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ABSTRACT

The deformation structure of the even uranium isotopes is investigated in the framework of
the collective model, the single-particle Schrödinger fluid model and the cranked Nilsson
model. Accordingly, the rotational and vibrational energies, the nuclear moments of inertia,
the total ground-state energy, the quadrupole moment, the Liquid Drop (L. D) energy, the

Strutinsky inertia, the L. D. inertia, the volume conservation factor
0
00  , the smoothed

energy, the BCS energy, the G-value and the transition probabilities of the exited-state in
the ground-state band of the uranium isotopes: 232U, 234U, 236U and 238U  have been
calculated as functions of the deformation parameters  and  , which vary in  the ranges
 50.050.0   and  oo 600   . Moreover, a new formula that depends on the
intrinsic quadrupole moment and the moment of inertia of the nucleus has been obtained to
fit the transition probabilities of the exited-state in the ground-state band of the mentioned
four isotopes.

Keywords: Collective model; cranked Nilsson model; single-particle Schrödinger fluid; total
energy; quadrupole moment; moment of inertia; transition probabilities.
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1. INTRODUCTION

In order to investigate the deformation structure of deformed nuclei, it is necessary to
introduce some collective variables to describe the cooperative modes of motion. The
simpler model is often called ''the collective model" and the distorted shell model is often
called "the unified model" [1-4]. Both represent collective effects but in different ways.

The moments of inertia, or equivalently the absolute values of the rotational energies and the
quadrupole moments require knowledge of the fine details of the intrinsic nuclear structure.
Consequently, the investigation of the nuclear moments of inertia and the quadrupole
moments represent a sensitive check for the validity of the nuclear structure theories [5-7].

The quantum fluid [8] is considered to be completely transparent internally with respect to
motion of the constituent particles and it receives disturbances solely by a way of surface
deformations. The fact that the quantum fluid is nearly incompressible comes about, not by
particle to particle push (as in the case of an ordinary liquid) but by more subtle means. It is
capable of collective oscillations, but it is the wall which organizes these disturbances, not
nucleon to nucleon interactions. Oscillations experience a damping, but the mechanism of
the damping is unlike that encountered in ordinary liquids. The rotational properties of the
quantum fluid are quite different from those of ordinary fluids.

Moreover, the study of the velocity fields for the rotational motion led to the formulation of the
so-called the Schrödinger fluid [9, 10]. Since the Schrödinger-fluid theory is currently an
independent particle model, the cranking model approximation for the velocity fields and the
moments of inertia play the dominant role in this theory.

The pure Nilsson model cannot be used neither for the calculations of the total energies nor
for the calculations of the shape of the energy surfaces at large deformation. Hence,
Strutinsky [11] had suggested a renormalization procedure, which is the shell-correction
method, and it became possible to calculate realistic potential energy surfaces. Therefore,
the oscillator part of the deformation energy has been calculated within this model and
replaced the smooth part by the liquid drop energy at the same deformation [12]. The
systematic solutions for an axially symmetric deformed nucleus with β- and γ-vibrations, i.e.
the rotation-vibration model, are later obtained by Faessler and Greiner [13-19].

The cranked Nilsson Strutinsky (CNS) model [20-26] is a theoretical approach that provides
a good physical interpretation for the different properties of deformed nuclei, and at the same
time it allows carrying out systematic and accurate calculations of the different properties of
the deformed even-even nuclei.

We have recently applied the CNS-model, the single-particle Schrödinger fluid model and
the nuclear superfluidity model in order to calculate the electric quadrupole moments and the
moments of inertia of the even-even p- and sd-shell nuclei [27] and the obtained results are
consistent with the available experimental data.

Furthermore, in a previous paper [28] we have applied the collective model to calculate the
rotational and vibrational energies of the even-even ytterbium: 170Yb, 172Yb and 174Yb,
hafnium: 176Hf, 178Hf and 180Hf and tungsten: 182W, 184W and 186W nuclei. Also, the single-
particle Schrödinger fluid model was applied to calculate the nuclear moment of inertia of the
nine mentioned nuclei by using the rigid-body model and the cranking model. Furthermore,
the CNS-model has been applied to calculate L. D. energy, the Strutinsky inertia, the L. D.
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inertia, the volume conservation factor 0
00  , the smoothed energy, the BCS energy, the

G-value, the total ground-state energy and the quadrupole moment of the nine mentioned
nuclei as functions of the deformation parameters  and  , which are assumed to vary in

the ranges  50.050.0   and  oo 600   . Moreover, two polynomials in  are fitted
to obtain formulas, which produce results that are consistent with the corresponding CNS-
values for the total ground-state energy and the quadrupole moment of the mentioned nine
nuclei.

