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Abstract
Machine learning (ML) techniques applied to quantum many-body physics have emerged as a new
research field. While the numerical power of this approach is undeniable, the most expressive ML
algorithms, such as neural networks, are black boxes: The user does neither know the logic behind
the model predictions nor the uncertainty of the model predictions. In this work, we present a
toolbox for interpretability and reliability, agnostic of the model architecture. In particular, it
provides a notion of the influence of the input data on the prediction at a given test point, an
estimation of the uncertainty of the model predictions, and an extrapolation score for the model
predictions. Such a toolbox only requires a single computation of the Hessian of the training loss
function. Our work opens the road to the systematic use of interpretability and reliability methods
in ML applied to physics and, more generally, science.

1. Introduction

One of the main challenges of quantum many-body physics is the identification of quantum phases of
matter. Usually, physicists follow a traditional approach: with the help of physical intuition and educated
guessing, they determine an order parameter governing transitions. Recently, an alternative route has been
explored: machine learning (ML) algorithms can locate phase transitions, even in systems with highly
non-trivial order parameters [1, 2]. Since then, deep fully connected and convolutional neural networks
(CNNs) have been applied to detect phase transitions in a variety of physical models, for classical [1, 3–6],
quantum [2, 7–16], and topological [17–21] phase transitions with supervised [1, 3, 5, 13–18] and
unsupervised [2, 4, 6–12, 19–21] approaches as well as for experimental data [22–24]. Other examples
include ML models that do not leverage deep architectures [25, 26]. However, the development of tools to
build ML systems has generally outpaced the growth and adoption of tools to understand what they learn
(interpretability methods) and whether we can trust their predictions (reliability methods).

1.1. Interpretability
The lack of interpretability is now a widely recognized challenge in the computer science community [27–31]
especially when ML is applied to real-world problems like medical diagnosis, insurance cost estimation, etc.
In science, the lack of interpretability can be disturbing because the black-box behavior of the models
prevents us from learning anything about novel physics. Physicists are already addressing the need for
interpretation of ML models, but the majority of proposed methods is either restricted to linear and kernel
models [5, 6, 25, 32–36] or to the particular model architecture [12, 32, 37] or requires pre-engineering of
the data, which limits the results nonuniversally to a specific ML and physical model [21, 38]. An interesting,
largely model-agnostic method in the context of lattice quantum field theory was proposed in [16].
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1.2. Reliability
Another desired feature of ML models, which is intertwined with interpretability, is their reliability. A reliable
ML model informs a user if its decisions are uncertain or result from pure extrapolation [39]. In computer
science, the reliability is especially important in the context of safety-critical problems or adversarial attacks,
i.e. careful perturbations of input samples that aims to mislead the ML model on the test set [40]. While data
sets of physical interest are not endangered by such intentional attacks, adversarial ML tells us that tiny noise
in the input may completely derail the model prediction. Moreover, while the reliability of ML in everyday
problems can often be controlled by humans checking the predictions, it is improbable for, e.g. unknown
phase diagrams. Nevertheless, the reliability of ML is not yet properly addressed in physics. While Bayesian
ML, i.e. the most popular approach providing the uncertainty of predictions, proved to be a promising
direction in molecular dynamics [41], it is generally difficult and needs a specific model architecture.
Therefore, there is a great need for more model-agnostic tools to estimate the uncertainty of ML predictions.

1.3. Goal of the paper
To address the need for interpretability and reliability in the detection of phase transitions with ML methods,
in this work, we apply four ML interpretability and reliability tools to the CNN trained in a phase
classification problem. To better understand what a ML model learns, we extract the concept of similarity
between input data from a machine. As a result, we can find out what is the relation between data according
to the ML model and deduce what features are important for the classification. To this end, we employ and
compare influence functions [42, 43] and relative influence functions (RelatIFs) [44]. Moreover, we address
the need for model-agnostic assessment of the uncertainty of model predictions. We present resampling
uncertainty estimation (RUE) [45], which allows for generating analogues of error bars for ML model
predictions. Finally, we apply a tool called local ensembles (LEs) [46], which warns a user if a ML model
makes predictions with a high level of extrapolation. We present these methods on the neural network
trained to detect the quantum phase transition in the one-dimensional (1D) spinless Fermi–Hubbard model.
The four methods require a single calculation of the Hessian of the training loss. Together, they form a
Hessian-based toolbox that can be applied to any ML model and any learning scheme that relies on the
calculation of the test and training loss functions and therefore finds application outside of physics and the
detection of phase transitions.

1.4. Structure of the paper
This paper is structured as follows. Section 2 describes the used interpretability and reliability ML methods
along with the Hessian and the concept of similarity. Section 3 presents and discusses the numerical results.
Sections 3.3 and 3.4 concern tools that increase interpretability of the ML model, i.e. influence functions and
relative influence functions (RelatIFs). Sections 3.5 and 3.6 focus on increasing the reliability of the model by
assessing the extrapolation score (LEs) and uncertainty of the model predictions (RUE). Section 4
summarizes our paper and presents future possible applications and extensions.

2. Methods

2.1. Supervised learning
Throughout this work, we focus on supervised ML classification problems with labeled training data
D = {zi}ni=0, with zi = (xi,yi) where n is the size of the training set. The input data comes from an input space
xi ∈ X , and the labels are yi ∈ {0, . . . , c− 1 }, where c ∈ N is the number of classes in a given problem. In our
setup, the inputs xi are the state vectors of a given physical system, and yi are the corresponding phase labels.

A model, f (in our case a CNN), is determined by the set ofM parameters θ = {θ0, . . . ,θM−1}. The
number of parameters,M, in our case is of an order of thousand. For a given input x, the model outputs
a real-valued c-dimensional vector, fx = f(x;θ). The output encodes the prediction of the model,
y ′ = argmax(fx). E.g., for a two-class problem, fx could be [0.1,0.9], which would correspond to predicting a
label y ′ = 1. Elements of the output vector fx tend to be connected to probabilities of the input belonging to
the corresponding classes. However, this interpretation can be misleading in the presence of data set shift
[47, 48] or non-uniformity of errors [49]. Finally, the training process consists in searching the parameter
space for the optimal parameters θ̃D ≡ θ̃ of the ML model, which minimize the empirical risk
L(D,θ) = 1

n

∑
z∈DL(z,θ), also called the training loss, where L is the loss function.

