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Abstract
The integral multi-station measurement system represented by indoor GPS, workshop
Measuring and Positioning System or a multi-camera system, realizes high-precision 3D
measurement in large-scale space by constructing a global measurement field within a unified
temporal-spatial reference. In advanced equipment manufacturing sites such as robot
machining, large component (the fuselage or wing of airplanes) assembly and monitoring, the
integral multi-station measurement system overcomes the drawbacks of the single-station
measurement system such as laser tracker that can hardly balance the measurement range and
accuracy. However, with the improvement of automation and intelligence degree in equipment
manufacturing, the requirements on accuracy and robustness has become more and more strict,
which is a huge challenge to existing measuring technologies. Limited by the measurement
principle of multi-observation intersection, the change of geometry constraint in the integral
multi-station measurement field will lead to spatially non-continuous error, degrading the
performance of the integral multi-station measurement system. In this paper we first analyze the
mechanisms and characteristics of spatially non-continuous error at the geometry constraint
level. Basing on the error propagation model, a criterion for evaluating the significance of
non-continuous error is then proposed for error identification. Finally, simulations and
experiments are carried out, and this proposed criterion is verified to be effective.

Keywords: integral multi-station measurement system, spatially non-continuous error,
error propagation, significance criterion
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1. Introduction

In recent years, with the development of manufacturing
technology, digital collaborative manufacturing has become
one of the key technologies for enhancing the manufacturing
quality and efficiency of large-scale equipment such as air-
planes and ships [1–4]. It proposes new challenges to existing
measurement systems in the aspects of large-scale coverage,
high accuracy and continuous measurement capacity in com-
plicated environment [5].

Restricted by the measurement range, the single-station
measurement systems such as laser tracker (LT) needs to
be moved to several stations during the measurement pro-
gress for better space coverage, as shown in the yellow zone
in figure 1. The local coordinate frames at different sta-
tions are connected in a series mode, constructing the global
frame. Nevertheless, as the number of measurement station
increases, a long coordinate system transformation chain will
lead to severe error accumulation [6, 7]. In addition, LTs can
only perform single-target measurement and requires manual
assistance in multi-target measurement tasks, which greatly
extends the operation process. Therefore, single-station meas-
urement systems fail to meet the requirements on accuracy
and collaborative measurement ability in advanced equipment
manufacturing.

The integral multi-station measurement system represen-
ted by indoor GPS (iGPS), workshop Measuring and Posi-
tioning System (wMPS) or a multi-camera system, is becom-
ing increasingly popular in in the past decade [8–11]. They
can measure the position or pose of multiple targets based on
the principle of multi-observation intersection, as shown in the
blue zone in figure 1. Compared with the single-station meas-
urement system, the integral multi-station measurement sys-
tem uses a unified spatial and temporal reference to network
all measurement stations (more than two stations), construct-
ing a high-precision, extensible measurement field without
error accumulation [12]. This characteristic is beneficial for
the integral multi-station measurement system to demonstrate
outstanding potentials in large-scale manufacturing scenes
[13–15].

However, owing to the principle of intersection measure-
ment, the measurement precision control in an integral multi-
station measurement system is much more difficult than a
single-station measurement system. The key point for inter-
section measurement is to construct the geometry constraints.
They usually consist of angle and length observations from the
measurement stations that are involved in measurement. The
constraint strength determines the sensitivity of the measure-
ment error to the station observation errors [16, 17]. Never-
theless, due to the different positions of the measured target in
the field or the loss of line of sight, the geometry constraints in
an integral multi-station measurement field are changing dur-
ing measurements and this leads to complicated error char-
acteristics. According to the redundancy of geometry con-
strains, we discuss the change of geometry constraints using
figure 2. When the target is in the unmeasurable zone (only
one station can measure the target), the geometry constraints
are insufficient and it is not able to solve the coordinate or pose,

causing measurement interruption. In the other area where the
geometry constraints are redundant (i.e. two or more stations
are involved in measurements), when the spatial occlusion
occurs or the measured target crosses the boundary of some
stations, the transmitters that emit signals to a receiver will
change, leading to corresponding change in geometry con-
straint and spatially non-continuous error. To point out, due
to that the unmeasurable area can be effectively avoided by
optimizing the layout of the measurement stations, we are
more interested in the spatially non-continuous error when
geometry constraints change. This is the main topic of our
paper.

