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1 Introduction

The aim of this paper is to study a doubly non linear elliptic-parabolic equations by means of time
discretization, based on the Euler forward scheme. We will approximate the parabolic problem by
a sequence of elliptic problems. We prove the existence of compact global attractor. We will get
our results by a semi discretization process. To this end, we investigate first existence, uniqueness
and stability results for the semidiscretized problem.

We recall that the Euler forward scheme has been used by several authors while studying time
discretization of nonlinear parabolic problems and we refer for example to the works [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11] and the references cited therein for some details. This scheme is usually used to
prove existence of solutions as well as to compute the numerical approximations.

The problem that we consider has a quasilinear diffusion operator and a lower order term which
grows quadratically in the gradient. The problems under consideration take the form

∂b(u)
∂t
− div(A(x)∇u) + h(., t, u,∇u) = 0 in QT ,

u = 0 on ΓT ,
b (u(. , 0)) = b (u0) in Ω,

(1.1)

and
b(u)− τ div(A(x)∇u) + τ h̃(., u,∇u) = 0 in Ω,

u = 0 on ∂Ω.
(1.2)

Ω Herefrom denotes an open bounded subset of Rd, d > 2, with smooth boundary ∂Ω. For
T > 0, we use the following notations

QT = Ω×]0, T [,

ΓT = ∂Ω×]0, T [.

u(x, t) : QT → R is the unknown function that is sought, b is an increasing locally Lipschitz
function from R to R, and A(x) = (ai,j(x)) is a matrix of L∞(Ω) functions ai,j(x) satisfying uniform
ellipticity and boundedness conditions.

By a weak solution of problem (1.1) we mean a function u such that ∂tb(u) ∈ L2(0, T ;H−1 (Ω))
and satisfying∫ T

0

< ∂tb(u), ϕ >H−1(Ω)×H1
0 (Ω) +

∫
QT

A(x)∇u∇ϕ+

∫
QT

h(x, t, u,∇u)ϕ = 0, (1.3)

for all ϕ ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞ (QT ) .

Despite recent efforts, problems (1.1) and (1.2) are in general still very poorly investigated. Let
us note that the conservation law

∂tu+ divf(u) = 0 (1.4)

is a limit case of (1.1). An L∞ entropy solution theory for the Cauchy problem for scalar conservation
laws was developed by Kružkov [12] and Volpert [13]. More detailed exposition of Kružkovs theory
can be found in, e.g., [14]. We also refer to [14, 15, 16] for a corresponding theory for the Dirichlet
boundary value problem.

We point out that the existence of a global attractor is investigated for the following problem

∂b(u)
∂t
− div(A(x, u,∇u)) + h(x, t, u) = 0 in QT ,

u = 0 on ΓT ,
b (u(. , 0)) = b (u0) in Ω,

(1.5)

(1.6)
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by many authors in [1, 6, 10, 11], in those works the growth is without quadratic gradient term.
When the growth is quadratic with respect to the gradient an existence result for elliptic problem
was proved in [8]. The main point in this work is to explicitly include a lower order term which
grows quadratically in the gradient. This does not seem to have been studied in the literature.

Many other partial differential equations are also special cases of (1.6). Let us mention the
heat equation

∂tu = ∆u, (1.7)

and more generally elliptic-parabolic equations of the type

∂tb(u) = div (a(x)∇u), (1.8)

where b : R→ R is a continuous nondecreasing function and A(x) = (ai,j(x)) is a matrix of L∞(Ω)
functions ai,j(x) satisfying uniform ellipticity and boundedness conditions

α|ξ|2 ≤ A(x)ξ.ξ ≤ β|ξ|2 ∀ξ ∈ Rd, a.e. x ∈ Ω. (1.9)

We refer to ([17], –,[30]) and the references cited therein for more information on elliptic-
parabolic equations.

In this work we suppose that h : Rd × R2 × Rd → R is such that:

h(x, t, s, ξ) = f(x, t) + b0(s)|ξ|2 ∀ t ∈ R, a.e. x ∈ Ω, (1.10)

where, b0 is an increasing locally Lipschitz function, and we can assume without loss of generality
b0 (0) = 0, and

f ∈ L2(QT ), u0 ∈ L∞(Ω). (1.11)

By using implicit Euler discretization, we discretize the problem (1.1) as follows

b(un)− τ div(A(x)∇un) + τ h̃(x, un,∇un) = b(un−1) in Ω,

un = 0 on ∂Ω,

b(u0) = b(u0) in Ω.

(1.12)

A convergence proof is given for relaxation approximations and the existence of an absorbing
set is obtained. We show also that all solutions are drawn, sooner or later, into a bounded set.

