
 

________________________________________ 
 
*Corresponding author: Email: ndegwaduncan234@gmail.com; 

  
Cite as: Ndegwa, D., Njagi, L., & Mutembei, J. (2024). Application of Partitions of Odd Numbers and their Odd Sums to Prove the 

Nonexistence of Odd Perfect Numbers. Asian Research Journal of Mathematics, 20(5), 28–37. https://doi.org/10.9734/arjom/2024/v20i5800 

 

 
 

 

Asian Research Journal of Mathematics 

 
Volume 20, Issue 5, Page 28-37, 2024; Article no.ARJOM.117263 
ISSN: 2456-477X 

 

 
_______________________________________________________________________________________________________________________________________ 

 

Application of Partitions of Odd Numbers 

and their Odd Sums to Prove the 

Nonexistence of Odd Perfect Numbers 
 

Duncan Ndegwa a*, Loyford Njagi a and Josephine Mutembei a 

 
a Department of Mathematics, Meru University of Science & Technology, P. O. Box 972, Meru., Kenya. 

 

Authors’ contributions 

 

This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 

 

Article Information 
 

DOI: https://doi.org/10.9734/arjom/2024/v20i5800 

 
Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review 

comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/117263 

 

 
Received: 18/03/2024 

Accepted: 22/05/2024 

Published: 25/05/2024 

__________________________________________________________________________________ 
 

Abstract 

 
Perfect numbers, which are integers equal to the sum of their proper divisors, excluding themselves, have 

intrigued mathematicians for centuries. While it is established that even perfect numbers can be expressed as 
)12(2 1 −− pp

, where 𝑝 and 12 −p
 are prime numbers (Mersenne primes), the existence of odd perfect numbers 

remains an unsolved problem. This study aims to prove the nonexistence of odd perfect numbers by utilizing 

an algorithm which demonstrates that a positive even integer can be partitioned into all pairs of odd numbers. 

Using this approach, it is proven that any positive odd number 2𝑛 + 1  can be partitioned into all pairs of both 

odd and even numbers and from the set of these partitions, we show that there exist a proper subset 

containing all proper divisors of 2𝑛 + 1. Using these results, and the facts that there exist infinitely many odd 

numbers and the odd sums of odd numbers is always odd, we prove the nonexistence of odd perfect numbers 

contributing to the conjecture that they do not exist.  
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1 Introduction 

 
The study of perfect numbers traces its origins back to ancient Greek mathematicians, particularly Euclid and 

Pythagoras, who were among the first to explore the properties of these intriguing integers. Euclid, in his 

seminal work "Elements," provided some of the earliest known results on perfect numbers, including the proof 

that if 2𝑝−1 is prime, then 2p−1(2p−1) is a perfect number [1]. This foundational work laid the groundwork for 

further exploration into the properties of perfect numbers and their relationships with prime numbers. 

Pythagoras, known for the Pythagorean theorem, also made contributions to the study of perfect numbers, 

viewing them as mystical and divine [2]. 

 

The study of perfect numbers continued to evolve over the centuries, with mathematicians such as Leonhard 

Euler making significant contributions to the field. Euler, in the 18th century, furthered the understanding of 

perfect numbers by developing various factorization methods, including the factorization of even perfect 

numbers, and creating generating functions for expressing even perfect numbers [3]. The contrast between even 

and odd perfect numbers has captured the imagination of mathematicians and remains an unsolved problem in 

number theory. The existence of even perfect numbers is well understood; they are all of the form )12(2 1 −− pp

, where 𝑝 and 12 −p
 are prime numbers known as Mersenne primes [4]. However, despite centuries of 

exploration, no odd perfect numbers have ever been discovered, leading to the intriguing question: do odd 

perfect numbers even exist? 

 

While even perfect numbers have been extensively studied and are well understood, the existence of odd perfect 

numbers remains an open question. Euler's factorization pattern for odd perfect numbers provides a framework 

for understanding these elusive numbers [5], but despite extensive computational searches, no odd perfect 

numbers have ever been discovered. This has led to the conjecture that odd perfect numbers do not exist, a 

conjecture that has yet to be proven but has sparked significant interest and research in the field of number 

theory. 