2.2. Hessian and curvature
The four interpretability and reliability methods discussed in this work are all based on local perturbations of
the loss function. They study how a particular action, e.g. removal of a training point, changes the model
parameters. This change, in turn, impacts the prediction of the model at a test point, y ′test. The change of the
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model parameters caused by some action can be approximated using the Hessian matrix of the empirical risk
(training loss) calculated at the minimum of the loss landscape at θ̃, namely (Hθ̃)ij = ∂2

θiθj
L(D,θ)|θ=θ̃ . Hθ̃

describes the local curvature around the minimum point reached within the training. The eigenvectors of
Hθ̃ corresponding to the largest positive eigenvalues indicate directions with the steepest ascent around the
minimum. The high curvature implies that the training data strongly determines the model parameters
along that direction5. In contrary to the common intuition, the training of a ML model leads to a local
minimum or a saddle point [50, 53, 54]: the vast majority of the eigenvalues is close to zero, indicating
various flat directions and some small negative eigenvalues are also present, indicating directions with
negative curvature. Such a non-positive curvature around the minimum, in general, does not affect the
quality of the model predictions but may cause problems when working with the Hessian.

All the methods we study in this work approximate how the change of parameters impacts the model
predictions, but the reason for the change of parameters is different for each method. Influence functions
and RelatIF study the removal of a single training point from a training data set, RUE analyzes training on
various samples of the training data set, while LEs modify model parameters in the flat directions of the
Hessian. These methods aim to answer different questions regarding the reliability and interpretability of the
model, and we will discuss them in detail in the following sections.

2.3. Leave-one-out training, influence function, similarity, and relative influence function
2.3.1. Leave-one-out training
Let us consider a model trained on n training points and making a prediction at a test point. Now, we remove
a single training point zr from the training setD,D→D\zr , retrain the model, and check the influence of
this removal on the test loss. If the prediction is now worse (resp. better), i.e. the test loss is higher (resp.
lower), then zr is a helpful (resp. harmful) training example for this specific test point. If the prediction stays
the same, zr is not influential to this prediction. With such an analysis, called leave-one-out (LOO) training,
we can therefore judge how influential a certain training point is for a test prediction.

2.3.2. Influence functions
Retraining the model is, however, expensive, and an approximation of the LOO training was proposed and
named influence functions [55–57]. It was then ported to ML applications by Koh and Liang [42, 43]. The
influence function reads:

I(zr,ztest) =
1

n
∇θL(ztest, θ̃)TH−1

θ̃
∇θL(zr, θ̃)≡

1

n
∇LT

testH
−1
θ̃

∇Lr, (1)

and it estimates the change of the test loss for a chosen test point ztest after the removal of a chosen training
point zr.∇θL(ztest, θ̃) is the gradient of the loss function of the single test point, and∇θL(zr, θ̃) is the
gradient of the loss function of the single training point whose removal’s impact is being approximated. Both
are calculated at the minimum θ̃ of the training loss landscape.

2.3.3. Geometrical interpretation
The influence function (1) can be written as the inner product of−∇Ltest and−H−1

θ̃
∇Lr [44], where the

term−H−1
θ̃

∇Lr describes an approximated change in parameters θ̃ → θ ′ due to the removal of the training
point zr (for a derivation, see appendix A of [42]). This formulation emphasizes the geometric interpretation
of influence functions, which is a projection of the approximated change in parameters due to the removal of
a training point onto the test sample’s negative loss gradient (see figure 1(b)). The term−H−1

θ̃
∇Lr can also

be understood as a Newton step [58] towards a new minimum resulting from a removal of zr. Note that the
same term involves scaling by the inverse of eigenvalues of H−1

θ̃
. In other words, we see that the influence

function is a scalar product of the gradients∇Ltest and∇Lr accounting for a local curvature of the loss
landscape described by Hθ̃ . The resulting value of influence functions depends on two factors: how similar
are the test and the removed training point and how representative they are in the data set.

2.3.4. Similarity measure
Firstly, the more similar the test point and the removed training point are, the larger is the value of the
influence function between them. More specifically, the largest influence is for the change in parameters

5 If themodel parameters are varied along directions of the steepest ascent around theminimum, i.e. along the eigenvectors corresponding
to the largest positive eigenvalues of the Hessian, the value of the training loss function changes the most. In other words, these directions
are bounded themost by the training data. There are also two empirical observations supporting this claim. Firstly, numerical simulations
on the example of a one-dimensional nonlinear regression problem show that gradients of training examples lie along the directions of
the highest curvature [45]. Secondly, the analysis of the Hessian spectrum shows that in deep learning problems number of directions
with a significant ascent around the minimum is equal roughly to the number of classes in the problem minus one [50–52].
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Figure 1. (a) The scheme of this study’s scope. The ML problem starts with a model depending on parameters θ. Training a model
consists in finding optimal parameters θ̃ which minimize a training loss function, L(D), calculated for the training data set,D.
The Hessian of the training loss at the minimum, Hθ̃ , describes the curvature around the minimum and is a basis for four
methods which provide the notion of similarity (influence and relative influence functions), estimation of uncertainty (RUE) and
extrapolation score (LEs) of the model prediction. They give insight into the reliability and interpretability of the model after its
training. (b) All four methods address the change in the model’s predictions due to various actions. This change can be
approximated by analyzing the projection of the gradient of the test loss (black arrows) and the gradients of training points (green
arrows) corrected for the local curvature described by the Hessian. An outlier (blue arrow) is here a training point being very
different from an average one in a data set. Blue dashed lines are large projections of the outlier gradient corrected by the local
curvature onto the gradients of the test points.