2 Assumptions and Main Results

In this section we introduce some notations and assumptions which will be used in the sequel. We
denote by c positive constant which may vary from line to line. We define for t ∈ R the function
ψ(t) by

ψ(t) =

∫ t

0

b(τ)dτ. (2.1)

Then the Legendre transform ψ∗ of ψ is defined by

ψ∗(τ) = sup
s∈R
{τs− ψ(s)}. (2.2)

The two main problems are the following

∂tb(u)− div(A(x)∇u) + h(., t, u,∇u) = 0 in Ω×]0, T [,

u = 0 on ∂Ω×]0, T [,

b(u(. , 0)) = b(u0) in Ω,

(2.3)
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and
b(u)− τdiv(A(x)∇u) + τ h̃(., u,∇u) = 0 in Ω,

u = 0 on ∂Ω,
(2.4)

with

u0 ∈ L∞ (Ω) , (2.5)

A(x) = (ai,j(x)) is a matrix of L∞(Ω) functions ai,j(x) satisfying uniform ellipticity and
boundedness conditions

α|ξ|2 ≤ A(x)ξ.ξ ≤ β|ξ|2 ∀ξ ∈ Rd, a.e. x ∈ Ω. (2.6)

In order that the semidiscretized problem has unique solution we need some supplementary
quadratic growth conditions, on one hand

|∂h(x, t, s, ξ)

∂ξ
| ≤ C0(|s|)(|ξ|+ b̄1(x)) a.e. x ∈ Ω, t, s ∈ R , ξ ∈ Rd, (2.7)

and
h(x, t, s, 0) ≤ C1(|s|)b̄2(x) a.e. x ∈ Ω, t, s ∈ R, (2.8)

where C0 and C1 are continuous functions of |s|, b̄1 ∈ Ld(Ω) and b̄2 ∈ L
d
2 (Ω).

On an other hand, we suppose

|∂h(x, t, s, ξ)

∂s
| ≥ α0 a.e. x ∈ Ω, t, s ∈ R , ξ ∈ Rd and α0 > 0. (2.9)

Let us note that in [5] the same assumptions where considered in order to prove the maximum
principle for solutions in H1

0 (Ω) ∩L∞(Ω). This implies in particular the uniqueness of the solution
of the semidiscretized problem in H1

0 (Ω) ∩ L∞(Ω).
Let us recall this version of discrete uniform Gronwall’s Lemma [30]

Lemma 2.1. Let (yn)n≥0 and (hn)n≥0 be to sequences of real numbers, not necessarily positive,
satisfying

yn ≤ yn−1 + τhn

and there exists a positive integer n0 such that for all n1 ≥ n0 and N > 0

τ

n1+N∑
n=n1

hn ≤ l1 and τ

n1+N∑
n=n1

yn ≤ l2,

for some positive real numbers l1 and l2 that do not depend on n1, then for all n1 ≥ n0

yn1+N ≤ l2
τN

+ l1.

To study existence and regularity by semi discretization in time, we consider the following
problems

b(un)− τ div(A(x)∇un) + τ h̃(x, un,∇un) = b(un−1) in Ω,

un = 0 on ∂Ω,

u0 = u0 in Ω,

(2.10)

where n = 1, ..., N , τN = T , 0 < τ < 1,

h̃(x, un,∇un) = h(x, nτ, un,∇un). (2.11)
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By a weak solution of problems (2.10) we mean a sequence of functions (un)0≤n≤N , such that
b(u0) = b(u0) and un defined by induction as a weak solution of the following problem

b(u)− τ div(A(x)∇u) + τ h̃(x, u,∇u) = b(un−1) in Ω,
u = 0 on ∂Ω,
u0 = u0 in Ω.

(2.12)

First, we state the following stability estimation results.

Theorem 2.2. There exists a constant c(f, u0) independent on N , such that for any n = 1, ..., N
on has

||b(un)||∞ ≤ c(f, u0), (2.13)
n∑
i=1

||b(ui)− b(ui−1)||22 ≤ c(f, u0), (2.14)

∫
Ω

ψ∗(b(un))dx+ τ

n∑
i=1

||ui||21,2 ≤ c(f, u0). (2.15)

2

Next, we prove the following main result.

Theorem 2.3. There exist a compact attractor A that attracts all the solutions un of the discrete
problem in the sense that

lim
n→+∞

dist(A, un) = 0,

where,
dist(x,M) = inf

y∈M
d(x, y).