In the present paper we applied the three models, as in the previous paper [28], to calculate
the same properties for the four even-even uranium isotopes: 232U, 234U, 236U and 238U as
functions of the deformation parameters  and  , which are assumed to vary in  the ranges

 50.050.0   and  oo 600   . Furthermore, the transition probabilities of the
exited-state in the ground-state band of the uranium isotopes: 232U, 234U, 236U and 238U have
also been calculated. Moreover, a new simple formula is obtained to produce results that are
in good agreement with the corresponding experimental transition probabilities of the exited-
state in the ground-state band of the mentioned four isotopes.

2. TRIAXIAL DEFORMED CRANKED NILSSON STRUTINSKY METHOD

In the triaxial deformed CNS method, the nucleons are assumed to move in a CNS potential
[23-26] with the deformation being described by the deformation parameters  and  . The
cranking is performed around one of the principal axes: the z-axis, and the cranking
frequency is given by  . In these calculations the triaxial CNS model is used in the rotating
frame. The model provides a microscopic description of the influence of rotation on single-
particle motion. The rotation is treated classically and the nucleons are considered as
independent particles moving in an average rotating potential. The basic developments
leading to the modified single-particle oscillator potential are described in [3, 20, 29, 30],
while cranking was introduced in [21, 28]. The used single-particle Hamiltonian in this model,
H , is given in [31-33]. The diagonalization of the Hamiltonian H gives the eigenvalues

ie and the eigenvectors  i . Furthermore, the single-particle energies in the laboratory

system and the single-particle spin contributions im are also obtained.

The total energy is then obtained as

ci iici i EmeEeE
i

    , (2.1)

with the total spin given by

 imI . (2.2)

These sums should be carried out over the occupied states where the occupation is
determined from the order of the quantities 

i
e . cE in eq. (2.1) is the nuclear Coulomb

energy which depends on deformation.
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In the calculation of the total energy, the nuclear Coulomb energy should be treated as a
residual force for the particles moving in the single-particle potential of this model. However,
the most accurate procedure is very cumbersome; therefore one can determine the Coulomb
energy of a homogeneous proton distribution with an ellipsoidal shape. The exact expression
for the Coulomb energy of an ellipsoid cE in units of Coulomb energy of a sphere  0

cE was
derived by Pal [34], Gob et al. [35] and Leander [36].

In order to overcome the difficulties encountered in the evaluation of the total energy for
large deformation through the summation of the single particle energies, the Strutinsky shell
correction method is adapted to 0I cases by suitably tuning the angular velocities to yield
fixed spins [37, 38]. The methods of calculating the deformation characteristics of deformed
nuclei are explained in [28].

3. The Single- Particle Schrödinger Fluid

According to the semi classical approach of dealing with the motion of the nucleon inside the
nucleus, it is assumed that each nucleon in the nucleus is moving in a single- particle
potential   trV , , which is deforming with time t , through its parametric dependence on a
classical shape variable  t . Thus the Hamiltonian for the present problem is given by [9,
10]

     tV
m
ptpH  ,
2

;,
2

rr  . (3.1)

The single-particle wave function   tt ,; r , which describes the motion of a nucleon,
satisfies the time-dependent Schrödinger equation

        tt
t

itttpH ,;,;;,  rrr



  . (3.2)

We use polar form of the wave function and isolate the explicit time dependence in
  tt ,; r by an energy phase factor, i.e. we write [9]

        







 

t

dtt
h
ittt
0

''exp;,;  rr , (3.3)

where   t is the intrinsic energy of the nucleon that depends on time through  . Then,

the complex wave function   t ;r is written in polar form as follows

        






 trSiMtt  ;exp,,


rr , (3.4)

where   t,r and   tS ,r are assumed to be real functions of r and  .
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The average potential field is assumed to be in the form of a harmonic oscillator potential.
The intrinsic energy of the single particle state is then,