which is along the direction of∇Ltest. It happens when the gradients∇Ltest and∇Lr are aligned in the
parameter space, corrected for the local curvature of the loss landscape, so when the test point, ztest, is similar
to the removed training point, zr. Note that by similarity here we understand the distance in the model’s
internal representation, so in the model’s parameter space, corrected by the local curvature described by the
Hessian. This similarity is different than, e.g. similarity as a distance of input vectors zr and ztest in the input
space X or the similarity in the Euclidean parameter space. In particular, the predictive model and especially
neural networks can be highly nonlinear and may use an internal representation in which similar (close)
points are far away in both the input and the Euclidean parameter space. We can then define a model’s
similarity measure between data points zi and zj equal to [45]:

S(zi,zj) = [∇θL(zi, θ̃)TH−1
θ̃

∇θL(zj, θ̃)]2 ≡ [∇LT
i H

−1
θ̃

∇Lj]
2 ∝ I(zi,zj)2. (2)

2.3.5. Representative data and outliers
The second factor impacting the value of the influence function (and therefore the similarity measure) is the
direction along which∇Ltest or∇Li lie. For example, the gradient may be aligned with the eigenvectors of
Hθ̃ corresponding to the largest eigenvalues, which are the directions where the training data strongly
determines the model parameters. Such an alignment happens for the most common or representative data
points. The gradient also can point in the direction of one of many eigenvectors with almost zero eigenvalues,
which may happen for distinct or unrepresentative data points called outliers. Due to projection onto the
inverse of Hθ̃ and scaling by the inverse of corresponding eigenvalues, the influence function is larger for
gradients pointing in the flat curvature of Hθ̃ than for gradients pointing to the high curvature. Therefore,
the values of influence functions between two data points are determined by how similar the two data points
are from the model’s perspective and how representative these data points are in the data set.

2.3.6. Sensitivity to outliers
A careful reader notices that influence functions as well as the similarity measure S(zi,zj)may then be
sensitive to outliers, i.e. data points with extreme values that significantly deviate from the majority of data
points [59]. The removal of such an outlier can cause a large change in parameters. Therefore, the outlier is
likely to have a large influence on a wide range of test samples, having a global effect on the test set. This
global effect is visualized in figure 1(b), where the blue gradient of the outlier projected onto the inverted
Hessian space has large projection lengths with the gradients of two very different test points. Conversely, the
removal of a typical training example zi whose gradient points towards high curvature of the Hessian (green
arrows in figure 1(b)) causes a small change in parameters and has a significant influence only for similar test
points (circled in red in the figure).
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2.3.7. RelatIF
Barshan et al [44] proposed then a variant of influence functions that takes advantage of the similarity
measure but eradicates the influence of unrepresentative data points and outliers. The method is called
RelatIF and restricts the pool of influential points to the most similar ones (see the gradients circled in red in
figure 1(b)). Mathematically, it amounts to introducing a normalization to the influence function’s formula:

IR(zr,ztest) =
I(zr,ztest)

||H−1
θ̃

∇θL(zr, θ̃)||
=

1
n∇LT

testH
−1
θ̃

∇Lr

||H−1
θ̃

∇Lr||
. (3)

Both tools increase the interpretability of the ML model by indicating what the model regards as similar. The
influence functions’ focus on the unrepresentative data points also allows one to judge the model’s reliability
by finding outliers in the training data set. The model’s reliability is the central issue addressed by two other
methods discussed in this work, namely RUE and LEs.

2.4. Resampling uncertainty estimation
The RUE [45] aims at assessing the uncertainty of predictions of the ML model. It can be applied to the
already trained model and requires no specific architecture or learning scheme in contrast to, e.g. Bayesian
methods, which are the most common approach in ML for assessing uncertainty [60, 61]. The RUE method
makes use of two important criteria to judge whether a prediction is reliable: the density criterion and local
fit criterion [45]. The density criterion states that a prediction at the input ztest is reliable if there are samples
in the training data that are similar to ztest. The local fit criterion states that a prediction at the ztest is reliable
if the model has a small error on samples in the training data similar to ztest. Both criteria hinge upon a
measure of similarity defined in equation (2) and can be addressed with the bootstrap sampling.

To quantify uncertainty, the RUE algorithm makes b ‘bootstrap’ samples created by sampling with
replacement from the uniform distribution over the original training data set. Let us start from the original
data setD containing each training data point once, indicated with the short-hand notation byD[1,1, . . . ,1].
We can then create a bootstrap sample by drawing the same point more than once and omit others, e.g.
Db[2,0,3, . . . ,1,0], which stands for taking twice the first training example, omitting the second training
example, etc. If a ML model trained onD[1,1, . . . ,1] converges to parameters θ̃, bMLmodels trained on b
different bootstrap samples converge to similar model parameters θ ′

b. Now we can make b predictions at the
same test point ztest with bMLmodels and calculate the variance of the test loss across these bmodels. Small
variance means that a prediction of the original model can be trusted, while large variance means that it is
not reliable. Intuitively, this variance estimates how much the model prediction would change if we fitted the
model on different data sets drawn from the same distribution as the original training data. This intuition is
connected to the idea of the classical bootstrap [62].

As for the LOO training, such a retraining procedure is prohibitively expensive. Therefore, one can make
a similar approximation of the change of the model parameters due to the removal of some training
examples and adding copies of others to the training set within a bootstrap sample. We can approximate the
new parameters via:

θ ′
b ≈ θ̃−H−1

θ̃
· L ·w∆b , (4)

where w∆b is a vector of differences between the composition of the originalD[1,1, . . . ,1] andDb. E.g., for
Db[2,0,3, . . . ,1,0], w∆b is [1,−1,2, . . . ,0,1]. L is a matrix of all the n single training loss gradients w.r.t. every
model parameter, so it has the sizeM× n, and it takes the form L= [∇θL(z0, θ̃), . . . ,∇θL(zn−1, θ̃)]

T. In the
next step, one generates predictions at a test point with bmodels with approximated parameters θ̃b,
obtaining b test losses based on fb = f(θ̃b,xtest). Finally, we calculate the variance of b test losses, i.e. the
average of the squared deviations from the original test loss.