 

This manuscript adopts a multifaceted approach to explore the properties of perfect numbers and partitions of 

odd numbers. By utilizing an algorithm that demonstrates how a positive even integer can be partitioned into all 

pairs of odd numbers [6], the study extends this approach to show that any positive odd number can be 

partitioned into all pairs of both odd and even numbers. From this set of partitions, a proper subset containing all 

proper divisors of the odd number are identified. The contributions of this exploration extends beyond the 

specific investigation of perfect numbers and odd partitions. By providing further evidence for the non-existence 

of odd perfect numbers, the study contributes to the broader understanding of number theory and its 

foundational concepts. The study also highlights the importance of computational methods and algorithms in 

exploring complex mathematical problems. 

 

2 Preliminaries  

 
To establish the nonexistence of odd perfect numbers, we draw upon foundational concepts in number theory. 

The exposition of these concepts provides the necessary framework for the subsequent proof. Central to our 

discussion are key definitions and theorems that underpin the core arguments presented in this scholarly work. 

 

Definition 1: Perfect Numbers are integers that are equal to the sum of their proper divisors, excluding 

themselves [7].  

 

Definition 2: Even Perfect Numbers are Perfect numbers that can be expressed in the form )12(2 1 −− pp
, 

where 𝑝 and 12 −p
are prime numbers [8]. 

 

Definition 3: Odd Perfect Numbers are hypothetical perfect numbers that are not yet proven to exist [7]. 
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Definition 4: A composite number is a positive integer greater than one that is not prime, meaning it has 

divisors other than 1 and itself [9]. 

 

Definition 5: (Union of two Sets) 

 

The union of two sets A and B, denoted by A∪B, is the set containing all elements that are in A, in B, or in both 

A and B. In other words, the union of two sets A and B is the set of all elements that belong to either A or B or 

both [10]. 

 

Theorem 1 

 

Let 𝑝1  𝑎𝑛𝑑 𝑝2 ∈ 𝑃, where 𝑃  is the set of all primes, and 𝑑  be the difference between 𝑝1  𝑎𝑛𝑑 𝑝2  such that 

012 −= ppd where 
12 pp  . Let (

2
11  Ozi

npppp )()( 1221 −++ ) be the set of odd 

numbers for  1i  𝑂 ))()(( 12212
1 npppp −++ , then any multiple of 𝑑 in the half-open interval [1, 

(
2

1[ ]])()( 1221

npppp −++  can be used to partition
npppp )()( 1221 −++  into all pairs of odd 

numbers [11]. 

 

Theorem 2 

 

The difference between an odd number and an even number is odd [12]. 

 

Proof 

 

Let 𝑎 be an odd number and 𝑏 be an even number. By definition, an odd number can be expressed as 𝑎 = 2𝑛 +
1 for some integer 𝑛, and an even number can be expressed as 𝑏 = 2𝑚 for some integer 𝑚. The difference 

between 𝑎 and 𝑏 is 𝑎 − 𝑏 = (2𝑛 + 1) − 2𝑚. Simplifying, we get: 𝑎 − 𝑏 = 2𝑛 + 1 − 2𝑚 implying that 𝑎 −
𝑏 = 2(𝑛 − 𝑚)  + 1. Since 𝑛 and 𝑚 are integers, 𝑛−𝑚 is also an integer. Therefore, 2(𝑛−𝑚) is an even number. 

Adding 1 to an even number results in an odd number. 

 

Theorem 3  

 

The difference between any two different odd numbers is even [12]. 

 

Proof 

 

Let A be an odd number, B another odd number 𝐴 =  2𝑐 +  1, 𝐵 =  2𝑑 +  1 (where both c and d are integers) 

𝐴 −  𝐵 =  (2𝑐 +  1)  −  (2𝑑 +  1)  =  2𝑐 − 2𝑑 +  (1 − 1)  =  2(𝑐 + 𝑑) and Since 𝑐 and d are integers, 𝑐 + 𝑑 

is an integer too, and 𝐴 − 𝐵 is even (since it can be expressed as 2*integer)  

 

2.1 Sum of odd numbers 

 
The sum of the odd numbers from 1 to infinity can be determined using the concept of Arithmetic Progression. 