   11  zzyxxnnn nnnE
zyx

  . (3.5)

For the frequencies x , y and z in equation (3.5) we used the corresponding ones given
by Nilsson [3], which are given by








  
3
412

0
2
z , (3.6)








  
3
212

0
22
yx . (3.7)

Accordingly, the condition of constant volume of the nucleus is guaranteed. The parameter
 is related to the well known deformation parameter  by





4
5

2
3
 . (3.8)

By applying the time-dependent perturbation method and using the equation arising from the
first-order perturbation of the wave function, we can calculate the first-order time-dependent
perturbation correction to the wave function explicitly as function of the numbers of quanta of
excitations corresponding to the Cartesian coordinates and the quantity  , defined by [9]

zy

zy








 , (3.9)

which is a measure of the deformation of the potential.

We now examine the cranking moment of inertia in terms of the velocity fields. Bohr and
Mottelson [2, 4] show that for harmonic oscillator case at the equilibrium deformation, where

 



1

0
i

innn zyx
E

d
d


, (3.10)

the cranking moment of inertia is identically equal to the rigid moment of inertia:





1

22

i
iirigcr zym . (3.11)

We note that the cranking moment of inertia cr and the rigid moment of inertia rig are
equal only when the harmonic oscillator is at the equilibrium deformation. At other
deformations, they can, and do, deviate substantially from one another [10].
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The following expressions for the cranking-model and the rigid-body model moments of
inertia, cr and rig , are obtained [10]:

   




 




















 qqE
cr 111

1
1

26
1 23

1

2
0 






, (3.12)

    qqE
rig 





















 11
1
1

26
1 3

1

2
0






, (3.13)

where E is the total single particle energy, given by (3.5) and q is the ratio of the summed
single particle quanta in the y-and z-directions

 
 







occ
z

occ
y

n

n
q

1

1
. (3.14)

q is known as the anisotropy of the configuration.

4. The New Rotational and Vibrational Formulas

By analyzing the well known experimental rotational energy levels of the even-even
deformed nuclei in the high mass region, we derived a new formula for the rotational energy
levels, that depends upon the total spin momentum  and the nuclear moment of inertia 
in the following simple form [28]

   
 
 














11
11

1

C
D

AE . (4.1)

Here, is the reciprocal-moment of inertia of the nucleus,



2

2 . The value of A has been

determined for all the considered isotopes by using the concept of the single-particle
Schrödinger fluid [10].

Accordingly, our formula contains two parameters beside the nuclear moment of inertia. In
our fitting, we determined C and D by inserting two values of the experimental rotational
energies for middle values of  . In our calculations, we considered 10 and 12 to
determine C and D .

When CD  formula (4.1) gives the following simple relation

     22 11  BAE , (4.2)

where ACB  This special case coincides with the AB-formula [40].
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Accordingly, our new formula modifies the AB- formula by the correction factor:

     11
1

 CD
.

Furthermore, by analyzing the well known experimental  -band energy levels of the even-
even deformed nuclei in the high mass region, we derived a new formula for the  -band
energy levels, that depends on the total spin momentum  , the head band of  and the
head band of  and the nuclear moment of inertia  in the following simple form [28]

     E
g

E band 




 1

2
11 2

22
2




. (4.3)

Also, by analyzing the well known experimental  -band energy levels of even-even
deformed nuclei in the high mass region, we have derived a new formula for the  -band
energy levels that depends upon the total spin momentum  , the head band of  , the
number of neutrons N and the nuclear moment of inertia  in the following simple form [28].

     E
N

E band 





 1
22

111
2

2
22

2




. (4.4)

The quantity g , appearing in equation (4.3) is given by:

 gE  where  is the unit energy associated with E .

5. Transition Probabilities of the Ground-State Band

It is well known that absolute gamma ray transition probabilities offer the possibility of a very
sensitive test of nuclear models, and the majority of information regarding the nature of the
ground state has come from studies of the energy level spacing. The transition probability
values of the exited-state in the ground-state band constitute another source of nuclear
information.

