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Abstract

We construct sequences of positive integers which are solutions of the equa-
tion X°+y®=12°. We introduce Mouanda’s choice functions which allow us
to construct galaxies of sequences of positive integers. We give many examples

of galaxies of numbers. We show that the equation x*"+y*" =7°"(n>2)

has no integer solutions. We prove that the equation X"+Yy" =2"(n>3)

has no solutions in N. We introduce the notion of the planetary representa-
tion of a galaxy of numbers which allow us to predict the structure, laws of
the universe and life in every planet system of every galaxy of the universe.
We show that every multiverse contains a finite number of universes.
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Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadra-
tos, et generaliter nullam in infinitum ultra quadratum potestatum in duos ejus-
dem nominis fas est dividere: Cujes rei demonstrationem mirabilem sane detexi.

Hane marginis exiguitas non caperet.—Pierre de Fermat (1637)

1. Introduction and Main Result

It is well that there are many solutions in positive integers to the equation
x? +y® =17°, for instance (3, 4, 5); (5, 12, 13). Around 1500 B.C., the Babylo-
nians were aware of the solution (4961, 6480, 8161) and the Egyptians knew the
solutions (148, 2736, 2740) and (514, 66,048, 66,050). Also Greek mathemati-
cians were attracted to the solutions of this equation. We notice that this equa-

tion has sequences of complex number solutions

(1+2i><ak,2ixa"—2><a2k,1+2i><a"—2xa2k),ae(C,keN (1.1)
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and matrix solutions

-2 2 0 0 2i 1)(-2 2i 1
0 -2 2,1 0 2i|,]1 -2 2i|| (1.2)
2i 0 -2)(2i 1 0)l2i 1 -2

In 1637, Pierre de Fermat wrote a note in the margin of his copy of Diophan-

tus Arithmetica [1] stating that the equation

X"+y"=2"neN(n>2),xyz =0 (1.3)

has no positive integer solutions. This is the Fermat Last Theorem. He claimed
that he had found the proof of this Theorem. The only case Fermat actually
wrote down a proof is the case n=4. In his proof, Fermat introduced the idea
of infinite descent which is the main tool in the study of Diophantine equations.
He proved that the equation x*+y* =z*> has no solutions in relatively prime
integers with Xyz = 0. Solutions to this equation correspond to rational points
on the elliptic curve V> =U®—4u . The proof of the case n=3 was given first
by Karl Gauss. In 1753, Leonhard Euler gave a different prove of Fermat’s Last
Theorem for n=3 [2] [3]. In 1823, Sophie Germain proved that if /is a prime
and 2/+ 1 is also prime, the equation X' +y' =2z' has no solutions (x, y; 2) with
xyz #0(modl). The case n=5 was proved simultaneously by Adrien Marie
Legendre in 1825 [4] [5] and Peter Lejeune Dirichlet [6] in 1832. In 1839, Ga-
briel Lame proved the case n=7 [7] [8] [9] [10]. Between 1840-1843, V. A.
Lebesque worked on Fermat’s Last Theorem [11] [12]. Between 1847 and 1853,
Ernst Eduard Kummer published some masterful papers about this Theorem.
Fermat’s Last Theorem attracted the attention of many researchers and many
studies have been developed around this Theorem. For example the work of Ar-
thur Wieferich (1909), Andre Weil (1940), John Tate (1950), Gerhard Frey
(1986), who was the first to suggest that the existence of a solution of the Fermat
equation might contradict the modality conjecture of Taniyama, Shimura and
Weil [13]; Jean Pierre Serre (1985-1986) [14] [15] [16], who gave an interested
formulation and (with J. F. Mestre) tested numerically a precise conjecture about
modular forms and Galois representations mod p and proved how a small piece
of this conjecture the so called epsilon conjecture together Modularity Conjec-
ture would imply Fermat’s Last Theorem; Kennedy Ribet (1986) [17], who
proved Serre’s epsilon conjecture, thus reducing the proof of Fermat’s Last
Theorem; Barry Mazur (1986), who introduced a significant piece of work on
the deformation of Galois representations [18] [19]. However, no final proof was
given to this Theorem. This Theorem was unsolved for nearly 350 years. In 1995,
using Mazur’s deformation theory of Galois representations, recent results on
Serre’s conjecture on the modularity of Galois representations, and deep arith-
metical properties of Hecke algebras, Andrew Wiles with Richard Taylor suc-
ceeded in proving that all semi-stable elliptic curves defined over the rational
numbers are modular. This result is less than the full Shimura-Taniyama conjec-