Odd numbers are those that are not divisible by 2, such as 1, 3, 5, 7, 9, 11, and so on. To find the sum of these 

numbers, let's consider the sum of the first 𝑛 odd numbers as Sn: 

 

𝑆𝑛 = 1 + 3 + 5 + 7 + 9 + ⋯ + (2𝑛 − 1)                                                                                           (2.1) 

 

According to the formula for the sum of an Arithmetic Progression, which states that the sum of 𝑛 terms is given 

by: 

 

𝑠𝑛 =
𝑛

2
× [2𝑎 + (𝑛 − 1)𝑑]                                                                                                                   (2.2) 
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where n is the number of terms in the series, 𝑎a is the first term of the series, and d is the common difference 

between the terms. Applying this formula to equation (1), with a=1 and d=2, and considering the last term to be 

l=(2n−1), we get:𝑠𝑛 =
𝑛

2
(1 + (2𝑛 − 1)) =

𝑛

2
× (2𝑛) = 𝑛2 [13]. 

 

3 Exploration of the Algorithm for Partitioning Odd Numbers 

 
Odd numbers, being integers that are not divisible by 2, have unique properties that distinguish them from even 

numbers. One interesting aspect of odd numbers is that they can be partitioned in various ways. A partition of a 

number is a way of expressing it as a sum of other numbers, where the order of the summands does not matter. 

For example, the number 5 can be partitioned as 5, 3+2, 2+2+1, and 1+1+1+1+1. This property of odd numbers 

allows for a diverse range of combinations, making them a rich area of study in number theory. 

 

In 2023 Sankei et al., presented a research showing that using the new formulation of a set of even numbers as 
nPPPP )()( 1221 −++ , [14] it is always possible to partition any even number into all pairs of odd numbers 

using the following algorithm [6]:  

 

Let 𝑃 be the set of all prime numbers, ℕ be the set of all natural numbers and 𝑂 the set of all odd numbers. 

 

Step 1 : Let 
1P and PP 2

,then
nPPPP )()( 1221 −++   is even, n ℕ, and 

12 pp  . 

Step 2: Let  d be even and belong to the half-open interval [1, (
2

1[ ]])()( 1221

npppp −++ . 

Step 3: Let iz and (
2

11  Oyi

nPPPP )()( 1221 −++ ) for 𝑖 ∈ 𝑂 and belong to the half-open 

interval [1, (
2

1[ ]])()( 1221

npppp −++ . 

   

With
1p , 

2p , d and 𝑧𝑖, we partition 
npppp )()( 1221 −++ as follows: 

 

Partition 1: (
nPPPP )()( 1221 −++ ) -

11)( yzd =+  

Partition 2: (
npppp )()( 1221 −++ )- 33 )( yzd =+  

Partition 3: (
npppp )()( 1221 −++ )- 55 )( yzd =+  

. 

. 

. 

Partition i: (
npppp )()( 1221 −++ )-

)1))12()21((
2

1((1221

)(
)1))()((

2
1(( −−++

=+
−−++ npppp

n yzd
pppp

 

 

The set of pairs ),...,,(),,(),,( 553311 yzdyzdyzd +++

),(
)1))12()21((

2
1((1221 )1))()((

2
1(( −−++−−++

+
npppp

n yzd
pppp of odd numbers are all partitions of the even 

number 
npppp )()( 1221 −++ . Since prime numbers greater than 2 are subsets of odd numbers, from these 

set of pairs of odd numbers, the possibility is that, there exist at least one pair of primes [6]. 

