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Abstract: Let G = (X, Y; E) be a bipartite graph with two vertex partition subsets X and Y. G is said to be
balanced if ∣X∣ = ∣Y∣ and G is said to be bipancyclic if it contains cycles of every even length from 4 to ∣V(G)∣.
In this note, we present spectral conditions for the bipancyclic bipartite graphs.
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1. Introduction

W e consider only finite undirected graphs without loops or multiple edges. Notation and terminology
not defined here follow that in [1]. Let G = (V(G), E(G)) be a graph. The graph G is said to be

Hamiltonian if it contains a cycle of length ∣V(G)∣. The graph G is said to be pancyclic if it contains cycles of
every length from 3 to ∣V(G)∣. Let G = (V1(G), V2(G); E(G)) be a bipartite graph with two vertex partition
subsets V1(G) and V2(G). The bipartite graph G is said to be semiregular bipartite if all the vertices in V1(G)
have the same degree and all the vertices in V2(G) have the same degree. The bipartite graph G is said to be
balanced if ∣V1∣ = ∣V2∣. Clearly, if a bipartite graph is Hamiltonian, then it must be balanced. The bipartite graph
G is said to be bipancyclic if it contains cycles of every even length from 4 to ∣V(G)∣. The balanced bipartite
graph G1 = (A, B; E) of order 2n with n ≥ 4 is defined as follows: A = {a1, a2, ..., an}, B = {b1, b2, ..., bn}, and
E = {aibj ∶ 1 ≤ i ≤ 2, (n − 1) ≤ j ≤ n}∪ {aibj ∶ 3 ≤ i ≤ n, 1 ≤ j ≤ n}. Notice that G1 is not Hamiltonian.

The eigenvalues of a graph G, denoted λ1(G) ≥ λ2(G) ≥ ⋯ ≥ λn(G), are defined as the eigenvalues of its
adjacency matrix A(G). Let D(G) be a diagonal matrix such that its diagonal entries are the degrees of vertices
in a graph G. The Laplacian matrix of a graph G, denoted L(G), is defined as D(G) − A(G), where A(G) is
the adjacency matrix of G. The eigenvalues µ1(G) ≥ µ2(G) ≥ ⋯ ≥ µn−1(G) ≥ µn(G) = 0 of L(G) are called
the Laplacian eigenvalues of G. The second smallest Laplacian eigenvalue µn−1(G) is also called the algebraic
connectivity of the graph G (see [2]). The signless Laplacian matrix of a graph G, denoted Q(G), is defined as
D(G)+ A(G), where A(G) is the adjacency matrix of G. The eigenvalues q1(G) ≥ q2(G) ≥ ⋯ ≥ qn(G) of Q(G)
are called the signless Laplacian eigenvalues of G.

Yu et al., in [3] obtained some spectral conditions for the pancyclic graphs. Motivated by the results in [3],
we present spectral conditions for the bipancyclic bipartite graphs. The main results are as follows:

Theorem 1. Let G = (X, Y; E) be a connected balanced bipartite graph of order 2n with n ≥ 4, e edges, and δ ≥ 2. If
λ1 ≥

√
n2 − 2n + 4, then G is bipancyclic.

Theorem 2. Let G = (X, Y; E) be a connected balanced bipartite graph of order 2n with n ≥ 4, e edges, and δ ≥ 2. If

µn−1 ≥
2(n2 − 2n + 4)

n
,

then G is bipancyclic.
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Theorem 3. Let G = (X, Y; E) be a connected balanced bipartite graph of order 2n with n ≥ 4, e edges, and δ ≥ 2. If

q1 ≥
2(n2 − n + 2)

n
,

then G is bipancyclic.

2. Lemmas

In order to prove the theorems above, we need the following results as our lemmas:
Lemma 1 is the main result in [4].

Lemma 1. Let G = (X, Y; E) be a balanced bipartite graph of order 2n with n ≥ 4. Suppose that X = {x1, x2, ..., xn},
Y = {y1, y2, ..., yn}, d(x1) ≤ d(x2) ≤ ⋯ ≤ d(xn), and d(y1) ≤ d(y2) ≤ ⋯ ≤ d(yn). If

d(xk) ≤ k < nÔ⇒ d(yn−k) ≥ n − k + 1,

then G is bipancyclic.

Lemma 2 below follows from Proposition 2.1 in [5]:

Lemma 2. Let G be a connected bipartite graph of order n ≥ 2 and e ≥ 1 edges. Then λ1 ≤
√

e. If λ1 =
√

e, then G is a
complete bipartite graph Ks, t, where e = s t.

Lemma 3 below is Lemma 4.1 in [2]:

Lemma 3. Let G be a noncomplete graph. Then µn−1 ≤ κ, where κ is the vertex connectivity of G.

