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Abstract

In this paper, we propose an efficient modification of a New Homotopy Perturbation Method

(NHPM) to obtain approximate and exact analytical solutions of Partial Differential-Algebraic

Equations (PDAEs). The NHPM is first applied to the PDAE to obtain the exact solution

in convergent series form. To improve the solution obtained from NHPM’s truncated series, a

post-treatment combining Laplace transform and Padé approximant is proposed. This modified

Laplace-Padé new homotopy perturbation method is shown to be effective and greatly improves

NHPM’s truncated series solutions in convergence rate, and often leads to the exact solution.

Two problems are solved to demonstrate the efficiency of the method; the first one is a nonlinear

index-one system with an integral term and the second one is a linear index-three system with

variable coefficients.

Keywords: Partial differential-algebraic equations, Homotopy perturbation method, Laplace transform,

Padé approximant, Analytical solutions, Resummation methods.

2010 Mathematics Subject Classification: 34L30

1 Introduction

Many complex technical systems throughout science and engineering are easily modeled by Partial

Differential-Algebraic Equations (PDAEs). This type of equations arise in nanoelectronics [1],

electrical networks [2], [3], [4], mechanical systems [5] and many other applications [6], [7], [8], [9],

[10], [11], [12], [13], [14].

In recent years, PDAEs have received much attention because of their wide applications. The

convergence of Runge-Kutta method for linear PDAEs was investigated in [15]. The study of indices

and the numerical solution of linear PDAEs with constant coefficients is given in [16], [17], [18],

[19]. In the literature, one can find various index definitions for PDAEs [20], [21], [22], [23]. But,

the most used index is the differentiation index. It is defined as the minimum number of times that

all or part of the PDAE must be differentiated with respect to time in order to obtain the time

derivative of the solution as a continuous function of the solution and its space derivatives [20].

Like differential-algebraic equations (DAEs), higher-index PDAEs (differentiation index greater

than one) are known to be difficult to solve numerically. Usually, these problems are first transformed

to index-one systems before applying a numerical integration. This procedure is known as an index-

reduction. A reduction of the index can be expensive or may change the solution properties of the

original problem. Often, to treat PDAEs the method of lines is used and the PDAE is discretized in

the space direction to obtain a set of DAEs [6], [10], [24]. The resulting DAE is then transformed to

a lower-index system that can be easily integrated by standard DAE numerical methods [25]. This

approach may be, however, inappropriate for higher-index PDAEs with multi-dimensional solutions

since the index-reduction can be very expensive. Because, most of the problems arising from real-life

applications are higher-index PDAEs, new techniques are needed to solve these problems efficiently.

Modern methods like homotopy perturbation method (HPM) [26], [27], [28], [29], homotopy

analysis method (HAM) [30], [31], [32], variational iteration method (VIM) [33], generalized homotopy
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method [34], among others, are powerful tools to approximate nonlinear and linear problems.

Nevertheless, at present, the Homotopy Perturbation Method (HPM) introduced by Ji Huan He

[26], [27] is one among the most employed analytical methods in science and engineering to solve

nonlinear/linear problems. This application includes problems like: convolution product nonlineari-

ties [28], oscillators with discontinuities [35], nonlinear wave equations [36], Volterra’s integro-

differential equation [37], second-order BVPs [38], differential-algebraic equations [39, 40], stiff

systems [41], neutral functional-differential equations with proportional delays [42], partial differential

equations [43], electro-statically actuated microbeam [44], [45], fuzzy linear systems [46], linear

programming [47], bifurcation of nonlinear problems [48] and boundary value problems [49], among

many others. The HPM is a combination of the classical perturbation method and the homotopy

technique. The HPM solution is considered as the sum of an infinite series which in most cases

converges rapidly to the exact solution. Usually, only a few terms of the series solution are enough

to achieve a high degree of accuracy.

On one side, DAEs problems are treated by using: Padé series [50], Adomian decomposition

method [51], homotopy analysis method [52]. On the other side, PDAEs problems are solved by

using: Variational Methods [53], Modified Homotopy Perturbation Method [54], variational iteration

method [55], Differential Transform Method [56]. Moreover, in [39], some higher-index DAEs were

solved by transforming them first to index-one systems before applying the HPM. Furthermore,

the solution series involves noise terms which affect the performance of the method. Recently, a

New Homotopy Perturbation Method (NHPM) was developed in [57], [58], [41] to solve different

types of problems. This method was successfully used by Salehi [40] to solve DAEs. Additionally,

Laplace-Padé post-treatment is shown to be an effective tool [59], [60], [61], [62], [63], [64], [65], [66]

to increase accuracy and convergence of power series solutions obtained by HPM.