For coulomb excitation [7,39], the  2EB reduced transition probability in the case of a
symmetric rotator (even-even nuclei) is given by

  22
0

2 0,2200
16

52;2  QeEB


. (5.1)

By analyzing the well known experimental reduced transition probability,  2EB , of even-
even deformed nuclei in the high mass region we have derived a new formula which fits the
values of  2EB , and depends on the  mass number A , the number of protons Z , the
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moment of inertia
2

2 and the quadrupole moment 0Q , of the nucleus in the following form:

    2
0

2
00 exp498.01

2
32;2 req

J
q

Z
AEB













 , (5.2)

where 2
000 rqQ  , 10 r fm, and 0q is the absolute value of 0q . In equation (5.2) J is given

by

JK
2

2 , 1K Kev.

6. RESULTS AND DISCUSSION

We have calculated the reciprocal moments of inertia according to the cranking model and
the rigid-body model of the single-particle Schrödinger fluid for the even-even deformed
uranium isotopes; 232U, 234U, 236U and 238U as functions of the deformation parameter  ,
which is allowed to vary in the range from -0.50 to 0.50 with a step equals 0.01.

In Table-6.1 we present the best values of the reciprocal moments of inertia by using
Schrödinger fluid for the even-even deformed isotopes: 232U, 234U, 236U and 238U. The values
of the deformation parameter  , which produce the best values of the moments of inertia,
are also given in this table. The corresponding experimental values are given in the last
column [41-44].

Table 6.1 Reciprocal moments of inertia by using Schrödinger fluid for the even-even
deformed isotopes: 232U, 234U, 236U and 238U

Nucleus
Reciprocal moments of inertia in KeV


rig2

2

cr2

2

exp

2

2


232U 0.19
-0.20

7.61
8.09

8.27
8.32 8.28

234U 0.19
-0.20

7.43
7.88

7.31
7.25 7.29

236U 0.20
-0.21

7.33
7.80

7.55
7.49 7.57

238U 0.19
-0.21

7.29
7.76

7.80
7.84 7.82

It is seen from Table 6.1 that the calculated values of the moments of inertia by using the
cranking-model are in excellent agreement with the corresponding experimental values. It is
also seen that there are two possible values of the deformation parameter for each nucleus
which produce the best consistency, one of which is positive and the other is negative. As
expected, the rigid-body values of the reciprocal moments of inertia fall within the range
(80% -90%) of the corresponding experimental values.
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Experimentally, it has been found that there is a strong correlation between the  2EB
value of the first 2 state and its energy 

12E and it is illustrated in the following form [1]

   
A

ZEBE
2

2 82502,2
1

 
 [MeV e2 fm4], (6.1)

where A is the mass number. This empirical relation holds for all the nuclei throughout the

nuclear table. Moreover, the experimental moment of inertia
exp

2

2
 can be found from the

energy of the first 2 state of the rotational band, equation (4.1);  2exp 3 E [MeV-1].

Applying the empirical rule (6.1) and formula (5.1) for the  2EB value, we get a connection
between the deformation parameter  and the moment of inertia

  400280
27 372

2

22234
4

02exp
A

EBE
eZAr 











[MeV-1]. (6.2)

From the above equation, we see that the existence of two values of the deformation
parameter  in our results of the nuclear moment of inertia, one of which is positive and the
other is negative, agrees with the experimental finding.

In the numerical calculations of the rotational energies of the even-even deformed isotopes:
232U, 234U, 236U and 238U, we have used our new formula, equation (4.1). Furthermore, we
have also calculated the rotational energies by using the AB-formula [40], the Wrake-
Khadikikar formula [45], Harris-formula [46], the variable moment of inertia-formula [47] and
the ɑb-formula [48]. Among the previous five formulas the results obtained by using the ɑb-
formula are to some extent better than those of the other four formulas. Accordingly, we
present only in Table-6.2 the calculated values of the rotational energies of the mentioned
four isotopes, for even values of the total angular momentum  in the interval from 2 to 20,
by using the ɑb-formula and the new formula together with the available experimental
values. The experimental values are taken from [41-44].