2.5. Extrapolation score with local ensembles
We say the prediction at a test point is underdetermined if many different predictions are equally consistent
with the constraints posed by the training data and the learning problem specification (i.e. the model
architecture and the loss function). An example of such behavior is when a model trained on the same
training data arrives at different predictions depending on the choice of a random seed and, therefore, relies
on arbitrary choices outside the learning problem specification. Intuitively, underdetermination can be
understood as the model converging during the optimization process to various distinct points in a flat basin
forming a minimum. As discussed in section 2.2, the training data puts limited constraints on the flat
directions around the minimum. However, changing the model parameters in these directions still can
impact predictions at test points drawn from a different distribution than the training set, i.e. so-called
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out-of-distribution (OOD) test points [63]. A reliable model should warn the user when making a prediction
at such a test point.

LEs are a method to detect the underdetermination at test time in a pre-trained model [46]. LE consists
of local perturbations of the parameters of the trained model that fit the training data equally well, i.e. have
the same value of training loss. In other words, we perturb the parameters of the model only in the directions
of the Hessian eigenvectors corresponding to close to zero eigenvalues, meaning we explore only flat basins
around the minimum. Analogously to RUE, the next step is to make predictions at the same test point ztest
with LE models and calculate the variance of the test loss within the LE. Madras et al [46] found an even
simpler approximation of this variance for a test point, ztest, and named it a LEES:

Em(ztest) = ||U⊤
m∇θL(ztest, θ̃)||2 = ||U⊤

m∇Ltest||2. (5)

Um is a matrix of (M−m)Hessian eigenvectors spanning a subspace of low curvature, i.e. after removingm
eigenvectors corresponding to largest eigenvalues and, therefore, to directions with the highest curvature,
which are well-constrained by training data. The authors of the method admit that choosingm is not a trivial
task, with the danger of omitting under-constraint directions ifm is set too high or including well-constraint
directions ifm is set too low. In this work, we choose the smallest possiblem for which Em starts to converge
for all test points (m= 12 in figure 5).

2.6. Practical aspects of the Hessian computation
A careful reader may have noticed two numerical challenges resulting from equations (1)–(5). Firstly, the
calculation of influence functions, RelatIF, and RUE requires inverting the Hessian of a training loss
which in deep learning is known to be highly non-convex [64]. As we pointed out in section 2.2, the
optimization usually leads to a critical point with a majority of flat or almost flat directions (corresponding
to eigenvectors with zero or close to zero eigenvalues) and a small number of directions of negative curvature
(corresponding to eigenvectors with negative eigenvalues). The inverse of a matrix exists only if it is
positive-definite (has only positive eigenvalues). Therefore, Koh and Liang proposed to add a damping
term to the Hessian [42], λ I, with I being the identity matrix and λ being larger than the absolute value of
the largest negative Hessian eigenvalue, |E0|. It is equivalent to L2 regularization [44] and amounts to
shifting all eigenvalues by λ, guaranteeing the existence of the Hessian inverse. Regardless of the exact value
of the damping, the Hessian-based toolbox keeps giving meaningful results [42]. We usually choose
λ≈ |E0|+ 0.01, except for RUE where the authors explicitly state that the smallest eigenvalue of the damped
Hessian needs to be around one, rendering λRUE = λ+ 1.

Secondly, the calculation of the Hessian matrix for a model with a large number of parameters can be
very demanding. Fortunately, we do not need to calculate the full Hessian, only Hessian-vector products (e.g.
H−1

θ̃
∇Lr in equations (1) and (3)) or the top part of the Hessian spectrum, which significantly reduces the

computational complexity of the problem [65]. The inverse of the Hessian for influence functions, RUE, and
RelatIF can be approximated with so-called stochastic approximation with LiSSA [65]. Additionally, the
authors of RelatIF approximated the normalization factor in equation (3) with a method related to K-FAC
[66]. On the other hand, LE needs no inverse but an ensemble subspace of eigenvectors with zero or close to
zero eigenvalues. The authors of LE proposed to use the Lanczos iteration [67] to calculatem eigenvectors
with the largest eigenvalues, build anm-dimensional subspace (of highest curvatures), and create its
orthogonal complement, namely the ensemble subspace (of flat directions). There is also a Python library
called PYHESSIAN designed to tackle Hessian-based problems [68]. Within this paper, however, we calculate
the Hessian explicitly, due to the limited size of our neural network.

3. Results

In this section, we present how the interpretability and reliability methods described in sections 2.3–2.5
extract additional information from a trained model allowing for a better understanding of its predictions
and the physics underlying the learned problem.

3.1. Physical model
We show the functionalities of the four interpretability and reliability methods on the example of a CNN
trained to recognize phases of the spinless half-filled one-dimensional (1D) Fermi–Hubbard model [69].
This model describes fermions hopping between neighboring sites with amplitudes J (set to 1 throughout the
paper) and interacting with nearest neighbors with strength V1,

Ĥ=−J
∑
⟨i,j⟩

c†i cj +V1

∑
⟨i,j⟩

ninj, (6)
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Figure 2. The transition line learned by a ML model. (a) Order parameter, OCDW−I, governing the transition is the average
difference between the nearest-site densities. It is zero in the Luttinger liquid (LL) phase, and grows to 1 in the charge-density
wave (CDW-I) phase. (b) Schematic representation of two phases. The LL phase is uniform, while the CDW-I phase is
characterized by a density pattern 1010.

where c†i and ci are fermionic creation and annihilation operators at site i, respectively, and ni = c†i ci
is the number operator. We calculate eigenvectors with exact diagonalization using QuSpin and SciPy
packages [70, 71]. The detailed description of the data set can be found in our previous work [72]. We focus
on a single transition line resulting from a competition between hopping and nearest-neighbor interaction,
presented in figure 2. It starts in the gapless Luttinger liquid (LL) phase, and the increase of V1 leads to a
phase transition to a gapped charge-density wave (CDW-I) with density patterns 1010 [73, 74]. The order
parameter describing the transition, OCDW−I, is the average difference between the nearest-neighbour
densities. It is zero in the LL phase and grows to 1 in the CDW-I phase.