In this paper, we propose a hybrid method which combines the NHPM, Laplace transform

(LT) and Padé approximant (PA) [67] to solve PDAEs analytically. Solutions of PDAEs are first

obtained in convergent series forms in only one iteration using the NHPM. To improve the solutions

obtained from NHPM’s truncated series, we apply LT then convert the transformed series into a

meromorphic function by forming its PA, and finally we take the inverse LT of the PA to obtain

the modified analytic solution. This modified Laplace-Padé new homotopy perturbation method

(LPNHPM) greatly improves NHPM’s truncated series solutions in convergence rate, and often leads

to the exact solution. Because higher-index PDAEs are difficult to solve numerically, we choose

two examples of PDAEs with known exact solutions to demonstrate the efficiency of the proposed

method. Additionally, the LPNHPM does not require any index-reduction to solve higher-index

PDAEs and the solutions do not generate noise terms which may reduce the efficiency of the

method.

The rest of this paper is organized as follows. In the next section, we illustrate the basic idea

of the NHPM. In section 3, we briefly review the Padé approximant. In section 4, we give the basic

concept of the Laplace-Padé resummation method. In section 5, we describe our procedure to solve

PDAEs using the NHPM. In section 6, we apply the technique discussed in section 5 along with the

Laplace-Padé post-treatment to solve a nonlinear index-one PDAE and a linear index-three PDAE.

In section 7, we give a brief discussion. Finally, a conclusion is drawn in the last section.
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2 Description of the NHPM

In this section, we illustrate the basic idea of the NHPM [41]. For this, we consider the following
nonlinear first order system of ordinary differential equations

du

dt
+N(u)− f(t) = 0, t ∈ [0, T ] , (1)

supplied with the vector initial condition

u (0) = g0, (2)

where N is a nonlinear function, f(t) is a known analytical function on [0, T ] and g0 is a constant.

We assume that a solution to initial-value problem (1)-(2) exists, is unique and sufficiently smooth.

Note here that the method we are proposing can be applied to higher order systems of ordinary

differential equations. In this case, initial condition (2) will be then on the solution and it time

derivatives.
According to the HPM [27], we construct for (1) a homotopy v(t) := v(t, p) : [0, T ]× [0, 1]→ R

that satisfies
dv

dt
− du0

dt
+ p

du0

dt
+ p
(
N(v)− f(t)

)
= 0, (3)

and v(0) = g0, where p ∈ [0, 1] is an embedding parameter and u0 is an initial approximation for

the solution of (1) that satisfies u0(0) = g0. For the HPM, the initial approximation u0 can be

taken for example as the solution of the linear equation du
dt = f(t). For the NHPM we are going to

discuss, the choice of the initial approximation u0 will be given later in this section.
Equation (3) can be written as

dv

dt
=
du0

dt
+ p
(
f (t)− du0

dt
−N(v)

)
. (4)

According to the HPM, the solution v of (3) and (4) is assumed to have the form

v = v0 + pv1 + p2v2 + . . . , (5)

where vn, n = 0, 1, 2, . . . are unknown functions to be determined by the HPM scheme.
Setting p = 1 in (5), an approximate solution of equation (1) is obtained by

u = v0 + v1 + v2 + . . . (6)

Integrating (4) once with respect to t and using initial conditions (2) and v(0) = g0 yield

v (t) = u0 (t)− p
t∫

0

(du0 (τ)

dτ
+N(v (τ))− f (τ)

)
dτ . (7)

Then substituting (5) into (7), we get

v0 + pv1 + p2v2 + . . . = u0 (t)− p
t∫

0

(du0 (τ)

dτ
+N(v0 + pv1 + p2v2 + . . .)− f (τ)

)
dτ . (8)

Expanding the nonlinear term N in the integrand in terms of Adomian operators, we get

N(v0+pv1+p
2v2+ . . .) =

∑∞

i=0
Ni(v0, . . . , vi)p

i, (9)
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where

N0= N0(v0), N1= N ′(v0)v1, N2= N ′(v0)v2+N
′′(v0)

v21
2
, . . . (10)

Equating the coefficients of like powers of p in (8), we obtain the following set of equations
p0:

v0 (t) = u0 (t) ,

p1:

v1 (t) = g0 − u0 (t)−
t∫

0

(
N0(v0 (τ))− f (τ)

)
dτ , (11)

p2:

v2 (t)= −
t∫

0

N1(v0, v1)dτ, (12)

pi:

vi (t) = −
t∫

0

Ni−1(v0, v1, . . . , vi−1)dτ , i = 3, 4, . . . (13)

To determine the solution using the HPM, one has to find the solution components vi, i = 0, 1, 2, . . .