 

In this research, we utilize this algorithm to show its application in partitioning any odd number of the form 

2𝑛 + 1 in pairs of both even and odd number.  The algorithm starts by assuming an even integer value and from 

it sets of even and odd numbers are generated in the range [1, (
2

1[ ]])()( 1221

npppp −++  [14], these 

two sets are used in partitioning the even number 
npppp )()( 1221 −++ .  The same approach is used to 
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partition the odd number 2𝑛 + 1 by letting the generator 𝑑 = (
1

2
× ((2𝑛 + 1) − 1)) that so that 𝑑  is even and in 

the interval [1, (
1

2
× (2𝑛 + 1))], if 𝑑 = (

1

2
× ((2𝑛 + 1) − 1)) is not even , for instance when 2𝑛 + 1 = 7 then 

𝑑 = (
1

2
× ((7) − 1)) = 3,  which is not even, we then decrement it by 1 to make it even so that 𝑑 =

(
1

2
× ((2𝑛 + 1) − 1)) − 1  can be used to partition the odd number 2𝑛 + 1 as follows: 

 

Step 1: Let 2𝑛 + 1 be any odd number  

Step 2: Let  𝑑 = (
1

2
× ((2𝑛 + 1) − 1)) or 𝑑 = (

1

2
× ((2𝑛 + 1) − 1)) − 1   

 

Remark 1 

  

The value of 𝑑 will be determined by the first parity after division which can either be odd or even. If it is even 

after division, then 𝑑 = (
1

2
× ((2𝑛 + 1) − 1)) and if odd then 𝑑 = (

1

2
× ((2𝑛 + 1) − 1)) − 1  . 

Step 3: Let 𝑧𝑖  be the set of all odd numbers  𝑎𝑛𝑑 𝑦𝑖  be the set of all even numbers  belonging to the half-open 

interval [1, (
1

2
× ((2𝑛 + 1)))] of natural odd numbers, for 𝑖 ∈ 𝑂, where 𝑂 is the set of all odd numbers, 

With 𝑑 and 𝑧𝑖, we partition 2𝑛 + 1as follows: 

 

Partition 1: (2𝑛 + 1) − (𝑑 + 𝑧1) = 𝑦1 

Partition 2: (2𝑛 + 1) − (𝑑 + 𝑧3) = 𝑦3 

Partition 3: (2𝑛 + 1) − (𝑑 + 𝑧5) = 𝑦5 

Partition 4: (2𝑛 + 1) − (𝑑 + 𝑧7) = 𝑦7 

               . 

               . 

               . 

Partition i: (2𝑛 + 1) − (𝑑 + 𝑧
(

1

2
((2𝑛+1)−1))−1

) = 𝑦
(

1

2
((2𝑛+1)−1))−1

 

 

The set of all partitions of 2𝑛 + 1:  (𝑑 + 𝑧1, 𝑦1), (𝑑 + 𝑧3, 𝑦3), (𝑑 + 𝑧5, 𝑦5), (𝑑 + 𝑧7, 𝑦7), … , (𝑑 +
𝑧

(
1

2
((2𝑛+1)−1))−1

, 𝑦
(

1

2
((2𝑛+1)−1))−1

) are pairs of both even and  odd numbers since according to theorem 3 , the 

difference between an odd number and an even number is always an odd number. In order to illustrate how the 

algorithm partitions any odd number 2n+1 into all pairs of even and odd numbers, we use example 1 for the 

value of  𝑑 = (
1

2
× ((2𝑛 + 1) − 1)), and example 2 for 𝑑 = (

1

2
× ((2𝑛 + 1) − 1)) − 1. 

 

Example 1 

 

Let 2𝑛 + 1 =  101 and 𝑑 = (
1

2
× ((2𝑛 + 1) − 1)) =

1

2
(101 − 1) = 50, which is even. We then partition 101 

as follows: 

 

Step 3: we generate the set of all odd numbers, belong to the half-closed-open interval [1, (
1

2
× ((2𝑛 + 1)))] of 

natural odd numbers. This set equals 

{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49}.  

 

With 𝑑 = 50  and the set of all odd numbers 

{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49}, we partition 101 as follows: 

 

Partition 1: (101) − (50 + 1) = 50                                Partition 11: (101) − (50 + 21) = 30 

Partition 2: (101) − (50 + 3) = 48                                Partition 12: (101) − (50 + 23) = 28 

Partition 3: (101) − (50 + 5) = 46                                Partition 13: (101) − (50 + 25) = 26 

Partition 4: (101) − (50 + 7) = 44                                Partition 14: (101) − (50 + 27) = 24 

Partition 5: (101) − (50 + 9) = 42                                Partition 15: (101) − (50 + 29) = 22 

Partition 6: (101) − (50 + 11) = 40                              Partition 16: (101) − (50 + 31) = 20 