3 Semidiscretized Problem

We shall study the following elliptic problem b(un)− τdiv(A(x)∇un) + τ h̃(., un,∇un) = b(un−1) in Ω,
un = 0 on ∂Ω,
b
(
u0
)

= b(u0) in Ω,

(3.1)

where n = 1, ..., N , τN = T , 0 < τ < 1 and

fn (.) =
1

τ

∫ tn

tn−1

f(s, .)ds, tn = nτ. (3.2)

For n = 1, we consider the problem

b(u1)− τdiv(A(x)∇u1) + τ h̃(., u1,∇u1) = b(u0) in Ω,
u1 = 0 on ∂Ω,

u0 = u0,

(3.3)

such that the function h̃(., ., .) satisfying the following hypothesis

|h̃(., u1,∇u1)| ≤ f − τb(u1)|∇u1|2 + k.

f = f1 + b(u0).

Let us note that f = f1 + b(u0) ∈ L2 (Ω). We point out that existence results of bounded
solutions have been obtained in [2, 19, 20]. In general, it is well known that one can expect an L∞
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solution if f ∈ W−1,q(Ω), q > d. Bounded Solutions are also obtained in [8]. Then problem 3.3
has one bounded solution, by induction, we deduce that for any n = 2, ..., N problem 3.1 has one
solution.

Let us now prove Theorem 2.2. Substituting ϕ by b(ui)|b(ui)|q and n by i in (3.1) and using
Hölder’s inequality, one has

||b(ui)||q+2

Lq+2 ≤ ||b(ui)||q+1

Lq+2 ||b(ui−1)||Lq+2 + τc||b(ui)||q+1

Lq+1 .

It follows that
||b(ui)||Lq+2 ≤ ||b(ui−1)||Lq+2 + cτ.

By induction, we obtain
||b(un)||Lq+2 ≤ ||b(u0)||Lq+2 + cT,

letting q go to infinity we obtain

||b(un)||L∞(Ω) ≤ c(f, u0, T ). (3.4)

Next, we substitute ϕ by b(ui) and n by i in the weak formulation of (3.1). One has∫
Ω

(b(ui)− b(ui−1))b(ui) + τα

∫
Ω

|∇ui|2 ≤ τ
∫

Ω

fib(u
i) +

∫
Ω

b(ui). (3.5)

Using the fact that
2a(a− b) = a2 − b2 + (a− b)2,

we obtain

τα||∇ui||22 + ||b(ui)||2L2 − ||b(ui−1)||2L2 + ||b(ui)− b(ui−1)||2L2 ≤ ||b(ui)||L1c(τ + 1).

Which yields that

τα||∇ui||22 + ||b(un)||2L2 +

n∑
i=1

||b(ui)− b(ui−1)||2L2 ≤ ||b(u0)||2L2 + cT

n∑
i=1

||b(ui)||L1 .

This implies that
n∑
i=1

||b(ui)− b(ui−1)||2L2 ≤ c(f, u0, T ), (3.6)

and
||∇ui||22 ≤ c(f, u0, T ), (3.7)

Finally, we take ϕ = ui and we substitute n by i in the weak formulation of (3.1). We obtain∫
Ω

(b(ui)− b(ui−1))ui + τα

∫
Ω

|∇ui|2 ≤ τ
∫

Ω

fiu
i +

∫
Ω

ui, (3.8)∫
Ω

ψ∗(b(ui))−
∫

Ω

ψ∗(b(ui−1)) + τα

∫
Ω

|∇ui|2 ≤ τ
∫

Ω

fiu
i +

∫
Ω

ui,∫
Ω

ψ∗(b(ui))−
∫

Ω

ψ∗(b(ui−1)) + τα||ui||2W1,2 ≤ cτ ||ui||L1 .

Then summing from i = 1 to n, we obtain∫
Ω

ψ∗(b(un)) + ατ

n∑
i=1

||ui||2W1,2 ≤ cτ
n∑
i=1

||ui||L1 +

∫
Ω

ψ∗(b(u0)),

≤ c(f, u0, T ).

Then ∫
Ω

ψ∗(b(un)) + ατ

n∑
i=1

||ui||2W1,2 ≤ c(f, u0, T ). (3.9)
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4 Compact Attractor by Discrete Dynamical System

We consider the following Rothe function uN defined by

b(uN (0)) = b(u0),

b(uN (t)) = b(un−1) + (b(un)− b(un−1))( t−t
n−1

τ
), for any t ∈]tn−1, tn], n = 1, ..., N,

(4.1)

and the piecewise constant function u
N

defined by

b(u
N

(0)) = b(u0),

b(u
N

(t)) = b(un), for any t ∈]tn−1, tn], n = 1, ..., N.