In some cases, one is faced with large and complex computations. Additionally, the solution may

involve the computation of many noise terms which affect the performance of the method [39].
To circumvent these difficulties, we propose to use the NHPM introduced in [41] which assumes

the initial approximation to have the form

u0 (t) =

∞∑
n=0

αnt
n, (14)

where αn, n = 0, 1, 2, . . . are unknown coefficients to be determined from the following system

v1 (t) = g0 − u0 (t)−
t∫

0

(
N0(v0 (τ))− f (τ)

)
dτ = 0. (15)

When v1 (t) = 0 is satisfied, then (10) and (12) lead to v2 (t) = 0 for all t. In a similar manner, by

using (10) and (13), we can show that vi (t) = 0, for i = 3, 4, . . .
Now to determine the unknown coefficients αi, i = 0, 1, 2, . . ., we substitute (14) into (15) then

solve the resulting system for the coefficients αi. Finally, we use equation (6) to obtain the exact
solution u as series

u (t) = u0 (t) =
∞∑
n=0

αnt
n. (16)

3 Padé Approximant

Given an analytical function u(t) with Maclaurin’s expansion

u (t) =

∞∑
n=0

unt
n, 0 ≤ t ≤ T . (17)
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The Padé approximant to u (t) of order [L,M ] which we denote by [L/M ]u (t) is defined by [67]

[L/M ]u (t) =
p0 + p1t+ . . .+ pLt

L

1 + q1t+ . . .+ qM tM
, (18)

where we considered q0 = 1, and the numerator and denominator have no common factors.

The numerator and the denominator in (18) are constructed so that u (t) and [L/M ]u (t) and
their derivatives agree at t = 0 up to L+M . That is

u(t)− [L/M ]u (t) = O
(
tL+M+1

)
. (19)

From (19), we have

u (t)

(
M∑
i=1

qit
i

)
−

(
L∑
i=0

pit
i

)
= O

(
tL+M+1

)
. (20)

From (20), we get the following systems
uLq1 + . . .+ uL−M+1qM = −uL+1

uL+1q1 + . . .+ uL−M+2qM = −uL+2

...
uL+M−1q1 + . . .+ uLqM = −uL+M ,

(21)

and 
p0 = u0

p1 = u1 + u0q1
...
pL = uL + uL−1q1 + . . .+ u0qL.

(22)

From (21), we calculate first all the coefficients qi, 1 ≤ i ≤ M . Then, we determine the coefficient

pi, 0 ≤ i ≤ L from (22).

Note that for a fixed value of L + M + 1, the error (19) is smallest when the numerator and

denominator of (18) have the same degree or when the numerator has degree one higher than the

denominator.

4 Laplace-Padé Post-treatment

Several analytical approximation methods like HPM provide solutions as power series. Nevertheless,

in some situations the truncated series have limited domain of convergence. To enlarge the domain

of convergence, many authors used the Laplace-Padé resummation method [40], [41], [42], [43], [44],

[45], [46], [47]. This method can be summarized in the following steps:

1) Apply Laplace transform to the truncated series solution, then substitute s by 1/t in the resulting

expression.

2) Convert the transformed series into a meromorphic function by forming its Padé approximation

of order [L/M], then substitute t by 1/s in the resulting expression.

3) Finally, apply the inverse Laplace s-transform to obtain the modified approximate solution.
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5 Solution of PDAES with LPNHPM

In this section, we will show how to apply the modified NHPM to solve PDAEs. Since many
application problems in science and engineering are modelled by semi-explicit PDAEs, we consider
the following class of PDAEs

u1t = φ (u, ux, uxx) , (23)

0 = ψ (u, ux, uxx) , (t, x) ∈ (0, T )× (a, b) , (24)

where uk: [0, T ]× [a, b]→ Rmk , k = 1, 2, and b > a.
System (23)-(24) is subject to the initial condition

u1 (0, x) = g (x) , a ≤ x ≤ b, (25)

and some suitable boundary conditions

B (u (t, a) , u (t, b) , ux (t, a) , ux (t, b)) = 0, 0 ≤ t ≤ T , (26)

where g (x) is a given function.

