∗ in (4.15) and simplification of the resulting

equation, we obtain

dV
dt

= −ρ (S−S∗)2

S
+ (1− α)βS∗I∗(1− xy − 1

x
+ y) + αS∗(1− x− 1

x
+ 1) + ϵR∗(z − 1− z

x
+ 1

x
)

+(1− α)βS∗I∗M(xy − y − x+ 1) +NαS∗(x− z − x
z
+ 1)

(4.16)

Hence by setting the coefficients of xy and x equal to zero and letting M =1 we get N = (1−α)βS∗I∗

αS∗

such that

dV
dt

= −ρ (S−S∗)2

S
+ (1− α)βS∗I∗(1− xy − 1

x
+ y) + αS∗(1− x− 1

x
+ 1) + ϵR∗(z − 1− z

x
+ 1

x
)

+(1− α)βS∗I∗(xy − y − x+ 1) + (1− α)βS∗I∗(x− z − x
z
+ 1)

(4.17)

From the property that the geometric mean is less than or equal to the arithmetic mean, hence dV
dt

≤
0. The inequality dV

dt
= 0 holds iff x=y=z=1 and (S = S∗; I = I∗;R = R∗). By LaSalle’s invariance

principle in [12], every solution of the system (2.1) with initial conditions in Γ = {(S, I,R) ∈
R3

+;N ≤ µ
ρ
} approaches E∗ , thus E∗ is Globally Asymptotically stable.

5 Numerical Simulation

A survey carried out by the ministry of health in 2014 [13] established that Makueni county has a
higher rabies cases as a results of high dog to human ratio.

For example, the ratio of human population to dog population is 3:1 and since the human population
is 1, 002, 979 which is a projected population for the year 2018 based on 2009 census the the dog
population is 334, 326.3333 which is approximately equal to 335, 000 as deduced from the ratio.
Also, in every six dogs it is approximated that a single dog is infected with the rabies virus thus
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from the total population of dogs the infected population is 55, 833.3333 which is approximated to
56, 000.

Using MATLAB ode45 solver and parameter values in Table 1, we carried out numerical simulation
of the system (2.1) in order to understand the effect of educating the public on the control of rabies
virus.

Table 1. Model’s Parameter values

Parameter Description Value Source

µ Recruitment rate 3.0× 106y−1 [14]

β Transmission rate 1.58× 10−7y−1 [14]

ρ Natural death rate 0.056y−1 [14]

σ Disease induced mortality 1y−1 [14]

ϵ Loss of immunity 1y−1 [14]

α Education efficacy 0 < α < 1 Assumed

Figure 2(a) shows trajectories of susceptible dogs at different levels of public education efficacy.
When public education efficacy α is equal to 0.0(without public education), 0.3 and 0.6, the figure
depicts a sharp increase of the numbers of susceptible dogs at the beginning followed by a sharp
decrease then remain constant at certain numbers. This could be attributed to the ineffective public
education. But for α = 0.9, the number of susceptible dogs increase and remain constant as t → ∞.
This implies that the presence effective public education leads to reduction of disease prevalence
whenever there is rabies outbreak, hence increase of susceptible dogs. Figure 2(b) shows trajectories
of infected dogs at different levels of public education efficacy. When public education efficacy α
is equal to 0.0, 0.3 and 0.6, the figure shows alternating decrease and increase of the number of
infected dogs at the onset of an infection and lastly, the number of infected dogs remain constant
as time t → ∞. But for α = 0.9, the number of infected dogs reduce to zero. This suggests that
the presence of effective public education campaign eradicates the disease.

(a) (b)

Fig. 2. Impact of public education on (a) susceptible dogs and (b) infected dogs

6 Conclusion

A mathematical model of rabies transmission dynamics in dogs using public health education was
developed in this study. Both disease free and endemic equilibrium point were studied which
showed that, the disease free equilibrium point is both locally and globally asymptotically stable
when R0 < 1 and the endemic equilibrium point is both locally and globally asymptotically stable
when R0 > 1. Numerical Simulation results showed that as the public health education efficacy α
increases from 0.0 to about 0.9 the number of susceptible dogs sharply increases and then stabilises.
Also, when the education efficacy α is increased from 0.0 to about 0.9 the number of infected dogs
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kept on decreasing until zero infections are obtained which implies, that educating the public on
administration of both pre and post exposure vaccination and practicing responsible dog ownership
would greatly reduce rabies cases in Kenya and therefore recommend that the government of Kenya
foster public education on rabies control and elimination so as to attain its goal for having Kenya
being rabies free country by 2030.
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