3.2. Similarity learned by aMLmodel
We feed the CNN with ground states expressed in the Fock basis, labeled with their appropriate phases,
calculated for a 12-site or 14-site system. The architectures of the used CNNs are presented in appendix B.
Intuitively, we could expect that the most similar quantum states, according to the ML model, are those
generated for the most similar V1. Instead, as we showed in [72], the similarity learned by the ML model is
based on the order parameter (or something related to it), as it is a much better discriminator between the
phases. Therefore, a well-trained model sees all LL data points as very similar (as they all have a zero order
parameter), while the similarity of CDW-I data points depends on V1 (on this side, the order parameter
continuously goes up from 0 to 1).

3.3. Comparison between influence and relative influence functions
While in [72] we studied in detail the potential of influence functions for interpretability, we here focus on
the differences between influence functions and relative influence functions (RelatIFs). To this end, we train a
CNN on the eigenvectors of the 12-site 1D Fermi–Hubbard model with the labels indicating phases they
belong to, i.e. LL or CDW-I. We then analyze the trained model with influence functions (equation (1)) and
RelatIFs (equation (3)) and present results in figure 3. Each column of figure 3 presents both methods
calculated for the same test points, indicated by the orange vertical lines. In the case of influence functions
(first row of figure 3), the most helpful training points are the most similar to the test point and the most
unrepresentative in the data set. RelatIFs, presented in the second row of figure 3, are expected instead to
ignore how representative data is and to indicate the most similar training points to the test point, paying less
attention to outliers.

3.3.1. Behavior in the CDW-I phase
The usefulness of RelatIF can be seen in the last column of figure 3 when comparing influence functions and
RelatIFs calculated for the whole training set and the test point located deeply in the CDW-I phase (panels
(c) and (f), respectively). According to influence functions, the location of the most helpful points balances
between those being the most unrepresentative (close to the phase transition) and most similar (with the
most similar order parameter). As a result, the most helpful points do not follow the test point into the deep
region of the CDW-I phase but get stuck instead. RelatIF ignores how representative data is, and the five most
helpful training points follow the test point much deeper to the CDW-I phase because they have the most
similar order parameter. Let us now compare the results for the test point in the transition regime in panels
(b) and (e). Influence functions and RelatIFs yield here nearly the same results. The test point is in the
unrepresentative regime, so the RelatIF’s correction is not needed to observe which data is, in reality, most
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Figure 3. Influence functions (I) vs. RelatIFs (IR). (a)–(c) Influence functions and (d)–(f) RelatIFs between the training set and
the single test point indicated by the orange vertical line. Every column analyzes the same test point. We mark the five most
helpful (harmful) training points with green (red) color. Blue (purple) training points belong to the LL (CDW-I) phase. We mark
the transition point with the change of the background color.

similar. Still, values of RelatIFs for CDW-I points are much closer to each other than values of influence
functions due to a smaller focus on distinctive points close to the phase transition.

3.3.2. Model-agnostic RelatIFs
A careful reader who is familiar with our previous work [72] may notice that in this previous work, influence
functions for test points located deeply in the CDW-I phase have a different pattern than in figure 3(c). We
discuss this observation in appendix B. The key point is that different influence patterns may, in particular,
be caused by a different level of the ML model’s focus on outliers. In this sense, RelatIFs, which apply a
correction for the model’s focus on unrepresentative data, are more model-agnostic.

3.3.3. Behavior in the LL phase
Finally, let us compare panels (a) and (d) of figure 3 with the test point located deeply in the LL phase.
RelatIFs’ values of the LL training points in panel (d) form a more flat line (are less varied) than
corresponding influence values in panel (a). In other words, RelatIFs indicate that the LL points are more
similar to each other, which agrees with the zero order parameter of the LL. Now let us compare the most
influential training points between the methods. The five most helpful training points (marked in green),
according to influence functions in panel (a), are LL data points closest to the transition, while the five most
harmful training points (marked in red) are CDW-I data points closest to the transition. They are the most
similar to the test point but labeled oppositely, so they confuse the model. RelatIFs indicate the same training
points as the most harmful, as the logic behind it is independent of the data representativeness. However,
the most helpful points in panel (d) are shifted deeper towards the LL phase than in panel (a). With
unrepresentative data being less important, this is the desired direction, i.e. taking the most helpful points
further away from the unrepresentative transition regime. The persistent non-zero slope of the LL points
may result from the imperfect removal of the impact of unrepresentative data by the RelatIF normalizer and
the finite-size effect present in the 12-site Fermi–Hubbard model.

Therefore, we can study the similarity with influence functions unless the model focuses predominantly
on outliers. However, as we present in the next section, we can use influence functions’ property to focus on
outliers to our advantage for anomaly detection. When we need to study similarity, RelatIFs provide a needed
correction to ignore how representative data points are.

3.4. Influence functions for anomaly detection
We continue working with the data set of the eigenvectors of the 12-site 1D Fermi–Hubbard model with
labels. The global sign of such an eigenvector is not a physical observable, and therefore a well-generalizing
model may ignore this property. To challenge this intuition, we prepare two data sets differing only in the
distribution of the global sign. The first data set is composed of a large majority of positive-sign eigenvectors
and several negative-sign eigenvectors. In the second, half of the eigenvectors have a positive global sign and

8



Mach. Learn.: Sci. Technol. 3 (2022) 015002 A Dawid et al

Figure 4. Influence functions between the training set and the single test point indicated by the orange vertical line. We mark the
five most helpful (harmful) training points with green (red) color. Blue (purple) training points belong to the LL (CDW-I) phase.
We indicate the transition point by the change of the background color. (a) Influence functions show anomalies in the training
data. Here, in the sign-imbalanced data set, training points diverging from the smooth lines are negative-sign points. (b) In the
sign-balanced data set, influence functions form two subgroups. The first one is created by the training points with the same
global sign as the negative-sign test point, the other—with the opposite sign. The ML model is not truly invariant with respect to
this property, even if the classification accuracy is high. Note the use of the symmetric-log scale.

the other half—a negative global sign. We call them the ‘sign-imbalanced’ and ‘sign-balanced’ data sets,
respectively.