The approach for reducing and compensating the non-
continuous error of the integral multi-station measurement
system can be summarized into two categories:

(1) According to the characteristic of intersection measure-
ment, the intersection stability is used to evaluate the sta-
bility of the solution (measurement result). By improving
the intersection stability of constraint equations, the non-
continuous change in measurement errors can be partly
corrected. In the existing research, the intersection stabil-
ity is often summarized as a mathematical parameter rep-
resented by the condition number of the parameter matrix
formed by all geometry constraint equations. In [18–20],
methods are presented to decrease the condition number
by transforming the measurement model and regulariz-
ing the observation matrix, improving the stability of the
solution. However, these methods overlook the metrology
property of the constraint stability, and the corrected solu-
tion may not be globally optimal, failing to gain a satisfy-
ing result in actual engineering applications.

(2) To restore the spatial continuity in consecutive measure-
ments, auxiliary measurement systems are introduced to
provide prior motion knowledge and spatial continuity In
[21–23] and [24–26], light detection and ranging and iner-
tial measurement unit (IMU) are introduced to improve
the measurement performance of the vision measurement
system in weak texture conditions. This method is widely
used in automatic driving, control of UAV and other scen-
arios. Lukas et al from Eidgenössische Technische Hoch-
schule Zürich (ETH) proposed a method that integrating
iGPS and IMU for the positioning of industrial robots
[27]. The robot moved along a 1.2 m long straight line in-
between the two taught points. After error correction, the
errors are dominantly lower than 0.5 mm. All applications
mentioned above can be expressed as the performance
complements of the integral multi-station measurement
system and auxiliary instrument. The integral multi-station
measurement system compensates the spatial scale drift
error or time accumulation error of the auxiliary sys-
tem periodically, and the auxiliary instrument helps to
compensate the positioning error of the integral multi-
station measurement system [28, 29]. However, in the
existing research above, there is few research on dynamic
error modeling and compensation. What’s worse, the non-
continuous error is also not modeled and evaluated. As a
result, the accuracy control strategy is incomprehensive,
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Figure 1. Comparison of a single-station measurement system and an integral multi-station measurement system.

Figure 2. Non-continuous error caused by the change of geometry constraint.

failing to gain satisfying global accuracy. This is the main
drawback of the methods above.

wMPS has similar measurement principle as iGPS and is
widely utilized in large-scale metrology [30, 31]. wMPS con-
sists of rotary scanning transmitters, photoelectric receivers
and the signal processor. By networking multiple transmitters,
we can construct an extensible, high-precision measurement
field [32, 33]. As a typical integral multi-station measurement
system, the non-continuous error caused by the change of geo-
metry constraints is also an unsolved problem for wMPS and
limits its performance. As a result, wMPS is an ideal platform
for studying the non-continuous error. In previous experiments
and applications, we found that the non-continuous error is
especially significant when the number of stations in the meas-
urement filed increases or there is spatial occlusion in com-
plicated environment, failing to fully develop the potentials of
these systems in large-scale metrology. It is the main motiva-
tion of our research.

In this paper, we first analyze the generation mechanism
and characteristics of the spatially non-continuous error of the
integral multi-station measurement system and propose the
mathematical model. Secondly, we take wMPS as the research
platform and present a method that combining the Guide to the
Expression of Uncertainty in Measurement (GUM) method
and measurement model of wMPS to evaluate the significance
of the non-continuous error. This is the key point to effect-
ively identify the non-continuous error and serves as the pre-
work and foundation for our future work to compensate the
non-continuous error. To our best knowledge, this is the first
systematic research to propose the concept, analyze the gen-
eration mechanism and then evaluate the significance of non-
continuous error.

The rest of this paper is organized as follows: in
section 2 the definition and generation mechanism of the non-
continuous error are presented. In section 3 the significance
of the non-continuous error is analyzed, and an evaluation cri-
terion is given. In section 4 the simulations and verification
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Figure 3. Non-continuous error in a linear trajectory measurement.

experiments are designed and carried out. In section 5 the
conclusions are presented along with a brief overview for our
future research.