 
 

 

 
Ndegwa et al.; Asian Res. J. Math., vol. 20, no. 5, pp. 28-37, 2024; Article no.ARJOM.117263 

 

 

 
33 

 

Partition 7: (101) − (50 + 13) = 38                               Partition 17: (101) − (50 + 33) = 18 

Partition 8: (101) − (50 + 15) = 36                               Partition 18: (101) − (50 + 35) = 16 

Partition 9: (101) − (50 + 17) = 34                                Partition 19: (101) − (50 + 37) = 14 

Partition 10: (101) − (50 + 19) = 32                              Partition 20: (101) − (50 + 39) = 12 

Partition 21: (101) − (50 + 41) = 10                            Partition 24: (101) − (50 + 47) = 4 

Partition 22: (101) − (50 + 43) = 8                              Partition 25: (101) − (50 + 49) = 2 

Partition 23: (101) − (50 + 45) = 6 

 

The partitions of 101 are {(51,50), (53,48), (55,46), (57,44), (59,42), ( 61,40), (63,38)(65,36), 
( 67,34), (69,32), (71,30), (73,28), (75,26), (77,24), (79,22), (81,20), (83,18), (85,16), (87,14),  
(89,12), (91,10), (93,8), (95,6), (97,4), (99,2)} and are all pairs of both even and odd numbers. From this pairs 

of odd numbers, we generate two proper subsets of even numbers and odd numbers as 
{2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50} and  

{51,53,55,57,59,61,63,65,67,69,71,73,75,77, 79,81,83,85,87,89,91,93,95,97,99}. 

 

An odd number cannot be divided evenly by 2, meaning that any division of an odd number by a multiple of 2 

will always result in a non-zero remainder. This definition implies that an odd perfect number, if it exists, cannot 

have any even numbers as proper divisors. In other words, every divisor of an odd perfect number must be an 

odd number. This restriction is a fundamental property of odd numbers and has significant implications for the 

search for odd perfect numbers. The inability of an odd number to be divided evenly by 2 is a defining 

characteristic that sets it apart from even numbers and forms the basis for its classification in number theory. 

 

From the two proper subsets {2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44 

, 46,48,50}and{51,53,55,57,59,61,63,65,67,69,71,73,75,77, 79,81,83,85,87,89,91,93,95, 
 

97,99} obtained by partitioning the odd number 101, it is evident that the proper subset of even numbers, being 

distinct from the set of odd numbers, cannot contain any proper divisors of the odd number 101, since upon 

division there is always a nonzero remainder. Therefore, the potential proper divisors of the odd number 101 

must lie solely within the generated proper subset of odd numbers. This observation highlights a fundamental 

property of partitions of integers and their implications for identifying potential divisors of odd numbers. 

 

In order to obtain the set of all odd numbers less than 101 to help in identifying all potential proper divisors of 

the odd number, we take the union of the generated set of odd numbers and the set of all odd numbers in the 

interval [1, (
1

2
(2𝑛 + 1) − 1)] . The set of all odd numbers generated then becomes 

{1,3,5,7,9,11,13,15,17,19,21,23 , 25,27,29,31,33,35,37,39,41,43,45,47,49} ∪ {51,53, 
55,57,59,61,63,65,67,69,71,73,75,77, 79,81,83,85,87,89,91,93,95,97,99} = {1,3,5,7,9,11,13,15,17,19,21,23, 

25, 27,29,31,33,35,37,39,41,43,45,47,49, 51,53, 55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85, 

87,89,91,93,95,97,99}, the set of all odd numbers less than 101.  

 

Since the odd number 101 is also prime, it follows that from the list of all odd numbers less than 101 we only 

obtain one proper subset {1} containing only one proper divisor of 101. 

 

Example 2 

 

Let 2𝑛 + 1 =  99 and 𝑑 = (
1

2
× ((2𝑛 + 1) − 1)) − 1 = (

1

2
(99 − 1)) − 1 = 49 − 1 = 48.   