It is seen from Table 6.2 that the calculated values of the rotational energies of the four
isotopes by using the new formula are in better agreement with the corresponding
experimental ones than those obtained by using the ɑb-formula.

In Table 6.3 we present the  -band energies of the four isotopes: 232U, 234U, 236U and 238U
as functions of the total spin  by using the new formula, equation (4.3). The experimental
values are taken from [41-44].

In Table 6.4 we present the  -band energies of the four isotopes: 232U, 234U, 236U and 238U
as functions of the total spin  by using the new formula, equation (4.4). The experimental
values are taken from [41-44].

It is seen from Tables 6.3 and 6.4 that the calculated values of the  -band and  -band
energies of the four isotopes by using the new formulas are in good agreement with the
corresponding experimental values. From the obtained results we have seen that a new
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three-parameter formula for the rotational band of a well-deformed nucleus is suggested on
the basis of the phenomenological Bohr Hamiltonian. In the derivation of this formula a small
axial asymmetry and vibrational effects (including anharmonicity) have been taken into
account. The consistency among the obtained results by using this formula and the
observed ground-state bands is astonishingly excellent, which might imply that the formalism
described here may have some validity.

In Table 6.5 we present the  2EB reduced transition probability of the four isotopes: 232U,
234U, 236U and 238U as functions of quadrupole moments and reciprocal moments of inertia by
using the new formula, equation (5.2). The experimental values are taken from [41-44].

In Table 6.6 we present the calculated values of the L. D. Energy, the Strutinsky inertia, the
L. D. inertia, the volume conservation factor 0

00  , the smoothed energy, the BCS energy
and the G-value of the four isotopes: 232U, 234U, 236U and 238U for values of the deformation
parameter  , and the nonaxiality parameter  , which produce good agreement with the
corresponding findings.
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Table 6.2 Rotational energies of the four even-even deformed isotopes: 232U, 234U, 236U and 238U as functions of the total spin
 by using the ɑb-formula [48] and the new formula, equation (4.1). The experimental values are taken from [41-44].

Nucl. Case  E in KeV
2 4 6 8 10 12 14 16 18 20

232U ɑb
New
Exp

47.40
47.42
47.57

156.34
156.26
156.56

323.13
322.56
322.6

542.65
541
541

809.03
805.8
805.8

1116.28
1111.5
1111.5

1458.65
1453.4
1453.7

1830.96
1828.04
1828.1

2228.65
2232.71
2231.5

2647.82
2665.84
2659.7

234U ɑb
New
Exp

43.18
43.47
43.5

142.65
143.32
143.35

295.51
296.06
296.07

497.65
497.04
497.04

744.3
741.2
741.2

1030.38
1023.8
1023.8

1350.95
1340.8
1340.8

1701.41
1689.16
1687.8

2077.5
2066.6
2063

2475.8
2471.9
2464.2

236U ɑb
New
Exp

45.15
45.2
45.24

149.48
149.41
149.48

309.71
309.75
309.78

522.52
522.24
522.24

783.08
782.3
782.3

1087.46
1085.3
1085.3

1427.69
1426.9
1426.3

1802.1
1803.6
1800.9

2205.36
2212.3
2203.9

2633.65
2650.89
2631.7

238U ɑb
New
Exp

44.78
44.84
44.91

148.1
148.19
148.41

307.28
307.15
307.21

518.52
517.8
517.8

777.27
775.7
775.7

1078.65
1076.5
1076.5

1417.8
1416.3
1415.3

1790.06
1791.92
1788.2

2191.18
2200.9
2190.7

2617.35
2641.54
2618.7
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Table 6.3  -band energies of the four isotopes: 232U, 234U, 236U and 238U, in KeV, as
functions of the total spin  by using the new formula, equation (4.3). The

experimental values are taken from [41-44].

Table 6.4  -band energies of the four isotopes: 232U, 234U, 236U and 238U, in KeV, as
functions of the total spin  by using the new formula, equation (4.4). The

experimental values are taken from [41-44].

Table 6.5 we present the  2EB reduced transition probability of the four isotopes:
232U, 234U, 236U and 238U as functions of quadrupole moments and reciprocal moments
of inertia by using the new formula, equation (5.2). The experimental values are taken

from [41-44].