ture. This result does imply that the elliptic curve given above is modular.
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Therefore, proving Fermat’s Last Theorem [20] [21]. Many mathematicians are
still heavenly involved on studying Fermat’s Last Theorem [22] [23] [24]. In
2021, Nag introduced an elementary proof of Fermat’s Last Theorem for epsi-
lons [25].

This Theorem has many applications in Cryptography.

It is well known that Fermat’s Last Theorem is true. Now we know that only
the equation x*+y® =z* admits positive integer solutions. Perhaps it will be a
good idea of investigating the properties of these solutions and found out the
applications of these solutions. For more than 3500 years, no sequences of triples
of positive integers solutions of this equation were introduced before. This paper
is structured as follows. In Section 2, we show that the universe F, (N ) is not
empty. In Section 3, we introduce Mouanda’s choice functions which allow us to
construct in Section 4, Section 5 and section 6, practical examples of galaxies of
triples of positive integers solutions of the equation X’ +y® =z°. In Section 7,
we give the characterization of these solutions. This characterization allows us to
prove our main result.

Theorem 1.1. The equation

)(zn-}-y2n =22”,Xy2¢0,n€N(n22) (1.4)

Ahas no positive integer solutions.

We also prove that the equation X" +Yy" =z"(n>3) has no positive integer
solutions. Our study generates problems which are still unsolved. Since the crea-
tion, humans had a big strangle to understand the universe. This strangle did
lead to the invention of telescopes. This instrument did allow humans to have
clear pictures of galaxies of the universe. It becomes so crucial to create other
tools which could lead to a better understanding of the structure and laws of the
universe. Perhaps a mathematical tool will be cheaper. In Section 8, we introduce
the main reasons why the Fermat Last Theorem is true. In Section 9, we show
that every multiverse of triples of complex numbers contains a finite number of
universes. This result was predicted in 2018 by Stephen Hawking [26]. We also
identify every triple (Xx,y, Z) of F, ((C) as the continuous function

fy :[0.21]x[0,27] - C°

defined by

iy (U V) = (xsin(u)cos(v)+x, ysin(u)sin(v) +y,2zcos(u)+3z).

The graph of the function f(x'y’z) (u, V) is the sphere of centre (X, y,3z) . In
Section 10, we introduce the planetary representation of the complex universe
F, ((C) links to sequences of triples of complex numbers which satisfy the equa-
tion x"+y" =z". This equation is considered as the stability law of the complex
universe [, ((C) . This planetary representation is the mathematical tool which
allows us to have a clear understanding of the structure and laws of the universe.
This mathematical tool allows us to predict the structure, laws of the universe. In

Section 11, we predict life in every planet system of every galaxy of the universe.
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2. Triples of Positive Integers Solutions of the Equation
X2 4 y2 = 72

In this section, we construct sequences of triples of positive integers which are
solutions of the equation x? +y? =z?. The characterization of these solutions
allows us to deduce that the equation X*" +y*" =2*"(n>2) has no solutions in
N.

Let X,¥,Z2eN be three positive integers such that x<y<z. There exist
two positive integers Ny, my(ny <m,) such that y=Xx+n, and zZ=Xx+m.