2. Definition and generation mechanism of
non-continuous error

2.1. Definition of non-continuous error

In the integralmulti-stationmeasurement field, the coordinates
sequence derived from consecutive measurements describes
the trajectory of the target. In most cases, the real motion
trajectory of the target is spatially smooth and continu-
ous. As a result, the sequence of the coordinates should be
continuous numerically as well. However, when the geo-
metry constraints change (different combinations of measure-
ment stations) as described in figure 2, there will be non-
continuous error in consecutive measurements that cannot be
avoided.

We use figure 3 for further clarification. The theoretical tra-
jectory and the measured trajectory formed by discrete meas-
ured points are shown on the front side. According to the geo-
metry constraints, the measured trajectory is divided into three
segments that are represented by different colors. The devi-
ation between each measured point and the theoretical point
is defined as the measurement error. When the geometry con-
straint changes, there will be significant change in the meas-
urement error (dashed circles). We calculate the error vari-
ations between every two consecutivemeasurements and show
the magnitudes on the back side of figure 3. It is worth noting
that the magnitude of error variation is small in each continu-
ous segment but dramatically large when the geometry con-
straint changes.

As shown in figure 4, measurement error ek is the deviation
between measurement Xk and its true value X̂k. The consec-
utive measurements {X1, . . . ,Xk} and consecutive measure-
ments {Xk+1, . . . ,Xm}are derived from different combinations
of multiple stations and they have their respective geometry

constraint. The error variation between two consecutive meas-
urements are all within a narrow error envelope of eθ,l. Since
the error propagation model is related to the geometry con-
straints, for the two consecutive measurements Xk, Xk+1 that
are related with different geometry constraints, the change of
geometry constraints will result in significant change in meas-
urement errors ek and ek+1.

As mentioned above, the magnitude of error variation
between two consecutivemeasurements shows the spatial non-
continuity of the measured trajectory. We define the spatially
non-continuous error eC as the error difference between two
consecutive measurements that have different geometry con-
straints, as shown in equation (1):

eC = ek+1 − ek. (1)

2.2. Generation mechanism of non-continuous error

To analyze the generation mechanism of the non-continuous
error, a general measurement model of the intersection meas-
urement is depicted as shown in figure 5.

According to the principle of intersection measurement, the
geometry constraint is constructed with the observations of
angle and length observations to calculate the coordinate of
the measured point, as shown in equation (2):

f({θ, l} ,{R |T} ,X) = 0 (2)

where θ, l denotes the length and angle observations of differ-
ent measurement stations. Generally, the observations of all
measurement stations are well calibrated and the systematic
error in observations is well corrected. The random error in
observations from different stations is the main error source.
Therefore, the error in the observation of a single station is
simplified as a random error. R |T are the extrinsic parameters
of stations that are obtained through a calibration process [34].
Since the extrinsic parameters are constant in themeasurement
process, their errors are regarded as systematic errors. X is the
coordinate of the measured point.
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Figure 4. Non-continuous error envelopes caused by different geometry constraints.

Figure 5. General measurement model of intersection measurement
in an integral multi-station measurement system.

The two factors, i.e. the random observation error and
extrinsic parameter error of each station, are related to the pos-
itioning error of the integral multi-station measurement sys-
tem. The random error of station observation {∆θ,∆l} obeys
a normal distribution N(µ,σ). As shown in figure 6, for every
single measurement, the propagated measurement error eθ,l

follows an ellipsoidal error distribution. The shape and pose
of the ellipsoid is determined by the geometry constraints [7].
When we only take the random errors of the station observa-
tion into account, the center lines of measurement errors are
collinear no matter how drastically the error envelopes change
for the two measured trajectory segments with different geo-
metry constraints (figure 7(a)). As a result, the error envel-
opes always overlap, which means the two segments should be
regarded as continuous and we are not able to identify the non-
continuous error. Therefore, we draw the conclusion that the

errors in the station observations are not dominant in the gen-
eration of non-continuous error although the geometry con-
straint changes.