Nucleus

cr2

2 in KeV calQ
in 2barn

( )calEB 2
in 22barne

( )exp2EB
in 22barne

232U 8.27 2.85 9.76 10

234U 7.31 2.95 10.98 10.66

236U 7.55 3.09 11.88 11.61

238U 7.8 3.15 12.18 12.09

Nucleus 0 2 4 6  
232U Exp. 691.42 734.57 833.07 984.9 691.42 850.23

Cal. 691.42 740.34 849.04 1004.4
234U Exp. 809.907 851.74 947.64 1096.12 809.907 912.14

Cal. 809.907 853.19 949.70 1088.65
236U Exp. 919.14 960.3 1050.85 ……. 919.14 942.76

Cal. 919.14 963.86 1063.73 1207.97
238U Exp. 927.21 966.13 1056.38 ……. 927.21 1044.63

Cal. 927.21 973.47 1077.24 1228.47

Nucleus 2 3 4 5  
232U Exp. 866.79 911.49 970.71 …… 691.42 850.23

Cal. 877.17 908.36 956.56 1027.44
234U Exp. 926.72 968.425 1023.77 1090.89 809.907 912.14

Cal. 935.92 963.41 1005.83 1068.12
236U Exp. 957.90 1001.5 1058.8 1127.38 919.14 942.76

Cal. 966.68 994.99 1038.61 1102.58
238U Exp. 1060.27 1105.71 1167.99 1232 927.21 1044.63

Cal. 1069.95 1099.12 1144.00 1209.67
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Table 6.6 The L. D. Energy, the Strutinsky inertia, the L. D. inertia, the volume
conservation factor 0

00  , the smoothed energy, the BCS energy and the G-value of
the four isotopes: 232U, 234U, 236U and 238U.

Nucl.   L.D.
energy
MeV

Strutinsky
inertia
1/MeV

L.D.
inertia
1/MeV

0
00  smoothed

energy
MeV

BCS
energy
MeV

G-
value
MeV

232U -0.17 o5 4.473 144.89 116.5 1.0053 3950.9 -2.61 0.089

234U -0.18 o5 4.526 146.69 117.8 1.0075 2775.6 -2.14 0.089

236U -0.20 o0 16.30 152.45 122.8 1.0134 2762.8 -1.61 0.088

238U -0.20 o0 16.32 114.00 154.7 1.0135 2748.6 -1.50 0.088

In Figs 6.1, we present the variation of the total energy of the four mentioned nuclei as a
function of the deformation parameters  and  , which are assumed to vary in the ranges

 50.050.0   on x-axis and  oo 600   on y-axis. The systematics in the structure
of the calculated total energy as the neutron number varies through some uranium isotopes
is shown in Fig. 6-1. The surface for 232U is unstable more than the surfaces of the other
isotopes 234U, 236U and 238U with respect to the deformation parameter  , and the
nonaxiality parameter  . The considered 232U, 234U, 236U and 238U nuclei are prolate at 0 .
On the other hand, in Figures 6-2 we present the variation of the quadrupole moments of the
four mentioned nuclei as a function of the deformation parameters  and  , which are

assumed to vary in the ranges  50.050.0   on x-axis and  oo 600   on y-axis.
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Fig. 6.1 Total energy for the uranium isotopes 232U, 234U, 236U and 238U, in KeV, as
functions of the deformation parameters  and  which are assumed to vary in

the ranges  50.050.0   on x-axis and  oo 5050   on y-axis.
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Fig. 6.2 Quadrupole moments for the 232U, 234U, 236U and 238U isotopes as functions of
the deformation parameters  and  which are assumed to vary in the ranges

 50.050.0   on x-axis and  oo 5050   on y-axis.

It is important to note that the rotational energies, the  -band energies, the  -band
energies and the reduced transition probability  2EB of the four isotopes: 232U, 234U, 236U
and 238U are all dependent on the nuclear moments of inertia, which have been calculated
by applying the concept of the single- particle Schrödinger fluid. Accordingly, the study of the
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velocity fields for the rotational motion of the deformed nuclei, which has led to this concept,
is very essential to produce results that are in good agreement with the corresponding
experimental findings for the different characteristics of the deformed nuclei.
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