 

Step 3: we generate the set of all odd numbers, belong to the half-closed-open interval [1, (
1

2
× ((2𝑛 + 1) −

1))] of natural odd numbers. This set equals {1,3,5,7,9,11,13,15,17,19,21,23 

, 25,27,29,31,33,35,37,39,41,43,45,47}. 

 

With 𝑑 = 48 and  the set of all odd numbers {1,3,5,7,9,11,13,15,17,19,21,23 

, 25,27,29,31,33,35,37,39,41,43,45,47, }, we partition 99 as follows: 

 



 
 

 

 
Ndegwa et al.; Asian Res. J. Math., vol. 20, no. 5, pp. 28-37, 2024; Article no.ARJOM.117263 

 

 

 
34 

 

Partition 1: (99) − (48 + 1) = 50                                Partition 11: (99) − (48 + 21) = 30 

Partition 2: (99) − (48 + 3) = 48                                Partition 12: (99) − (48 + 23) = 28 

Partition 3: (99) − (48 + 5) = 46                                Partition 13: (99) − (48 + 25) = 26 

Partition 4: (99) − (48 + 7) = 44                                Partition 14: (99) − (48 + 27) = 24 

Partition 5: (99) − (48 + 9) = 42                                Partition 15: (99) − (48 + 29) = 22 

Partition 6: (99) − (48 + 11) = 40                              Partition 16: (99) − (48 + 31) = 20 

Partition 7: (99) − (48 + 13) = 38                              Partition 17: (99) − (48 + 33) = 18 

Partition 8: (99) − (48 + 15) = 36                              Partition 18: (99) − (48 + 35) = 16 

Partition 9: (99) − (48 + 17) = 34                              Partition 19: (99) − (48 + 37) = 14 

Partition 10: (99) − (48 + 19) = 32                            Partition 20: (99) − (48 + 39) = 12 

Partition 21: (99) − (48 + 41) = 10                            Partition 24: (99) − (48 + 47) = 4 

Partition 22: (99) − (48 + 43) = 8                              Partition 23: (99) − (48 + 45) = 6 
  

We then obtain the union of the two proper subsets of odd numbers as in example 1 as 

{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 
 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97}. From the set of all odd numbers less 99 

we generate the proper subset of all proper divisors of 99. The proper divisors of 99 ,excluding 99 itself 

are{1, 3, 9, 11, 33}. 
 

Perfect numbers are integers that equal the sum of their proper divisors, excluding the numbers themselves. 

Considering the odd number 99, if it were an odd perfect number, the sum of its proper divisors, namely 1, 3, 9, 

11, and 33, should equal 99. However, the actual sum of these divisors is 57, leading to a contradiction. Thus, it 

is evident that 99 cannot be an odd perfect number, as 1 + 3 + 9 + 11 + 33 does not equal 99.  
 

This result reinforces the absence of odd perfect numbers in the domain of positive integers and what is left is to 

show that this pattern will follow for any odd number 2𝑛 + 1. It is therefore important to show that any odd 

number 2𝑛 + 1 can be partitioned into all pairs of odd numbers. 
 

3.1 Utilization of online divisors calculator for larger odd numbers 
 

The exploration of divisors plays a fundamental role in understanding the properties of integers. Proper divisors, 

which are all the positive divisors of a number excluding the number itself, are particularly important in various 

mathematical investigations. However, as numbers grow larger, calculating their divisors becomes increasingly 

complex and laborious, especially for odd numbers with potentially numerous divisors. In such cases, the 

utilization of online divisors calculators can significantly ease the computational burden and expedite the 

process of identifying and analyzing the divisors of large odd numbers. These tools leverage computational 

algorithms to efficiently generate and list all the proper divisors of a given odd number, aiding mathematicians 

and researchers in their exploration of number properties and relationships. This paper explores the practical 

application of online divisors calculators for larger odd numbers, demonstrating their utility in modern 

mathematical investigations and problem-solving. 
 

Example 3 
 

Let 2𝑛 + 1 = 89993933723 , then using the online divisors calculator [15], we obtain the following 7 proper 

divisors of 89993933723:  
 

 
 

Fig. 1. Divisors of  𝟖𝟗𝟗𝟗𝟑𝟗𝟑𝟑𝟕𝟐𝟑 
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Remark 2 

 

Notice that the calculator identifies the number 89993933723 as its own divisor and therefore the set of its 

proper divisors are { 1, 37, 11777, 206527, 435749, 7641499, 2432268479}. Therefore the sum of the proper 

divisors of 89993933723 is 2440564069 which is not equal the number itself and therefore , 89993933723 

is not a perfect number. 