The extrinsic parameter error ∆Rn |∆Tn of multiple sta-
tions represents the deviation between the extrinsic parameter
of station n Rn |Tn derived from the calibration process and

their true values R̂n

∣∣∣T̂n . If we take both the random error

of station observation and the extrinsic parameter error into
account, the error envelopes will separate and there will be
a significant jump when the geometry constraint (combina-
tion of stations involved in measurement) change (figure 7(b)).
Here we use figure 8 as the example for further clarification.
The observations from stations 1, 2 and 3 strictly intersect at
X̂k. Influenced by the extrinsic parameter error, the ideal inter-
section is disturbed and they re-intersect at an optimal point
Xk (derived from the measurement model). The measurement
error of kth measurement eR|Tk under the influence of∆R |∆T
can be described in equation (3):

eR|T = X− X̂= g(∆R |∆T),∆R|∆T=

 ∆R1|∆T1
...

∆Rn|∆Tn

 .

(3)
For two consecutive measurements Xk and Xk+1 as shown

in figure 8, their geometry constraint or combination of meas-
urement stations are different. This may lead to significant
change in measurement errors. To sum up, we can conclude
that the extrinsic parameter errors would affect the spatial con-
tinuity of measurement errors when the geometry constraint
changes.

3. Evaluating the significance of non-continuous
error

As defined in section 2, the non-continuous error refers to
the change in the errors between two consecutive measure-
ments with distinct geometry constraints, and it is mainly
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Figure 6. Different ellipsoidal error distributions derived from different geometry constraints.

Figure 7. Error distribution without/with extrinsic parameter errors of multiple stations.

Figure 8. The influence of extrinsic parameter error on the continuity of measurement errors when the geometry constraint changes.
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Figure 9. The workflow chart of the proposed method.

determined by the extrinsic parameter errors of multiple sta-
tions. When the norm of the non-continuous error is smaller
than the random error, it will be merged and is not signific-
ant. In this section, a method to evaluate the significance of
non-continuous errors is proposed. Firstly, the non-continuous
error is modeled to define the significance in consecutive
measurements. Secondly, we combine the GUM method and
the measurement model of wMPS to generated the ellips-
oidal error distributions of two consecutive measurements.
The threshold for significance evaluation is obtained by super-
posing the lengths of both long axes. The flowchart of the pro-
posed method is shown in figure 9.

3.1. Significance criterion of non-continuous error

According to the definition in section 2.1, the non-continuous
error of consecutive measurements Xk and Xk+1 is described
as the difference between their measurement errors, as shown
in equation (1). Considering that ek is difficult to obtain dir-
ectly, we prefer to use the optimal estimation of the meas-
urement X̃k to replace its true value X̂k. Equation (1) can be
rewritten as equation (4):

eC = ek+1 − ek =
(
Xk+1 − X̂k+1

)
−
(
Xk− X̂k

)
=(Xk+1 −Xk)−

(
X̂k+1 − X̂k

)
= (Xk+1 −Xk)−

(
X̃k+1 − X̃k

)
. (4)

As shown in figure 10, the norm of non-continuous error eC
can be regarded as the distance between two consecutivemeas-
urements k and k + 1. When the norm of the non-continuous
error is larger than the maximum distance between the two
error ellipsoids, there is no overlapping area between the two

distributions and the measured trajectory is therefore not con-
tinuous. The non-continuous error is significant in this case.

Therefore, the threshold of the significance criterion is
defined as twice the sum of error ellipsoid radius along the dir-
ection of vector n, as shown in equation (5). n is determined
by the centers of the two error ellipsoids. On the contrary, if
the norm of the non-continuous error is less than the threshold,
it is not significant and cannot be effectively identified

ethres = 2

(∥∥∥Re∆θ

k

∥∥∥2 +∥∥∥Re∆θ

k+1

∥∥∥2) . (5)

3.2. Method to calculate the threshold of the significance
criterion

To calculate the threshold of the significance criterion, we first
calculate the radius the error distribution ellipsoids corres-
ponding to the consecutive measurements Xk and Xk+1. The
error ellipsoid can be expressed using the measurement uncer-
tainty matrix u∆θ

k and u∆θ

k + 1 as equation (6):

u∆θ
k =

 u2 (xk) u(xk,yk) u(xk,zk)
u(yk,xk) u2 (yk) u(yk,zk)
u(zk,xk) u(zk,yk) u2 (zk)

 ,

u∆θ
k + 1 =

 u2 (xk + 1) u(xk+1,yk+1) u(xk+1,zk+1)
u(yk+1,xk+1) u2 (yk+1) u(yk+1,zk+1)
u(zk+1,xk+1) u(zk+1,yk+1) u2 (zk+1)


(6)

where u(x,y) is the covariance of the coordinates of x and
y. Due to that the random error of each observation is
independent to any other and obeys the normal distribution
N
(
µ,σ2

)
,µ= 0, the covariance matrix of the observation

errors u∆θ is obtained as equation (7):

7
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u∆θ =


σ2
11 0 · · · 0
0 σ2

12 · · · 0
...