The equation

Xn+yn =" (21)
is reduced to
X"+ (x+np)" = (x+mp)". (2.2)
It follows that
n 3 n! Ko nk n n! ok
=T N . 2.3
g +k§(n—k)!klx o Zg(n_k)!k!x Mo (2.3)
This implies that
n 3 n' k n-k n-k
¥ g (e =0 o

Define the complex polynomial f —:N-—Z by setting
n _yn 2 n! k n-k n-k
fom () =X 4 Y (W -m o <m. - 29)
Remark 2.1 The roots of the po]ynomjal
&
fnr(];mo( ) X +Z(n k)'k' (ng _mO ) Ny <My, (2.6)
are solutions of the equation

X" +(x+ny)" = (x+my)". (2.7)

Definition 2.2, Zet X,Y,z € C be complex numbers. Denote by
n_ n n ,n _ p
(x,y,2) _(x,y,z ),n_—,p,qu,q;tO. (2.8)
q

The triple (X” Y z”) is called the triple (X,y,z) to the power n.
Definition 2.3. Let X,Y,z € C be complex numbers. Denote by

a(xy z)=(axay,az),(x,y,z)+(ab,c)=(x+a,y+b,z+c). (2.9)

(B)

Definition 2.4. A universe of degree P otthe algebra B is the set F
q

oo

of triples (X,Y,2) ofelements of B which satisty the law of stability

PP P
x4 +y%=z% xyz#0,p,geN,q=0.
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The element (x,y,z) is called a star (or a planet) of the universe Fp (B)
q

(B) is called a

Every sequence (Xk Yo Z )n>0 of elements of the universe F

oo

planet system of elements of B .
The set

p p p

F (C)={(X,y12)6¢332xq+yq=zq,xy2¢0},p,qu,q¢0,

»

q

is called the complex universe of degree L particular, the set
q

R (N):{(X,YIZ)EN3:X”+y” =z“,xyz¢0},neN,n22,

n

is called the natural universe of degree n. It well known that the natural universe

F, (N) is not empty. Fermat’s Last Theorem is equivalent to say that
F,(N)={ l=g.n>3.

In other words, there are complex universes which don’t have triples of positive
integers as elements. We can show that the natural universe F,(N) is not
empty.

Theorem 2.5. There exist an infinite number of sequences of triples of posi-

tive integers (X, Yy, Z, )k>0 such that

X2 +y:=22,%Y,.2 #0,k eN.

Proof. Let X,Y,ze N be three positive integers such that x<y<z. Then

there exist two positive integers ny,my(ny <my) such

Y =X+Ny;Z=X+Mm,. (2.10)
It follows that
X2 +(x+np)° = (x+my)’. (2.11)
This implies that
X2 +(x+1ny)° =(x+my)* =0. (2.12)
It is well known that
(x+ny)" = X% +2nx+1n? (2.13)
and
(x+mg)" = %2 +2myx+mZ. (2.14)

The Equation (2.12) is reduced to
x2+2(n0—m0)x+(n§—m§):0. (2.15)
Define the complex polynomial fni,mo N —>Z by setting
£2 o (X) = X2 +2(ng —my ) x+(n§ —mg ),ng < m,.

Np,Mp

Let us calculate the roots of the polynomial fni,mo (x) in N. We have the fol-
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lowing
A=b’ —dac=4(ny—m,)" —4(ng —m) =8my (M, —ny)>0.  (2.16)

There are two solutions which are

a - —b++b® —4ac _ 2(my =g ) +/8my (Mg =1y )

2.17
5 5 (2.17)
and
_h—+/h2 _ 2 - —,/8 -
a, = b b2 dac _ 2(mo 1) 2m°(m° n"). (2.18)

It is straightforward to see that the roots a;,a, of the polynomial fni,mo (x)
depend on N, and M, . For example, the possible values of m, and n, which

can probably make @, (or a,) a positive (or negative) integer are
m, = 2% n, =2*" -1k eN. (2.19)

In this case, M, —N, =1. Therefore,

2 k
31:2+\/8>;2 ><2:2+42><2 PP (2.20)
and
_ 2K _ K
2:2 \/822 ><2:2 42><2 _1_oklgN. (2.21)