Since the problem (2.10) has a unique solution (un)0≤n≤N then the functions b(uN ) and b(u
N

) are

uniquely defined and by construction, we have for any t ∈]tn−1, tn] and n = 1, ..., N, that

∂b(uN (t)

∂t
=
b(un)− b(un−1)

τ
,

b(u
N

(t))− b(uN (t)) = (b(un)− b(un−1))
tn − t
τ

.

By using the stability results of Theorem 2.2, we deduce the following a priori estimates concerning
the function b(uN ) and the function b(u

N
).

Lemma 4.1. There exists a constant c(f, u0, T ) independent of N such that for all N ∈ N, we have

||b(uN )− b(uN )||2L2(QT ) ≤
1

N
c(f, u0, T ), (4.2)

||b(uN )||L2(QT ) ≤ c(f, u0, T ), (4.3)

||b(uN )||L2(QT ) ≤ c(f, u0, T ), (4.4)

||b(uN )||21,2 ≤ c(f, u0, T ). (4.5)

||∂b(u
N )

∂t
||L2(0,T ;H−1) ≤ c(f, u0, T ), (4.6)

Proof. To prove (4.2) we notice that on has

||b(uN )− b(uN )||2L2(QT ) =

N∑
n=1

∫ tn

tn−1

||b(un)− b(un−1)||22
(
tn − t
τ

)2

dt

=
τ

3

N∑
n=1

||b(un)− b(un−1)||22.

From 3.6 on has

||b(uN )− b(uN )||2L2(QT ) ≤
1

N
c(f, u0, T ). (4.7)

And, by the same way as (4.2) we prove (4.3), (4.4) and (4.5).
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To prove (4.6) we consider the set A = {ϕ ∈ H1
0 (Ω) : ||ϕ|| ≤ 1}, then we have

||∂b(u
N )

∂t
||L2(0,T ;H−1) =

∫ T

0

sup
ϕ∈A

<
∂b(uN )

∂t
, ϕ > dt

=

N∑
i=1

sup
ϕ∈A

<
b(ui)− b(ui−1)

τ
, ϕ >

≤
N∑
i=1

sup
ϕ∈A

(τβ

∫
Ω

|∇ui||∇ϕ|+ τ∫
Ω

|b(ui)ϕ|∇ui|2ϕ|+ τ

∫
|fiϕ|)

≤ τβ
N∑
i=1

||∇ui||2 + τ

N∑
i=1

||b(ui)||2 + c2.

From (3.7) on has

||∂b(u
N )

∂t
||L2(0,T ;H−1) ≤ c(f, u0, T ). (4.8)

From the estimates of the previous lemma, we deduce that there exists a function u ∈ H1
0 (QT )

such that
b(uN )→ b(u) in L2(QT ), (4.9)

b(u
N

)→ b(u) in L2(QT ), (4.10)

∂b(uN )

∂t
→ ∂b(u)

∂t
weakly in L2(0, T ;H−1(Ω)), (4.11)

∇uN → ∇u weakly in L2(QT )N . (4.12)

b(u
N

)|∇uN |2 → b(u)|∇u|2 weakly in L2(QT ). (4.13)

By definition of
(
uN
)
N∈N , we have b(uN (0)) = b(u0) = b(u0) for all N ∈ N. Then b(u(0, .)) =

b(u0).
Taking a test function ϕ ∈ L2(0, T ;H1

0 (Ω)) ∩ L∞(QT ) in the weak formulation we obtain∫ T

0

<
∂b(uN )

∂t
, ϕ > +

∫
QT

A(x)∇uN∇ϕ+

∫
QT

h̄(x, t, ūN ,∇uN )ϕ = 0, (4.14)

where
|h̄(x, t, ūN ,∇uN )| ≤ fN (t, x)− b(uN )|∇uN |2 + k

and
fN (t, x) = fn(x) for any t ∈]tn−1, tn], n = 1, ..., N.

Tending N to infinity, by standard argument, we obtain the desired result.
Let us now define the map Sτ by

Sτu
n−1 = un. (4.15)

Then
Snτ u

0 = un. (4.16)

In order that the nonlinear map Sτ satisfies the properties of the semi groups:

Sn+p
τ = Snτ ◦ Spτ , (4.17)
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we need (3.1) to be autonomous. For this purpose we further need to assume that the nonlinear
function h is independent of the time, that is h(t, x, s, ξ) = h(x, s, ξ).

We are now in stage to prove that the discrete problem has a compact attractor that attracts
all the solutions in the sense that

lim
n→+∞

dist(A,Snτ u
0) = 0.