We assume that a solution to initial boundary-value problem (23)-(26) exists, is unique and

sufficiently smooth.
To simplify the exposition of the method, we integrate first equation (23) with respect to time

and use the initial condition (25) to obtain

u1 (t, x)− g (x)−
t∫

0

φ (u, ux, uxx) dt = 0. (27)

According to the HPM, we construct the following homotopy for equations (24) and (27)

(1− p) (v1 − u1,0) + p

(
v1 − g (x)−

t∫
0

φ (v) dt

)
= 0, (28)

(1− p) (v2 − u2,0) + pψ (v) = 0, (29)

where φ (v) := φ (v, vx, vxx), ψ (v) := ψ (v, vx, vxx), and p ∈ [0, 1] is an embedding parameter, u1,0

and u2,0 are the initial approximations for u1 and u2 respectively, and v = (v1, v2) is an unknown

function on the independent variables t, x, p. Note that the time integration of equation (23) is not

necessary so one may construct a homotopy directly for (23).
We assume that the initial approximations uk,0, k = 1, 2 have the following expansions

uk,0 (t, x) = αk,0 (x) + αk,1 (x) t+ αk,2 (x) t2 + . . . , (30)

where αk,n (x), k = 1, 2; n = 0, 1, 2, . . . are unknown functions to be determined later on.
In addition, we assume that the solution components vk of system (28)-(29) can be expressed

as a power series in p, as follows

vk (t, x) = vk,0 (t, x) + pvk,1 (t, x) + p2vk,2 (t, x) + . . . , (31)

where vk,n (t, x), k = 1, 2; n = 0, 1, 2, . . . are unknown functions to be determined by the following

iterative scheme.

Substituting (30) and (31) into system (28)-(29) then equating coefficients of like powers of p,

we get the following set of equations
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p0:
vk,0 (t, x) = uk,0 (t, x) , k = 1, 2,

p1:  v1,1 = g (x)− u1,0 −
t∫
0

φ (u1,0;u2,0) dt,

v2,1 = −ψ (u1,0;u2,0) ,

pi:  v1,i = −
t∫
0

φ (v1,0, . . . , v1,i−1; v2,0, . . . , v2,i−1) dt,

v2,i = v2,i−1 − ψ (v1,0, . . . , v1,i−1; v2,0, . . . , v2,i−1) , i = 2, 3, . . .

Now, if we set

v1,1 (t, x) = 0, (32)

v2,1 (t, x) = 0, (33)

then all vk,i (t, x) = 0, for k = 1, 2; i = 2, 3, . . .
To determine the coefficients αk,i (x), k = 1, 2; i = 2, 3, . . . we substitute (30) into system

(32)-(33) then solve this system for these coefficients. Finally, using equation (31) we obtain the
exact solution components uk, k = 1, 2 as series

uk (t, x) = uk,0 (t, x) =

∞∑
n=0

αk,n (x) tn. (34)

The solutions series obtained from NHPM may have limited regions of convergence, even if we take a

large number of terms. Therefore, we apply the Laplace-Padé post-treatment to NHPM’ truncated

series to increase the convergence region.

In the next section, we will apply this modified method to solve a nonlinear index-one PDAE

and a linear index-three PDAE with variable coefficients.

6 Test Problems

In this section, we will demonstrate the effectiveness and accuracy of the modified method described

in the previous section through two examples of PDAEs. The first example is a nonlinear index-one

PDAE whereas the second one is a linear index-three PDAE with variable coefficients.

6.1 Nonlinear index-one system with an integral term

Consider the following nonlinear index-one PDAE which arises as a similarity reduction of Navier-
Stokes equations [68]

u1t = u1xx − u2u1x + u2
1 − 2

1∫
0

u2
1dx, (35)

0 = u2x − u1, (36)

where 0 < x < 1 and t > 0.
System (35)-(36) is subject to the following initial condition

u1 (0, x) = cosπx, 0 ≤ x ≤ 1, (37)
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and boundary conditions

u1x (t, 0) = u1x (t, 1) = u2 (t, 0) = u2 (t, 1) = 0, t ≥ 0. (38)

The exact solution of problem (35)-(38) is

u1 (t, x) = e−π
2t cosπx, u2 (t, x) = (1/π) e−π

2t sinπx, 0 ≤ x ≤ 1, t ≥ 0. (39)

Since one time differentiation of the algebraic equation (36) determines u2t in terms of u and its

space derivatives, then PDAE (35)-(36) has time differentiation index-one. Note that no initial

condition is prescribed for the variable u2 as this is determined by the PDAE.

In order to simplify the exposition of the technique discussed in section 4 to solve PDAE (35)-
(36), we first integrate equation (35) with respect to time and use the initial condition (37) to
get

u1 (t, x)− cosπx−
t∫

0

(
u1xx − u2u1x + u2

1 − 2

1∫
0

u2
1dx

)
dt = 0. (40)

In view of system (28)-(29), the homotopy for (40)-(36) can be constructed as

(1− p) (v1 − u1,0) + p

(
v1 − cosπx− (41)

t∫
0

(
v1xx − v2v1x + v21 − 2

1∫
0

v21dx

)
dt

)
= 0,

(1− p) (v2 − u2,0) + p (v2x − v1) = 0, (42)

where p ∈ [0, 1] is an embedding parameter.