Finally, if we assume that m, = 2%+ n, = 221 _1 k e N, then
a, =1+2" ke N are roots of the polynomial fniymo (X). Define the sequence
of triples (xk,yk,zk )kzo by setting

a =x =1+2"keN, (2.22)
Y =X+ Ny =214 2%" ke N (2.23)

and
Z, =X +my =1+2"1 422 Kk e N, (2.24)

A simple calculation shows that

X +y;=2.keN (2.25)
and
LR U
(Xk7yk’zk)¢[aqlbqicqjl pyqykyayba(:EN,q;tO. (2.26)

There are several ways of constructing sequences (X, Y,Z )., of triples of

k>0
positive integers which satisfy the Equation (2.25). For example, if we choose

m, =22 and m, —n, =2%*, then

2(m0—n0)+\/m:22k+1+22k eN (2.27)

2

a1:

and
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2(m, - no)_\/m _ 9% _ gl . (2.28)

a, = 5
Now, with & we can construct a new sequence of triples (A,B,,C, )kzo by
setting
A =x =2"42% keN, (2.29)
B, =x +n, =2"?keN (2.30)
and
C, =X +m, =22 +2% keN. (2.31)
A simple calculation shows that
?+B;=C2 keN (2.32)
A +B =G
and
P PP
(A.B.C)=|a%b%c | kabcagpeNq=0. (2.33)

e Actually, there exists an infinite number of ways of choosing M, and n,.

For example, let us choose m, =2%* and my—n, = 2. In this case,

2(my —ny )+ /8my (my —ny) gt (230

a:l:

2
and
2(m, —=ny ) —+/8my (M, —n,
az _ ( 0 0) 0( 0 0) — 2—24k+1. (235)
2
Therefore, the sequence of triples (Pk Qs Ry )kzo defined by setting
Po=a=x%=2%"+2keN, (2.36)
Q=X +n, =2%+2*" keN (2.37)
and
Ry =% +my =2 +2*" 42k eN, (2.38)
satisfy
P?+Q’=R?,keN (2.39)
and
PP P
(R.Q.R)=|a%b%c? | k,ab,cpgeNq=0. (2.40)

e Once again, let now choose m, =3° and m,—n, =2. We can compute

2(my 1)+ B (o~
L 2(mo —ny) +y8m (my no):2+2><3k,keN, (2.41)

< 2
2(m, —ny)+./8m, (m, —n,
J, =X 4N, = (m; —r) : o (m °)+n0:32k+2x3k,keN (2.42)
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and
2(my —ny)+4/8m, (m, —n
O, =X +m, = (m, 1) ; o (M 0)+m0:2+2x3k+32k,keN. (2.43)
Again, we have the following:
L+J3.=0keN (2.44)
and
PP P
(L. 3,,O ) #| a,b%,c? | ,k,ab,c,q peN,q=0. (2.45)

A simple observation of the construction of the triple (L,J,,0,) allows us to
set up our first model of sequences of triples of positive integers which satisfy the
Equation (2.5). Assume that

X (a)=2+2xa" k,aeN,a#0 (2.46)
Y, (a)=a* +2xa“ k,aeN,a=0, (2.47)

and
Z,(a)=2+2xa"+a* k,aeN,a=0. (2.48)

The elements of the sequence of triples (Xk (a).Y,(a),Z, (a))kEN satisfy
Xi(a)+Y(a)=27(a),keN,a=0, (2.49)

and

P PP

(Xk(a),Yk(a),Zk(a))i[dq,bq,cq}k,d,b,c, p,geN,g=0. (2.50)

Perhaps it is possible to construct another model of sequences of triples of posi-
tive integers which depends on two parameters. Let us choose m, =3%* x2 and
m, =N, =a with

ae{rz:rzz,reN,rio}. (2.51)

We can compute

2(my, —ny)+./8m, (m, —n
X, (@,3)= (s =) + v, (M °)=a+2JEx3k,keN, (2.52)