...
. . .

...
0 0 · · · σ2

n2

 (7)

where σ2
n1, σ

2
n2 represent the variance of the observation error

of the nth station.
According to the propagation law of measurement uncer-

tainty, the measurement uncertainty matrix u∆θ

k and u∆θ

k + 1 can
be calculated when taking the covariance matrix u∆θ as the
input, as shown in equation (8):

u∆θ
k =

dXk

dθ
u∆θ

(
dXk

dθ

)T

(8)

where dX
dθ is the sensitivity matrix consisting of all the first

partial derivatives ∂Xi
∂θi

. The sensitivity matrix is shown in
equation (9):

dX
dθ

=−
(
dF
dX

)+ dF
dθ

,
dX
dθ

=



∂x
∂θ11

∂y
∂θ11

∂z
∂θ11

∂x
∂θ12

∂y
∂θ12

∂z
∂θ12

∂x
∂θ21

∂y
∂θ21

∂z
∂θ21

...
...

...
∂x
∂θn2

∂y
∂θn2

∂z
∂θn2


(9)

where
(
dF
dX

)+
is the generalized inverse matrix of the sensitiv-

ity matrix dF
dX .

dF
dX and dF

dθ are the Jacobian matrices of F and
X, respectively. The Eigen-decomposition of u∆θ

k is shown in
equation (10):

u∆θ
k = ruµνηrT =

[
µ ν η

] u2 (µ) 0 0

0 u2 (ν) 0

0 0 u2 (η)


 µT

νT

ηT


(10)

where the µ, ν and η are orthogonal unit eigenvectors. u2 (µ),
u2 (ν) and u2 (η) are corresponding eigenvalues.

The three axes of error ellipsoid are parallel to eigenvectors,
and the radius are ku(µ), ku(ν) and ku(η) (k = 2.8). r rep-
resents the pose matrix of the error ellipsoid distribution. By
normalizing the displacement between the measurements Xk

andXk+1, we can get vector as n=
[
nx ny nz

]
. Because

the size of the error ellipsoids is negligible when compared
to the target motion, the vector n can be regarded as the dir-
ection determined by the two error ellipsoids centers. Re∆θ

k
in figure 10 can be represented by the projection of the error
ellipsoid axes along the direction of vector n. Its length is cal-
culated as equation (11):

∥∥∥Re∆θ

k

∥∥∥2
=

 nx 0 0

0 ny 0

0 0 nz

(
r
[
ku(µ) ku(ν) ku(η)

]T)
.

(11)

Therefore, the threshold of significance criterion for the
non-continuous error can be calculated.

Figure 10. The schematic of the significance criterion of the
non-continuous error.

Figure 11. The layout of wMPS measurement field in simulations.

4. Simulations and experiments

4.1. Simulation results and analysis

In order to evaluate the effectiveness of the significance cri-
terion comprehensively, two simulations are carried out to
show the performance when the non-continuous error is signi-
ficant and not significant, respectively. The simulation set-up
is shown in figure 11.

There are four wMPS transmitters that locate in a meas-
urement volume of 20 m × 15 m × 3 m with a ‘C’ type lay-
out. We set 500 measurement points along the trajectory with
an equal interval. These measurement points are divided into
two groups: the first group includes measurement points 1–
250, and they are measured by transmitters 1, 2 and 4. Points
251–500 belong to the second group and they are measured by
transmitters 1, 2 and 3. For each point, the nominal anglemeas-
urements of all transmitters are calculated. The uncertainty of
angle measurement for each transmitter is set as 1.7′′.

In the first simulation, the pose error and the translation
error of each transmitter (extrinsic parameter error) are set as
5′′ and 0.5 mm to make the non-continuous error significant.
In the second simulation, the extrinsic parameter errors are set

8
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Figure 12. Simulation results from different presets.

as 1′′ and 0.1 mm to make it insignificant. By using theMonte-
Carlo Method, the coordinates of all measured points are cal-
culated, and the non-continuous errors in two simulations are
calculated. We then calculate the threshold and evaluate the
significance using the criterion presented in section 3.2.