3.4.1. Detection of outliers
The CNN trained on the sign-imbalanced data set has high accuracy on positive-sign test points. Regarding
negative-sign test points, the CNN correctly classifies them on the CDW-I side but has lower accuracy on the
LL side. This suggests that the ML model grasped the global-sign invariance only to a limited level.
Figure 4(a) presents the influence functions between the training data and the single positive-sign test point
near the transition (marked with the orange vertical line). The pattern is dominated by two smooth lines on
both sides of the phase transition, formed by positive-sign training points, as in figure 3(b) in the previous
section. However, there are several single training points that are outside the continuous patterns. These
‘outsiders’ are negative-sign training points that the model regards as distinct from positive training points,
in the sense of the similarity as described in section 2.3. Influence functions then immediately pinpoint
anomalies in the training data and improve the reliability of the model. The non-zero influence of the
outliers and the decent test accuracy on negative-sign points indicate that the model gains some information
from a minority of negative-sign training points. However, a model can develop different similarity measures
depending on the training process and its architecture. For example, all anomalies (or outliers) can have zero
influence regardless of the test point. It shows that the model ignores them during the training (which may
be encouraged by large regularization), and we could further use such knowledge to improve the model.

3.4.2. Global sign (in)variance of the ML model
We also train a CNN on the sign-balanced data set. The model achieves high accuracy on both positive- and
negative-sign test data, suggesting that it learns the global-sign invariance and ignores this property in the
decision-making process. This would mean the model is genuinely invariant to the global sign. We check this
interpretation with influence functions plotted in figure 4(b) and calculated for the whole sign-balanced
training set and the single negative-sign test point marked again with the orange line. If a model is
sign-invariant, we should reproduce the smooth patterns of figures 3(a)–(c). Surprisingly, the training points
form two subgroups of influence, following their global sign. The subset of training points with the same
global sign as the test point reproduces the smooth shape of figures 3(a)–(c), while the subgroup with
opposite sign separates. The separation is the strongest near the transition. In the end, the most influential
training points are always the ones with the same global sign. Thus, if a feature, to the best of our knowledge,
is irrelevant for the classification, the model may still note the property. Again, this behavior and developed
concept of similarity depend on the architecture and training process. Still, in our numerical experiments, we
always arrived at a model that recognized the training points’ global sign.
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Figure 5. Detection of the CNN extrapolation. We plot the minimal test loss (i.e. assuming all predicted labels are correct) with a
purple line. We mark the LEES with blue triangles. Red vertical lines symbolize OOD test points. All OOD test points have a
higher extrapolation score, but not always they are detected by a minimal test loss. We mark the transition point with the change
of the background color. Note the symmetric log scale in the x-axis.

3.4.3. Strategies to make a ML model invariant
Therefore, we see that having a ML model that is truly invariant to some properties may be a challenging, yet
highly rewarding task. A convincing example is [24], studying experimental Floquet data, where a property
called micromotion had no impact on physical phases in the system but was consistently recognized by a ML
model, rendering unsupervised phase classification ineffective. In the end, the authors processed the
experimental data with a variational autoencoder, effectively removing this property. Another approach
would be using domain adaptation neural networks, which could be trained towards ignoring a chosen
property [75].

The results presented so far concern two methods: influence functions and RelatIFs. Both analyze the
relation between a test point and training point and are especially useful for analyzing the training data or
the similarity learned by a model. When assessing the reliability of ML model predictions, more appropriate
tools are LEs and RUE.

3.5. Extrapolation score with local ensembles for out-of-distribution test points
We now challenge the concept of a test loss as a reliability measure. As we will show, the extrapolation score
with LEs highlights better OOD test points. To do so, we introduce in our test set a percentage of test
elements whose components are randomly permuted. A well-trained ML model, combined with a reliability
method, should be able to inform us of the OOD test points.

3.5.1. Minimal test loss
Let us start by looking at the loss function for every test point, plotted in figure 5 with a purple line. We here
use the minimal version of the loss function (i.e. assuming all predicted labels are correct, more details in
appendix A) to mimic a real-life scenario: we ask a trained ML model to make predictions at test points
whose labels we do not know. However, here we have access to the ground-truth labels, and we know the
model misclassifies the test points generated for V1/J ∈ [1,2.1]. The model wrongly predicts that the points
in this interval belong to the LL phase. We see that the minimum test loss in figure 5 is primarily smooth and
reaches a maximum around V1/J= 2.1. This is the predicted transition point of the model, i.e. for this test
point, the model outputs values corresponding to the LL and CDW-I class, which are very close to each
other.

3.5.2. LE-based extrapolation score
We then calculate the LEES of the CNN’s predictions at the same test set. We plot LEES values as blue
triangles in figure 5. Let us start with the analysis of LEES for the regular test points, ignoring the OOD test
points. A first observation is that LEES mostly follows the test loss, which we expect as by its definition LEES
is proportional to the gradient of the test loss. Secondly, LEES approaches zero for the predictions at the test
points deep in the LL and CDW-I phases. These examples are well-constrained by the typical training
examples, and the model needs no extrapolation to make its predictions. Thirdly, we also see that, while
LEES is close to zero for all the LL test points, it is not for the CDW-I side. This lack of symmetry is contrary
to the test loss, which is non-zero close to the transition, regardless of the phase. Strictly speaking, it means
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that the gradients of all LL test points are parallel to the gradients of the most typical LL training examples,
corrected for the local curvature of the loss landscape, i.e. parallel to some of the Hessian eigenvectors with
the largest eigenvalues, which we removed to build a flat LE. The ML model sees them as very similar, needs
no extrapolation to make predictions at them, and changes of parameters within the LE make no difference.
CDW-I test points, on the other hand, exhibit larger diversity, and the model reaches the same low
extrapolation level of its predictions as in the LL only deeply in the phase. This makes perfect sense if we
assume that two typical training examples representing two classes are ones with OCDW−I = 0 and 1,
respectively. Then we can explain LEES’ large values by combining two facts: firstly, it approximately follows
the test loss; secondly, it is larger for test points being far from the representative training example from the
appropriate class.