We assume that the initial approximations uk,0 for the solution components uk, k = 1, 2 have
the form

uk,0 (t, x) = αk,0 (x) + αk,1 (x) t+ αk,2 (x) t2 + . . . , (43)

where αk,n (x), k = 1, 2; n = 0, 1, 2, . . . are unknown functions to be determined later on.

We also assume that the solution components vk of system (41)-(42) can be written as power
series in p, as follows

vk (t, x) = vk,0 (t, x) + pvk,1 (t, x) + p2vk,2 (t, x) + . . . , (44)

where vk,n (t, x) , k = 1, 2; n = 0, 1, 2, . . . are unknown functions to be determined by the following

iterative scheme.

Substituting (43) and (44) into system (41)-(42) then equating coefficients of like powers of p,

yield the following set of equations

p0:

vk,0 (t, x) = uk,0 (t, x) , k = 1, 2, (45)
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p1:

v1,1 (t, x) = −
∞∑
n=0

α1,n (x) tn + cosπx+

t∫
0

∞∑
n=0

α′′1,n (x) tndt−
t∫

0

(
∞∑
n=0

α2,n (x) tn
)
×

(
∞∑
n=0

α′1,n (x) tn
)
dt+

t∫
0

(
∞∑
n=0

α1,n (x) tn
)2

dt

−2

t∫
0

1∫
0

(
∞∑
n=0

α1,n (x) tndx

)2

dt, (46)

v2,1 (t, x) =

∞∑
n=0

(
− α′2,n (x) + α1,n (x)

)
tn, (47)

where (′) denotes the ordinary derivative with respect to x,
pi:

v1,i (t, x) =

t∫
0

(
v1,i−1xx +

i−1∑
k=0

γk,i (t, x)

)
dt, (48)

v2,i (t, x) =

x∫
0

v1,i−1 (t, x) dx, (49)

where

γk,i (t, x) = v1,kv1,i−1−k − v2,kv1,i−1−kx

−2

1∫
0

v1,kv1,i−1−kdx, i ≥ 2.

Now, if we set

v1,1 (t, x) = 0, (50)

v2,1 (t, x) = 0, (51)

then v1,i (t, x) = v2,i (t, x) = 0 for all i = 2, 3, 4 . . . follows from (48)-(49).
Equating the coefficients of powers of t to zero in (50) then solving the resulting equation for

α2,n (x) and using the boundary conditions (38), we have

α2,n (x) =

x∫
0

α1,n (x) dx, n = 0, 1, 2, . . . (52)

Now equation (46) can be written as a series

v1,1 (t, x) = (−α1,0 (x) + cosπx)

+

∞∑
n=1

(
− α1,n (x) + (1/n)α′′1,n−1 (x) + (1/n)

n−1∑
k=0

βk,n (x)

)
tn,
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where

βk,n (x) = α1,k (x)α1,n−1−k (x)− α′1,n−1−k (x)

x∫
0

α1,k (x) dx

−2

1∫
0

α1,k (x)α1,n−1−k (x) dx.

Equating all coefficients of powers of t to zero in (50), yields α1,0 (x) = cosπx and the recursive
formula for α1,n (x)

α1,n (x) = (1/n)α′′1,n−1 (x) + (1/n)

n−1∑
k=0

βk,n (x) , n = 1, 2, 3 . . . (53)

From equation (53), we get α1,1 (x) = −π2 cosπx and α1,2 (x) =
(
π4/2

)
cosπx.

From equation (52), we obtain α2,0 (x) = (1/π) sinπx, α2,1 (x) = −π sinπx and α2,2 (x) =(
π3/2

)
sinπx.

Using (43) and the coefficients recently computed, we obtain

u1 (t, x) = u1,0 (t, x) =

(
1− π2t+

1

2

(
−π2t

)2)
cosπx, (54)

and

u2 (t, x) = u2,0 (t, x) =

(
1− π2t+

1

2

(
−π2t

)2)
(1/π) sinπx. (55)

In a similar manner, the coefficients α1,n (x) and α2,n (x) for n ≥ 3 can be obtained from (53) and

(52) respectively.

The solutions series obtained from the NHPM may have limited regions of convergence, even

if we take a large number of terms. Accuracy can be increased by applying the Laplace-Padé post-

treatment. First t-Laplace transform is applied to (54) and (55). Then, s is substituted by 1/t and

the t-Padé approximant is applied to the transformed series. Finally, t is substituted by 1/s and

the inverse Laplace s-transform is applied to the resulting expression to obtain the approximate

solution.
Applying Laplace transforms to (54) and (55) yields

L [u1 (t, x)] =

(
1

s
− π2

s2
+
π4

s3

)
cosπx, (56)

and

L [u2 (t, x)] =

(
1

s
− π2

s2
+
π4

s3

)
(1/π) sinπx. (57)