Lemma 4 below is Theorem 2.9 in [6]:

Lemma 4. Let G be a balanced bipartite graph of order 2n and e edges. Then q(G) ≤ e
n + n.

Lemma 5 below is Lemma 2.3 in [7]:

Lemma 5. Let G be a connected graph. Then

q1 ≤ max{d(u)+
∑v∈N(u) d(v)

d(u) ∶ u ∈ V},

with equality holding if and only if G is either semiregular bipartite or regular.

Lemma 6. Let G = (X, Y; E) be a balanced bipartite graph of order 2n with n ≥ 4, e edges, and δ ≥ 2. If e ≥ n2 − 2n + 4,
then G is bipancyclic or G = G1.

Proof. Without loss of generality, we assume that X = {x1, x2, ..., xn}, Y = {y1, y2, ..., yn}, d(x1) ≤ d(x2) ≤ ⋯ ≤
d(xn), and d(y1) ≤ d(y2) ≤ ⋯ ≤ d(yn). Suppose G is not bipancyclic. Then Lemma 1 implies that there exists an
integer k such that 1 ≤ k < n, d(xk) ≤ k, and d(yn−k) ≤ n − k. Thus

2n2 − 4n + 8 ≤ 2e

=
n
∑
i=1

d(xi)+
n
∑
i=1

d(yi)

≤ k2 + (n − k)n + (n − k)2 + kn

= 2n2 − 4n + 8− (k − 2)(2n − 2k − 4).

Since δ ≥ 2, we have that k ≠ 1. Therefore we have the following possible cases.
Case 1. k = 2.
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In this case, all the inequalities in the above arguments now become equalities. Thus d(x1) = d(x2) = 2,
d(x3) = ⋯ = d(xn) = n, d(y1) = ⋯ = d(yn−2) = n − 2, and d(yn−1) = d(yn−2) = n. Hence G = G1.
Case 2. (2n − 2k − 4) = 0.

In this case, we have n = k + 2 and all the inequalities in the above arguments now become equalities.
Thus d(x1) = ⋯ = d(xn−2) = n − 2, d(xn−1) = d(xn) = n, d(y1) = d(y2) = n − 2, and d(y3) = ⋯ = d(yn−2) = n. Hence
G = G1.
Case 3. k ≥ 3 and 2n − 2k − 4 < 0.

In this case, we have that n < k + 2, namely, n ≤ k + 1. Since k < n, we have k = n − 1. This implies that
d(y1) ≤ 1, contradicting to the assumption of δ ≥ 2.

This completes the proof of Lemma 6.

3. Proofs

Proof of Theorem 1. Let G be a graph satisfying the conditions in Theorem 1. Then we, from Lemma 2, we
have √

n2 − 2n + 4 ≤ λ1 ≤
√

e.

Thus e ≥ n2 − 2n + 4. Therefore by Lemma 6 we have that G is bipancyclic or G = G1.
If G = G1, then e = n2 − 2n + 4. Hence

√
n2 − 2n + 4 ≤ λ1 ≤

√
e =
√

n2 − 2n + 4.

So λ1 =
√

e. Lemma 2 implies that G1 is a complete bipartite graph, a contradiction.
This completes the proof of Theorem 1.

Proof of Theorem 2. Let G be a graph satisfying the conditions in Theorem 2. Then we, from Lemma 3, we
have

2(n2 − 2n + 4)
n

≤ µn−1 ≤ κ ≤ δ ≤ 2e
n

.

Thus e ≥ n2 − 2n + 4. Therefore by Lemma 6 we have that G is bipancyclic or G = G1.
If G = G1, then e = n2 − 2n + 4. Hence

2(n2 − 2n + 4)
n

≤ µn−1 ≤ κ ≤ δ ≤ 2e
n

= 2(n2 − 2n + 4)
n

.

This implies that G1 is a regular graph, a contradiction.
This completes the proof of Theorem 2.

Proof of Theorem 3. Let G be a graph satisfying the conditions in Theorem 3. Then we, from Lemma 4, we
have

2(n2 − n + 2)
n

≤ q1 ≤
e
n
+ n.

Thus e ≥ n2 − 2n + 4. Therefore by Lemma 6 we have that G is bipancyclic or G = G1.
If G = G1, then e = n2 − 2n + 4. Therefore

2(n2 − n + 2)
n

≤ q1 ≤
e
n
+ n = n2 − 2n + 4

n
+ n = 2(n2 − n + 2)

n
.

Hence

q1 =
2(n2 − n + 2)

n
.

It can be verified that

max{d(u)+
∑v∈N(u) d(v)

d(u) ∶ u ∈ V} = 2(n2 − n + 2)
n

= q1.

Thus Lemma 5 implies that G1 is semiregular or regular, a contradiction.
This completes the proof of Theorem 3.
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