 

Example 4 

 

If we  Let 2𝑛 + 1 =  345939477235 , then using the online divisors calculator [15], we obtain the following 15 

proper divisors of 345939477235:  

 

 
 

Fig. 2. Divisors of 𝟑𝟒𝟓𝟗𝟑𝟗𝟒𝟕𝟕𝟐𝟑𝟓 

 

Remark 3 

 

The set of its proper divisors are {1, 5, 11, 55, 62459, 100703, 312295, 503515, 687049, 1107733, 3435245, 

5538665, 6289808677, 31449043385, 69187895447}. Therefore the sum of the proper divisors is 

106938495245 which is not equal the number itself and therefore , 345939477235 

 is not a perfect number. 

 

4 Proof of Nonexistence of Odd Perfect Numbers 

 
Theorem 4 

 

Odd perfect numbers do not exist 

 

Proof 

 

Let 2𝑛 + 1 be any odd number, based on the algorithm used to partition 99 and 101, the odd number 2𝑛 + 1 can 

be partitioned into all pairs of both even and odd numbers that makes it possible to generate a set containing all 

the odd numbers {1, ((2𝑛 + 1) − 1)}  less than 2𝑛 + 1 . Additionally, in section 2.1 on odd sums of odd 

numbers, it has been shown that the odd sums of odd numbers say 𝑛1 + 𝑛3 + 𝑛5 + ⋯ + 𝑛𝑖 = 𝑁, ∀𝑖 ∈ 𝑂, where 

𝑂 is the set of all odd numbers, is always odd. However, if all the values of 𝑛 forming 𝑁are all distinct prime 

numbers and  𝑁 is also a prime, it then follows that 𝑁  has only two divisors ( 1 𝑎𝑛𝑑 𝑁), and for this case, 

𝑁 cannot be a perfect number. If all the values of 𝑛 forming 𝑁are all distinct prime numbers or composite odd 

numbers and  𝑁 is composite, then there exist at least one proper divisor of 𝑁say 𝑞 such that 𝑞 (𝑚𝑜𝑑 𝑁)  =  0, 

the results in example1, example 2, example 3 and example 4, indicate that if 𝑁 is composite, at least one of the 

ultimate odd numbers used in forming 𝑁, is not a proper divisor of 𝑁 and this further shows that in this case 𝑁 

cannot be a perfect number. The proper divisors of even perfect numbers exhibit interesting patterns defining 

characteristic of perfect numbers. The proper divisors are typically arranged in pairs that multiply to the perfect 

number, reflecting the underlying mathematical relationships. For example, in the case of 28, the proper divisors 

are 1, 2, 4, 7, and 14, and they are arranged in pairs (1, 28), (2, 14), and (4, 7), where each pair multiplies to 28. 
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This pattern holds true for the proper divisors of all even perfect numbers. Additionally, the proper divisors of 

even perfect numbers exhibit another interesting relationship in terms of their multiples. Taking the example of 

28, we can observe that 1 is a multiple of 2, 2 is a multiple of 4, and 7 is a multiple of 14. Interestingly, the 

multiples of each pair of divisors add up to the perfect number itself. Specifically, 1 is a multiple of 1, 2 is a 

multiple of 2, 4 is a multiple of 4, 7 is a multiple of 7, and 14 is a multiple of 14, and the sum of these multiples 

is 28. This pattern holds for all even perfect numbers, where the proper divisors form pairs whose multiples sum 

up to the perfect number, illustrating a unique mathematical property of these numbers. This clearly shows that 

if N is a perfect number whose proper divisors are say 𝑝, 𝑞 𝑎𝑛𝑑 𝑚 then (𝑁 ÷ 𝑝) ∈ (𝑝, 𝑞, 𝑚) ,  (𝑁 ÷ 𝑞) ∈
(𝑝, 𝑞, 𝑚) and (𝑁 ÷ 𝑚) ∈ (𝑝, 𝑞, 𝑚). Taking the example of 28 whose proper divisors forms the set (1,2,4,7,14), 

we observe that (28 ÷ 2 = 14) ∈ (1,2,4,7,14), (28 ÷ 4 = 7) ∈ (1,2,4,7,14), (28 ÷ 7 = 4) ∈ (1,2,4,7,14)  and 