For the sake of simplicity we let s = 1/t, then

L [u1 (t, x)] =
(
t− π2t2 + π4t3

)
cosπx, (58)

and
L [u2 (t, x)] =

(
t− π2t2 + π4t3

)
(1/π) sinπx. (59)

All of the [L/M ] t-Padé approximants of (58) and (59) with L ≥ 1 and M ≥ 1 and L+M ≤ 3 yield

[L/M ]u1
=

(
t

1 + π2t

)
cosπx, (60)
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and

[L/M ]u2
=

(
t

1 + π2t

)
(1/π) sinπx. (61)

Now since t = 1/s, we obtain [L/M ]u1
and [L/M ]u2

in terms of s as follows

[L/M ]u1
=
(
π2 + s

)−1
cosπx, (62)

and
[L/M ]u2

=
(
π2 + s

)−1
(1/π) sinπx. (63)

Finally, applying the inverse LT to the Padé approximants (62) and (63), we obtain the modified

approximate solution which is in this case the exact solution (39).

Note here that one can take more terms in series (54) and (55) then apply the same procedure

described above to find the exact solution (39).

6.2 Index-three system with variable coefficients

Consider the following index-three PDAE system

u1tt = u1xx + u3 sinπx, (64)

u2tt = u2xx + u3 cosπx, (65)

0 = u1 sinπx+ u2 cosπx− e−t, (66)

where t > 0 and 0 < x < 1.
System (64)-(66) is subject to the following initial conditions

u1 (0, x) = sinπx, u1t (0, x) = − sinπx, (67)

u2 (0, x) = cosπx, u2t (0, x) = − cosπx, 0 ≤ x ≤ 1, (68)

and the boundary conditions

u1 (t, 0) = u1 (t, 1) = 0, u2 (t, 0) = −u2 (t, 1) = e−t, t ≥ 0. (69)

The exact solution of problem (64)-(69) is

u1 (t, x) = e−t sinπx, u2 (t, x) = e−t cosπx, u3 (t, x) =
(
1 + π2) e−t,

0 ≤ x ≤ 1, t ≥ 0.
(70)

Since three time differentiations of equation (66) determine u3t in terms of the solution u and its

space derivatives, then PDAE (64)-(66) is index-three. Therefore, this PDAE is difficult to solve

numerically. Moreover, no initial condition is prescribed for the variable u3 as this is determined

by the PDAE.
In order to simplify the exposition of the technique discussed in section 4 to solve (64)-(69),

we first integrate equations (64) and (65) twice with respect to time and use the initial conditions
(67)-(68) to get

u1 (t, x)− sinπx+ t sinπx−
t∫

0

t∫
0

u1xx + u3 sinπx dtdt = 0, (71)

u2 (t, x)− cosπx+ t cosπx−
t∫

0

t∫
0

u2xx + u3 cosπx dtdt = 0. (72)
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In view of system (28)-(29), the homotopy for set of equations (71), (72) and (66) can be constructed
as follows

(1− p) (v1 − u1,0) + p

(
v1 − sinπx+ t sinπx

−
t∫

0

t∫
0

v1xx + v3 sinπx dtdt

)
= 0,

(1− p) (v2 − u2,0) + p

(
v2 − cosπx+ t cosπx (73)

−
t∫

0

t∫
0

v2xx + v3 cosπx dtdt

)
= 0,

(1− p) (v3 − u3,0) + p

(
v1 (t, x) sinπx+

v2 (t, x) cosπx− e−t
)

= 0,

where p ∈ [0, 1] is an embedding parameter.

We assume that the initial approximation uk,0 for the exact solution components uk, k = 1, 2, 3
has the form

uk,0 (t, x) = αk,0 (x) + αk,1 (x) t+ αk,2 (x) t2 + . . . , (74)

where αk,n (x), k = 1, 2, 3; n = 0, 1, 2, . . . are unknown functions to be determined later on.

We assume also that the solution components vk of system (73) can be written as power series
in p, as follows

vk (t, x) = vk,0 (t, x) + pvk,1 (t, x) + p2vk,2 (t, x) + . . . , (75)

where vk,n (t, x), k = 1, 2, 3; n = 0, 1, 2, . . . are unknown functions to be determined by the following

iterative scheme. Substituting (74) and (75) into system (73) then equating coefficients of like powers

of p yield the following set of equations

p0:

vk,0 (t, x) = uk,0 (t, x) , k = 1, 2, 3,

p1:

v1,1 (t, x) = −
∞∑
n=0

α1,n (x) tn + sinπx− t sinπx

+

t∫
0

t∫
0

∞∑
n=0

α′′1,n (x) tndtdt (76)