3.5.3. Fate of the OOD test points
We now focus on the OOD test points, marked in figure 5 with red vertical lines. On the one hand, if one
interprets the test loss as the uncertainty, the test loss should be enough to highlight the OOD test points as
the corresponding predictions should be less confident than those of the neighboring test points. Partially,
this intuition holds as we see significant jumps in test loss for some of the OOD test points, especially for
those deep in the CDW-I phase. However, the jumps corresponding to the OOD points are much less
prominent on the LL side and disappear completely when getting closer to the transition regime. In
particular, prediction at the OOD test point at V1/J= 2 is recognized as more confident than on the
neighbors, which further challenges the concept of the test loss as the uncertainty measure. On the other
hand, the LEES perfectly highlights each of them, being significantly larger for all OOD test points than its
neighbors. The CNN needs to extrapolate on these unseen, atypical test points which the LEs is detecting.
With this method, we can then have a neural network built and trained without any constraints, which
informs us of predictions made with a high extrapolation level. It is crucial for the predictions at OOD test
points, which are not detected at all by the test loss, here, e.g. those between V1/J= 0.75 and 2.

3.6. Resampling uncertainty estimation to identify the phase transition region
We finally use the RUE method to analyze the uncertainty of predictions of the ML model and therefore
identify phase transitions regions. In particular, it is known that finite size effects play a great role in the
analysis of phases and should be taken into account when predicting phase transitions. We, therefore, train
two copies of the same CNN architecture on two data sets, so on the eigenvectors of the 12-site and 14-site
1D Fermi–Hubbard model with labels corresponding to the LL or CDW-I phase. We choose a CNN
architecture that is invariant to the input size (see appendix B).

3.6.1. Visualization of RUE
To detect the quantum phase transition region, we calculate RUE for the whole test set uniformly spread
across the transition line. Figures 6(a) and (b) show the results for the CNNs trained on the 12- and 14-site
systems, respectively. We represent RUE as error bars as they are the variance of the test loss’ change under
the different sampling of the original training data6. It is important to note that we calculate RUE using the
minimal version of the test loss (see the discussion in appendix A), assuming that predicted labels are the
correct ones.

3.6.2. Transition regime and error bars
By construction, we know that the RUE indicates uncertainty caused by the limited number of training
examples being similar to the test point or due to the ML model making mistakes on training examples that
are similar to the test point. As a result, non-zero error bars cover the whole transition regime where the
model has troubles with classification. Note we use here a minimal loss function, so RUE has no information
on the ground-truth labels. Nevertheless, the error bars are the largest for the incorrect model predictions
(i.e. for V1/J in the interval [1,1.6] for 12 sites and [1,1.45] for 14 sites). RUE then manages to detect
misclassification of test points. Error bars are non-zero also for correct predictions (i.e. in the interval
[1.6,3.6] for 12 sites and [1.45,2.8] for 14 sites), but here RUE warns a user that the ML model made these
decisions based on the limited number of training data. Moreover, note that our choice of the phase
transition point (set to V1/J= 1) is to some level arbitrary for numerical reasons discussed in appendix A
of [72].

6 We could plot RUE as the error bars of the test loss along with the values of the test loss. However, in our case, various sampling of
training data set leads to the test loss’ change of the order of |0.001|, so around 0.1% of the test loss value, and plotting them together
would be infeasible. Secondly, we focus on the width of the regime where the error bars are non-zero, which is better visualized without
plotting the test loss values.
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Figure 6. RUE vs. the quantum phase transition width. (a), (b) RUE plotted as error bars of predictions of two CNNs with the
same architecture trained on the 12- and 14-site systems. The uncertainty regime is narrower for the 14-site system than for the
12-site one. (c) Order parameters across the same transition for the 12- and 14-site systems. Due to the finite-size effect, the
transition is sharper in the 14-site system than the 12-site.

3.6.3. Error bars for 12- and 14-site systems
More importantly, we see that these uncertainty regimes have different widths for two different system sizes
(see panels (a) and (b) of figure 6). If we set a threshold for RUE’s value to 5 × 10−5, the uncertainty regime
spans between 1 and 3.6V1/J for 12 sites and 1 and 2.8V1/J for 14 sites. It is a direct consequence of the
finite-size effect because of which the transition is sharper for the 14-site system than for the 12-site one.
Figure 6(c) depicts the order parameter OCDW−I for both system sizes, and one can clearly see a sharper
phase transition for larger system size. Due to the sharper transition and smaller number of test data with
low representation in the training data, the non-zero RUE regime is always narrower in the 14-site case,
regardless of the chosen threshold for the RUE’s value.

Therefore, RUE is a way of providing similarity-based confidence in the ML model predictions.

4. Conclusions

In this work, we presented four interpretability and reliability methods that are independent of the
architecture and the training procedure of the ML models. They rely on the computation of the Hessian of
the training loss describing the curvature around the local minimum. We showed how these methods could
be applied to ML models that classify many-body physics phase diagrams, here the phase classification of the
1D spinless Fermi–Hubbard model. Our findings are summarized in the following:

• We compared influence functions and RelatIFs. According to influence functions, themost influential train-
ing points were the most similar to the test point and the most unrepresentative in the data set. RelatIF
ignored the second aspect and focused on similarity. Here, wemean the similarity as a distance in themodel’s
learned internal representation space. The analysis of this learned similarity, enabled by influence functions
and RelatIFs, increases the interpretability of the ML model.

• Thanks to the focus on unrepresentative data, influence functions immediately pinpointed anomalies in the
training set and improved the model’s reliability. The model can be better understood when the influence
of the training outliers is known. For example, an outlier training point can have zero influence on all the
test points. This shows that the model ignores such outliers during the training. In phase-detection tasks, in
general, the model should be prone against outliers, and therefore, one can further use such knowledge to
improve the model and its training.

• With the help of influence functions, we also showed that, even if a feature is irrelevant for the phase clas-
sification (like a global sign of the wavefunction), the model may still note such features. This finding is
consistentwith the results found in [24]. These findings challenge our intuition aboutwhat really is a feature-
invariant model.

• The test loss calculated by comparing the output of the ML model and the ground-truth label tends to be
interpreted as an uncertainty of the ML model. This interpretation is tempting due to the simplicity of the
test loss calculation but has limited use and can fail miserably on OOD test points. Therefore, we need other
tools to increase our trust in the ML model.