28 ÷ 14 = 2) ∈ (1,2,4,7,14). Notice that (28 ÷ 1 = 28), but the formation of the perfect numbers excludes the 

number itself. This property holds true for all even perfect numbers. Clearly if 𝑁 is a perfect number whose 

proper divisors form the set (𝑛1, 𝑛3, 𝑛5, … , 𝑛𝑖), then 𝑛𝑖|𝑁 ∈ (𝑛1, 𝑛3, 𝑛5, … , 𝑛𝑖),  , ∀𝑖 ∈ 𝑂,where 𝑂 is the set of all 

odd numbers. Let 𝑀 be an odd perfect number with proper divisors forming the set (𝑛1, 𝑛3, 𝑛5) where each 

proper divisor is a multiple of three of the next one, then each of the proper divisors divides 𝑁. To demonstrate 

this, let us consider the fact that if 𝑛1 = 2𝑛 + 1, then 𝑛3, = 3(2𝑛 + 1) = 6𝑛 + 3 and 𝑛5 = 3(6𝑛 + 3) = 18𝑛 +
9.since 𝑀 is a perfect number then 𝑀 = 2𝑛 + 1 + 6𝑛 + 3 + 18𝑛 + 9 = 26𝑛 + 13 , it then follows that each of 

the proper divisors should divide 𝑀 = 26𝑛 + 13 = 13(2𝑛 + 1). However, 2𝑛 + 1| 13(2𝑛 + 1) equals 13 

(𝑛1, 𝑛3, 𝑛5), 6𝑛 + 3 = 3(2𝑛 + 1) ∤ 13(2𝑛 + 1) since we obtain 
13

3
 (𝑛1, 𝑛3, 𝑛5), and 18𝑛 + 9 = 9(2𝑛 + 1) ∤

 13(2𝑛 + 1) since we obtain 
13

9
 (𝑛1, 𝑛3, 𝑛5), this shows that none of the proper divisors divides M which is a 

contradiction and therefore 𝑀 is not an odd  perfect number. If we consider the even perfect number 28 with 

proper divisors {1,2,4,7,14) , the proper divisors can be classified into two sets of multiples of 2 and 7 as {1,2,4} 

and {7,14} so that we can consider the odd numbers 1 and 7 as the seeds of the two sets respectively being 

multiplied by 2 to obtain the next proper divisor in the set. This pattern holds true for all even perfect number.  

Suppose 𝑄 is an odd perfect number formed by adding 5  multiple of three odd numbers with a seed 5  to 4 

multiples of three odd numbers with a seed 7 , then 𝑄 = 5 + 15 + 45 + 135 + 405 + 7 + 21 + 63 + 189 =
885. Clearly 135∤885 leading to a contradiction since 135 is a proper divisor and hence Q is not an odd perfect 

number. Based on this results we can conclude that if N is a potential odd perfect number with proper divisors 

such that 𝑁 = 𝑛1 + 𝑛3 + 𝑛5 + ⋯ + 𝑛𝑖 , then the possibility exit that at least one of the 𝑛𝑖 ∤ N  leading to a 

contradiction and hence N is not a perfect odd number.  

                                                                                                                                         ▪            

5 Conclusion  

  
The examination of partitions of odd numbers and their relationship to proper divisors has revealed distinct 

characteristics of odd perfect numbers. The results have illustrated that the properties and patterns observed in 

even perfect numbers, such as the formation of pairs of divisors whose multiples sum up to the perfect number, 

do not hold for odd perfect numbers. These findings culminate in a logical proof of the non-existence of odd 

perfect numbers, based on the inconsistencies in the divisibility and summation patterns of potential candidates. 

Overall, this manuscript contributes valuable insights into the elusive nature of odd perfect numbers and 

provides a foundation for further research in number theory.                            
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