+ sinπx

t∫
0

t∫
0

∞∑
n=0

α3,n (x) tndtdt,
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v2,1 (t, x) = −
∞∑
n=0

α2,n (x) tn + cosπx− t cosπx

+

t∫
0

t∫
0

∞∑
n=0

α
′′
2,n (x) tndtdt (77)

+ cosπx

t∫
0

t∫
0

∞∑
n=0

α3,n (x) tndtdt,

v3,1 (t, x) = e−t − v1,0 (t, x) sinπx− v2,0 (t, x) cosπx, (78)

where (′) denotes the ordinary derivative with respect to x,

pi:

v1,i (t, x) =

t∫
0

t∫
0

v1,i−1xx + v3,i−1 sinπxdtdt,

v2,i (t, x) =

t∫
0

t∫
0

v2,i−1xx + v3,i−1 cosπxdtdt, (79)

v3,i (t, x) = v3,i−1 − v1,i−1 sinπx− v2,i−1 cosπx, i = 2, 3, . . .

Now, if we set

v1,1 (t, x) = 0,

v1,2 (t, x) = 0, (80)

v1,3 (t, x) = 0,

then v1,i (t, x) = v2,i (t, x) = v3,i (t, x) = 0 for all i = 2, 3, . . . follows from (79).

Equations (76)-(78) can be rewritten as series

v1,1 (t, x) = (−α1,0 (x) + sinπx)− (α1,1 (x) + sinπx) t+
∞∑
n=2

(
α′′1,n−2 (x) + α3,n−2 (x) sinπx

(n− 1)n
− α1,n (x)

)
tn,

v2,1 (t, x) = (−α2,0 (x) + cosπx)− (α2,1 (x) + cosπx) t+
∞∑
n=2

(
α′′2,n−2 (x) + α3,n−2 (x) cosπx

(n− 1)n
− α2,n (x)

)
tn,

v3,1 (t, x) =

∞∑
n=0

(
(−1)n

n!
− α1,n (x) sinπx− α2,n (x) cosπx

)
tn.

Equating all coefficients of powers of t to zero in (80) yields

α1,0 (x) = sinπx, α1,1 (x) = − sinπx,

α2,0 (x) = cosπx, α2,1 (x) = − cosπx,
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and the nonsingular algebraic linear system for the unknown functions α1,n, α2,n and α3,n−2

α1,n (x)− α3,n−2 (x) sinπx

(n− 1)n
=

α′′1,n−2 (x)

(n− 1)n
,

α2,n (x)− α3,n−2 (x) cosπx

(n− 1)n
=

α′′2,n−2 (x)

(n− 1)n
, (81)

α1,n (x) sinπx+ α2,n (x) cosπx =
(−1)n

n!
, for n = 2, 3, . . .

Solving system (81) exactly, we have the recursions

α1,n (x) =
(−1)n

n!
sinπx+

δn (x) cosπx

(n− 1)n
,

α2,n (x) =
(−1)n

n!
cosπx− δn (x) sinπx

(n− 1)n
, (82)

α3,n−2 (x) =
(−1)n

(n− 2)!
− α′′1,n−2 (x) sinπx− α′′2,n−2 (x) cosπx,

where δn (x) = α′′1,n−2 (x) cosπx− α′′2,n−2 (x) sinπx, for n = 2, 3, . . .
For n = 2, 3, 4, we have δn (x) = 0 and hence

α1,2 (x) =
1

2
sinπx, α2,2 (x) =

1

2
cosπx,α3,0 (x) = 1 + π2,

α1,3 (x) = −1

6
sinπx, α2,3 (x) = −1

6
cosπx, α3,1 (x) = −

(
1 + π2) ,

α1,4 (x) =
1

24
sinπx, α2,4 (x) =

1

24
cosπx, α3,2 (x) =

1

2

(
1 + π2) .

Using (74) and the coefficients recently computed, we obtain

u1 (t, x) = u1,0 (t, x) =

(
1− t+

1

2
t2 − 1

3!
t3 +

1

4!
t4
)

sinπx, (83)

u2 (t, x) = u2,0 (t, x) =

(
1− t+

1

2
t2 − 1

3!
t3 +

1

4!
t4
)

cosπx, (84)

and

u3 (t, x) = u3,0 (t, x) =
(
1 + π2)(1− t+

1

2
t2
)

. (85)

In a similar manner, the coefficients α1,n (x), α2,n (x) and α3,n−2 (x) for n ≥ 5 can be obtained

from (82).