2
2(m, —n A/8m, (m, —n,

Y (@.3)= (m °)+2 o (M 0)+n0=2\/;><3k+2><32k,keN (2.53)

and

2(m, —n 1/8m m, —n
Z,(a,3)= (m, °)+2 b (s °)+mo:a+2JEx3k+2x32k,keN.(z.s4)
The triples (Xk(a,S),Yk (@.3),Z, (a,S)),keN satisfy

sz (0:,3)+Yk2 (a,3) = Zk2 (a,3) (2.55)

and
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o) X, (my (). (k) = eC
(. ) = 2O A D
Zk(mo(k),no(k)):Z(mo(k>—no<k))+Js;no(kxmo(k)—no(k))+m0(k)

p P P

(X, (2.3).Y, (.3).Z, (a,3))¢[aq,bq,c“}k,q, p,ab,ceN,q=0. (2.56)

The construction of this sequence of triples allows us to set up our second model
of sequences which satisfy the Equation (2.55). Let us replace 3 in
X, (@.,3),Y, (2,3),Z,(«,3) bya.In other words,

X, (a,a)=a+2Jaxa" kaeN, (2.57)
Y, (@,a)=2Jaxa" +2xa* k,aeN, (2.58)
and
Z (a,a)=a+2Jaxa" +2xa* kaeN. (2.59)
The elements of the sequence of triples (X, (a,a),Y, (@,a),Z, (,a)), _ satis-
fy
XZ(a,a)+Y (a,a)=2} (a,a),keN,a#0, (2.60)
and

p p p

(X, (@.2),Y, (.2),Z, (a,a));{Aq,Bq,cqj,A,B,c, p.q.keN,a=0,q=0.(2.61)

0
We can now claim that the natural universe F,(N) has no power element.
3. Mouanda’s Choice Functions
Denote by C.(C)={h/h:C — C}, the set of complex functions over C. Let
Q(F,(C))={P:PcF,(C)}

be the set of all subsets of F,(C). Theorem 2.5 allows us to claim that the ap-
propriate choice of the values of m(k) and ny(k) such that

2(my (k)= (k))i\/Smo (k)(my (k) =g (K))
2

eC (3.1)
leads to the construction of sequences of triples of positive (or negative) integers
which satisfy the equation
X2 +y? =72 (3.2)
Let f, :C.(C)xC.(C)— Q(IF,(C)) be the function defined by
I m, (k) =a’" k,a,B(k) e C, B C.(C)
m, (k)—n, (k) eC

Z(mo (k)_no (k))+\/8m0 (k)(mo (k)_no (k))
2
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let g,,:C.(C)xC.(C)—> Q(IFZ ((C)) be the function defined by

m(k)=a"" k2, (k) €€, f<C.(C)
mO( ) no(k)e(C
0. (o (). () - K 0)- O — ,
Yk<mo(k),no<k)):2<m°“ "o (K)) Jszfno ) (ms (k) - no(k>)+no(k)
Zk(mo(k),no(k)):2<mo(k)—no<k>>—J8;o<k>(mo<k)—no(k>)+mo(k)

let p, :C.(C)xC.(C)— Q(IFZ ((C)) be the function defined by

mo(k)=a/’(k),k,aaﬂ(k)ec,ﬁeg(c)
mo(k) ”0( )eC
e (10 (K). 1y (K)) = ~X, (Mo (k). (k) = 2(m \/8m0 I ,
‘Yk(mo(k)’“o(k))f(m"(k) " (k) JB,:’ L), ()~ no(k))+n0(k)
2, (.1, )« LN

let gy, :C.(C)xC.(C)— Q(F,(C)) be the function defined by

m, (k) =a”" k,a, g(k) eN, g eC.(C)
m, (k)—n, (k) eC

—X, (mg (k),ny (k)) = 2(m (k) -1, (k))‘\/SZmo (k)(m, (k) -, (k)) .