• We showed how LEs are able to identify predictions that are made by a ML model with a high level of
extrapolation. In other words, it shows how sensitive the prediction is to the arbitrary choices outside the
learning problem, e.g. the random seed. Thanks to this property, LEES perfectly highlighted all out-of-
distribution (OOD) points in our test set.
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• We showed that RUE provided error bars for the ML model’s predictions. RUE is large when the training
set lacks data similar to the test point or when the MLmodel makes mistakes on training data similar to the
test point. Analysis of RUE values across the test set allowed to assess the phase transition region, which was
smaller in the case of the CNN trained on the 14-site system’s data than for the 12-site, accordingly with the
finite-size effect.

The presented functionalities of the four methods do not exhaust the possible applications. For example,
influence functions and RelatIFs may be used for building more physics-informed ML models. If we know a
proper similarity measure, e.g. based on the order parameter in some solvable regime, we can select a ML
model which learned the desired similarity and apply the model later to unknown regimes. Moreover, LEES
is helpful for active learning in which the model informs the user which additional data points would be the
most informative for the training [46]. This approach can prove extremely useful for ML based on expensive
experimental measurements. LEES and RUE also can be used to detect additional phases in the data by
informing the user about the part of test data on which predictions are highly extrapolated or uncertain. The
idea is analogous to the use of influence functions in [24] and to the anomaly detection scheme in [11].
Finally, it would be interesting to apply the same toolbox in the context of quantumML with variational
quantum circuits, where the Hessian of the loss function can also be computed [76, 77].
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Appendix A. Minimal version of the test loss

AML model, f, is determined by the set ofM parameters θ = {θ0, . . . ,θM−1}. For a given input x, the model
outputs a real-valued c-dimensional vector, fx = f(x;θ). The output encodes the prediction of the model,
y ′ = argmax(fx). E.g., for a two-class problem, fx could be [0.1,0.9] which would correspond to predicting a
label y ′ = 1. In a supervised scheme, the loss function, L= (x,θ), compares a model’s output, fx with a
ground-truth label y of the corresponding input x. L is small when the predicted label y

′
is the same as the

ground-truth label y. Moreover, L gets smaller, the larger are differences between the y-element’s and other
elements’ values in the model’s output, fx. E.g., the L would be smaller for fx = [0.1,0.9] than for [0.45,0.55],
even though the predicted label is the same in both cases. For this reason, the elements of the output vector fx
tend to be connected to probabilities of the input belonging to the corresponding classes. However, this
interpretation can be misleading in the presence of data set shift [47, 48] or non-uniformity of errors [49].
Training ends when a minimum of L is found, and parameters at this minimum are θ̃.
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Figure 7. Architectures of ML models used in this work. (a) CNN was applied to the classification of eigenstates of the 12-site 1D
Fermi–Hubbard model. CNN has 720 parameters. (b) CNN with Global Average Pooling (GAP) is largely invariant to the input
size and was applied to the classification of eigenstates of the 12-site and 14-site 1D Fermi–Hubbard model. CNN with GAP has
1675 parameters, regardless of the input size.

After training, the model can make a prediction at an unseen test point y ′test = argmax(ftest), where
ftest = f(xtest, θ̃) with a test loss function L(xtest, θ̃). Within this work, we use two versions of the test loss. The
‘ground-truth’ version is the standard test loss defined in supervised problems and compares the output of
the model, ftest with the ground-truth label ytest of xtest. When the ground-truth label of a test point is
unavailable, one can use a ‘minimal’ version of the test loss. It compares the model’s output ftest to the
model’s predicted label y ′test. We stress we use it only during the test stage to imitate the real-life situation
when we ask a ML model for predictions at test points we do not know ground-truth labels for.

Appendix B. Architectures of usedMLmodels

Within this work, we use two architectures for ML models trained to classify phases in the 1D spinless
Fermi–Hubbard model. Figure 7 shows them both schematically. We used the CNNs with architecture
presented in figure 7(a) in sections 3.4 and 3.5 of this work as well as in our previous paper [72]. Thanks to
its relatively small size (only 720 parameters), its Hessian-based analysis is very efficient. However, it is
designed for inputs of size 924, which is the size of eigenvectors of the 12-site Fermi–Hubbard model. To have
a ML model which is invariant to the input size, we design a CNN architecture with a Global Average Pooling
(GAP) layer, which reduces the size of each input filter to one. In figure 7(b), we list the sizes of convoluted
data passing through the model for two input sizes, 924 and 3432, corresponding to 12- and 14-site
eigenfunctions of the Fermi–Hubbard model. After the GAP layer, the sizes of convoluted data are the same,
which shows how the size-invariance is reached. We use this model in sections 3.3 and 3.6.

The reason for using the CNN with GAP in section 3.6 is simple. We compare there the uncertainty of
models trained to classify 12- and 14-site eigenstates, and by choosing the same size-invariant architecture,
we minimize the differences between set-ups. We use the CNN with GAP also in section 3.3 which deserves
an additional explanation. In section 3.3, we compare the outcomes for influence functions and RelatIFs for
the same ML model. When we do it for the CNN from figure 7(a), the outcomes are very similar. In
particular, as presented in [72], most influential points, according to the influence functions, follow the test
point much further into the CDW-I phase, in the same way as RelatIFs. Only the analysis for the CNN with
GAP rendered differences between influence functions and RelatIFs described in section 3.3. The bottom
line is that the similarity measure learned by ML models may depend on their architecture and the
hyperparameters determining their training. In particular, models may differ in the magnitude to which they
regard the transition points as outliers. In our case, both models (correctly) see them as unrepresentative in
the data set, and the influence of the transition points consistently varies from LL and CDW-I points deep in
the phases. However, the ML model with GAP (figure 7(b)) treats transition points as less representative than
the smaller ML model without GAP (figure 7(a)). This is the interpretation of the mathematical fact that the
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Hessian of the ML model with GAP has larger eigenvalues, i.e. describes a more curved minimum of a GAP
model. As a result, representativeness dominates influence, and the normalization brought by RelatIF
(equation (3)) is necessary to overcome this effect and focus on the similarity.
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