The solutions series obtained from the NHPM may have limited regions of convergence, even

if we take a large number of terms. Therefore, we apply the t-Padé approximation technique to

these series to increase the convergence region. First t-Laplace transform is applied to (83), (84)

and (85). Then, s is substituted by 1/t and the t-Padé approximant is applied to the transformed

series. Finally, t is substituted by 1/s and the inverse Laplace s-transform is applied to the resulting

expression obtain the modified approximate solution.
Applying Laplace transform to (83), (84) and (85) yields

L [u1 (t, x)] =

(
1

s
− 1

s2
+

1

s3

)
sinπx, (86)

L [u2 (t, x)] =

(
1

s
− 1

s2
+

1

s3

)
cosπx, (87)
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and

L [u3 (t, x)] =
(
1 + π2)(1

s
− 1

s2
+

1

s3

)
. (88)

For the sake of simplicity we let s = 1/t, then

L [u1 (t, x)] =
(
t− t2 + t3

)
sinπx, (89)

L [u2 (t, x)] =
(
t− t2 + t3

)
cosπx, (90)

and

L [u3 (t, x)] =
(
1 + π2) (t− t2 + t3

)
. (91)

All of the [L/M ] t-Padé approximants of (89), (90) and (91) with L ≥ 1 and M ≥ 1 and L+M ≤ 3
yield

[L/M ]u1
=

(
t

1 + t

)
sinπx, (92)

[L/M ]u2
=

(
t

1 + t

)
cosπx, (93)

and

[L/M ]u3
=
(
1 + π2)( t

1 + t

)
. (94)

Now since t = 1/s, we obtain [L/M ]u1
, [L/M ]u2

and [L/M ]u3
in terms of s as follows

[L/M ]u1
= (1 + s)−1 sinπx, (95)

[L/M ]u2
= (1 + s)−1 cosπx, (96)

and

[L/M ]u3
=
(
1 + π2) (1 + s)−1 . (97)

Finally, applying the inverse Laplace transform to the Padé approximants (95), (96) and (97), we

obtain the modified approximate solution which is in this case the exact solution (70).

7 Discussion

In this paper we presented new homotopy perturbation method (NHPM) as a useful analytical

tool to solve partial differential-algebraic equations (PDAEs). Two PDAE problems were solved

determining the exact solutions; the first one was a nonlinear index-one problem and the second

one was a variable coefficients linear index-three problem. The method has successfully handled the

index-three PDAE without the need for a preprocessing step of index-reduction. For each of the

two problems solved here, the NHPM transformed the PDAE into an easily solvable linear algebraic

system for the coefficient functions of the power series solution. To improve the NHPM solution, a

Laplace-Padé (LP) post-treatment is applied to the truncated series leading to the exact solution.

Additionally, the solution procedure does not involve unnecessary computation like that related

to noise terms [39]. This greatly reduces the volume of computation and improves the efficiency

of the method. It should be noticed that the high complexity of these problems was effectively

handled by Laplace-Padé new homotopy perturbation method (LPNHPM) due to the malleability

of NHPM and resummation capability of Laplace-Padé. What is more, there is not any standard
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analytical or numerical methods to solve higher-index PDAEs, converting the LPNHPM method

into an attractive tool to solve such problems.

On one hand, semi-analytic methods like HPM, HAM, VIM among others, require an initial

approximation for the sought solutions and the computation of one or several adjustment parameters.

If the initial approximation is properly chosen the results can be highly accurate, nonetheless, no

general methods are available to choose such initial approximation. This issue motivates the use of

adjustment parameters obtained by minimizing the least-squares error with respect to the numerical

solution.

On the other hand, NHPM or LPNHPM methods do not require any trial equation as requisite

for the starting the method. What is more, NHPM obtains its coefficients using an easy computable

straightforward procedure that can be implemented into programs like Maple or Mathematica.

Finally, if the solution of the PDAE is not expressible in terms of known functions then the LP

resummation will provide a larger domain of convergence.

8 Conclusion

In this paper, a hybrid method which combines a new homotopy perturbation method (NHPM),

Laplace transform (LT), Padé approximant (PA) is introduced for solving PDAEs analytically.

Solutions of PDAEs are first obtained in convergent series forms using a new homotopy perturbation

method (NHPM). To improve the solutions obtained from NHPM’s truncated series, a post-treatment

combining Laplace transform and Padé approximant is proposed. This modified Laplace-Padé new

homotopy perturbation method (LPNHPM) greatly improves NHPM’s truncated series solutions

in convergence rate, and often leads to the exact solution. Two examples of PDAEs are given to

demonstrate this result. Additionally, the LPNHPM does not require any index-reduction to solve

higher-index PDAEs and the solutions do not involve noise terms which may reduce the efficiency

of the method. The LPNHPM proposed in this paper is expected to be further employed to solve

other PDAE systems.
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[62] Momani S, Ertűrk VS. Solutions of non-linear oscillators by the modified differential
transform method. Computers & Mathematics with Applications. 2008;55(4):833-842.
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