The results of simulations are shown in figure 12. In the first
simulation, the norm of non-continuous errors is 0.65 mm and
the threshold is 0.35 mm. The norm of non-continuous error is
larger than the threshold and it is significant. In the second sim-
ulation, the norm of the non-continuous errors is 0.14 mm and
the threshold is 0.35 mm. As a result, the non-continuous error
is not significant. The results in both simulations are consist-
ent with our presets, verifying the effectiveness of significance
criterion.

4.2. Experiment results and analysis

In order to further verify the effectiveness of significance
criterion in physical measurement, we designed an experi-
ment basing on wMPS. The experimental setup is shown in
figure 13. Four transmitters are deployed in a ‘C’ type lay-
out with an interval of 4 m–5 m. An LT is employed as the
reference system. The measured target consists of a 1.5 inch
magnetic nests, a wMPS receiver and a LT reflector. They are
placed on the platform of a linear guide.

Since the wMPS receiver has the same size as the LT
reflector, it is convenient to use LT to provide high accuracy
references by exchanging the wMPS receiver and reflector.
We first construct a point network with LT and calibrate the
extrinsic parameters of four transmitters using the network,
aligning the coordinate frames of wMPS and LT. The length
of the movement alone the linear guide is 924.85 mm and the
interval between the consecutive measurement points is about

25 mm.We get the coordinates of the receiver fromwMPS and
its reference value from LT at 38 points.

Due to limited space in our laboratory and the fact that each
transmitter used in this experiment has a measurement range
over 20 meters, all transmitters can easily cover the entire
volume. This makes it difficult to replicate the change in geo-
metry constraints. To overcome this limitation and validate our
proposed method, an allocation strategy was applied to pre-set
the transmitters used in the measurement of each segment. The
signals from transmitters that are out of selection will not be
used for calculation. In this experiment the points of four seg-
ments are calculated by the angle observations from transmit-
ter 1 and 2, 2 and 3, 3 and 4, 1 and 4, respectively. Besides, in
order to fully validate the proposedmethod, we performed sev-
eral groups of experiments by placing the linear guide at dif-
ferent positions and orientations in the measurement field and
get considerable results among all groups. We only show the
representative result in one group in this paper for simplicity.

We calculate the non-continuous errors of the four seg-
ments at the boundary point. Their magnitudes are 0.39 mm,
1.16 mm and 1.08 mm, and the thresholds of significance cri-
terion in this case are 0.23 mm, 0.40 mm and 0.28 mm. They
are all significant, which matches well with the errors when
compared with LT, as shown in figure 14. The effectiveness of
significance criterion is well verified.

We further clarify that the linear guide in this experiment
only works as the carrier for the measured target and generates
a spatial trajectory to change of the target position. We only
pay attention to the result of the movement, i.e. the change
in positions, but not the process of the movement. As a res-
ult, the movement state such as the trajectory or the speed has
no influence on the performance of the proposed method. Our
method has the potential to be utilized in the measurement of
complicated movement.

9
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Figure 13. Experimental set-up with wMPS and LT.

Figure 14. Measurement errors of 38 points along a linear
trajectory.

5. Conclusions

This paper focuses on the non-continuous error of the integral
multi-station measurement system. We define non-continuous
error as the error deviation between two consecutive measure-
ments that are related with different geometry constraints or
combinations of measurement stations. Then we analyze the
generation mechanism of non-continuous error and demon-
strate the relationship between the spatial continuity and
extrinsic parameter errors. To identify the non-continuous
error for further compensation, the significance criterion is
proposed. Then a GUM-based method is presented to calcu-
late the threshold for evaluating the significance of the non-
continuous error. To verify the effectiveness of the significance
criterion, simulations and experiments are designed and car-
ried out. The simulation results are consistent with our presets
and the experimental results matches well with the reference
from LT, which verifies the effectiveness of the significance
criterion both in the principle level and application level.

With regard to the compensation of the non-continuous
error, more detailed research is to be carried out in the future.

This may include the research on a calibration based method
for controlling the extrinsic parameter errors, and an optimiz-
ation framework for compensating the non-continuous error.
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