To this end, we prove that there exists an absorbing ball B in L∞(Ω) ∩H1
0 (Ω) independent on τ .

Let us consider

H̃b (u) =

∫ u

0

h̃ (x, s, ξ) + c b(s)ds, (4.18)

and multiplying the discrete problem by un − un−1 we obtain∫
Ω

(b(un)− b(un−1))(un − un−1) + τ

∫
Ω

A(x)∇un∇(un − un−1)+

τ

∫
Ω

h̃ (x, un,∇un) (un − un−1) = 0.

From to the growth condition on h̃ and b we have H̃b (u) is convex then we obtain

H̃b (u) (u− v) ≥ H̃b (u)− H̃b (v) .

It follows that∫
Ω

(h̃ (x, un,∇un) + cb(un))(un − un−1)dx ≥
∫

Ω

H̃b (un)− H̃b
(
un−1) dx. (4.19)

Then, we obtain from the equality∫
Ω

h̃ (x, un,∇un) (un − un−1)dx =

∫
Ω

(h̃ (x, un,∇un) + cb(un))(un − un−1)

− c
∫

Ω

b(un)(un − un−1)dx,

that∫
Ω

h̃ (x, un,∇un) (un − un−1)dx ≥
∫

Ω

H̃b (un)− H̃b
(
un−1) dx− c∫

Ω

b(un)(un − un−1)dx. (4.20)

By using the remark∫
Ω

b(un)(un − un−1)dx =

∫
Ω

(b(un)− b(un−1))(un − un−1) +

∫
Ω

b(un−1)(un − un−1)dx,

and hypothesis (2.6) on A(x), we obtain∫
Ω

H̃b (un) dx+c||un||2H1
0 (Ω) ≤ c||u

n−1||2H1
0 (Ω)+

∫
Ω

H̃b
(
un−1) dx+c

∫
Ω

b(un−1)(un−un−1)dx. (4.21)

Let us now consider

H̃(u) =

∫ u

0

h̃ (x, s, ξ) ds.

Then ∫
Ω

H̃b(u)dx =

∫
Ω

H̃(u)dx+ c

∫
Ω

ψ(u)dx.

Using the fact that ∫
Ω

b(un−1)(un − un−1)dx ≤
∫

Ω

ψ(un)− ψ(un−1)dx,
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we obtain

c

∫
Ω

H̃ (un) dx+ ||un||2H1
0 (Ω) ≤ c

∫
Ω

H̃
(
un−1) dx+ ||un−1||2H1

0 (Ω). (4.22)

We denote the left hand side by yn hence the right one is yn−1. Using the stability results and the
discrete uniform Gronwall’s lemma, here hn = 0, we get an integer m > 0 such that

c

∫
Ω

H̃ (un) dx+ ||un||2H1
0 (Ω) ≤ c for all n ≥ m. (4.23)

Using the fact that b is invertible and by a repeated application of Theorem 2.2 we find an
integer m

′
such that

un ∈ L∞(Ω) for all n ≥ m
′

||um
′

||L∞(Ω) ≤ c(m
′
).

Then, we find an increasing sequence (β(m))m≥1 such that

β(m) ≥ 2,
1

β(m+ 1)
=

1

β(m)
− 1

d

and

||um||β(m) ≤
c(m)

τβ+β2+...+βm (||u0||β(m)
2 + 1).

We stop the iteration on m once we have β(m−1) > d
2
. Indeed L

d
2

+ε(Ω) ⊂W−1,r(Ω) for r > d and

for all ε > 0. Then m
′

will be the first integer such that β(n(d)− 1) > d
2
. By induction, we obtain

un ∈ L∞(Ω) .

Therefore, from (4.23) we get

||un||H1
0 (Ω) ≤ c for all n ≥ m

′
. (4.24)

We conclude now that the semidiscretized problem has an absorbing set B in L∞(Ω)∩H1
0 (Ω).

Setting

A = w(B) = ∩
k≥0
∪
n≥k

Snτ (Bτ )

and applying Theorem 1.1 of [30] we therefor get A is a compact subset that attracts all the solutions
in the sense that

dist(A,Snτ u
0) →

n→+∞
0.

5 Conclusion

Note that the above result is obtained for the case of bounded domains when the external forcing
term f is in L2(QT ) and u0 in L∞(Ω). This can be obtained with the appropriate a priori estimate,
using the time analyticity of the solutions, which gives a bound on |ut| (see, e.g., [16,17]). Thus,
the only novelty here is for the case of lower order term which grows quadratically in the gradient.
In this paper, we give a positive answer to this question.
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