2(m, (k)—n, (k) \/8mo(k m, (k) —n, (K))

O (mo(k)'no(k)) =

_Yk(mO (k)’no (k)): no(k)

2 ”o(k \/8mo mo (k)—n, (k ))

-Z, (mo (k). (k)) =
let h,; :C.(C)xC.(C)—>Q(F,(C)) be the function defined by

m, (k) =a”" k,a, g(k) e C, g eC.(C)
m, (k)—n,(k)eC

2(my (k)=ng (k))+ \/8m0 (k)(m, (k) - no(k))e(c

+m0(k)_

_Xk<m0 (k),no(k))

hM(mo(k)'no(k))z !
6., )~ 2 Jsmf’ 000 o
_Zk (mo(k),no(k))=2(m0( ) no(k \/82mo(k mo(k) nO(k))+m0(k)_

let w, :C.(C)xC.(C)— Q(]FZ ((C)) be the function defined by
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m,(k)=a kaﬂ(k)eC,BeC( )
( )-ne(k)eC
(mo(k) n, (k) - \/8m0 —n, (k)

W (mg (k ),y (k) =

-y, (mo(k),no(k)):z(mO(k)_nO(k) _\/82mo mo _no(k))+no(k)
2(m (k) = () —/Brm (k) (m (k) — (K))
2

let I, :C.(C)xC.(C)> Q(FZ ((C)) be the function defined by
I m, (k) =a"" k,a, B(k) e C, 8 e C.(C)
m, (k)—n, (k) eC

X, (Mo (K),ny (K)) = 2(my (k) (k))+\/8mo ()(my (k) =1y (K)) i
_ 2( \/8m0 no(k))

—zk<mo<k>.no<k>>=2(m° +¢82m(, ik _”°(k))+mo<k>

andlet r, :C.(C)xC.(C)—Q(F,(C)) be the function defined by

m, (k) =a”" k,a,8(k)eC, B eC.(C)
m, (k)—ny (k) eC

X, (1 (0.1 ) = 2T =B (1 ()
_2(m (k) -y (k J8m0 o (K))

e (Mg (k)0 (k)) =

2, (m ()., (10) - 2<m°(k)‘”°(k))‘JSZ’“"(k)(”“’(k)‘%(k)) ey ()

These type of functions are called Mouanda’s choice functions. Mouanda’s
choice functions are galaxy valued functions. These functions allow us to con-

struct galaxies of numbers or matrices.

4. The Model of the Galaxy of Galaxies of Sequences of
Positive Integers of order 1

Definition 4.1. The order of a galaxy is the number of variables of the galaxy.
Mouanda’s choice function f,; allows us to construct galaxies of numbers.

For instance, the model

Xk(oz,a)=01+2\/g><ak
Y, (@,a) = 2JJa xa* +2xa*
Z,(a,a)=a+2Ja xa" +2xa*
a=r"kareNa=0r>2

Gala(N,N)=
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is called the galaxy of sequences of positive integers of order 2, base « . For ¢
and a fixed, the triple (X,(a.),Y,(2.8),Z,(ct,a)) is called the origin of
the galaxy Gala(,,N). The elements of Gala(e,,N) satisfy

X¢(ap,a)+Ye (ap.a)=Z; (aya),keN (4.1)

and

)

(Xk(ao,a),Yk(ao,a),Zk(ao,a));t[Aq,Bq,Cq],A,B,C,k, p,geN,a=0,q=0.(4.2)

Example 4.2. Galaxies of Sequences of Positive Integers with Square Bases of
order?2
e The model

X, (4,a)=4+4xa"
Y, (4,a)=4xa* +2xa*
Z (4a)=4+4xa" +2xa*
k,aeN,a=0
»(4.2),Z,(4,2))=(8,6,10)

Gala(4,N) =

(%o (4:2).,
is called the galaxy of sequences of positive integers of order 1. The triple
(X,(4,2).Y,(4,2),Z,(4,2)) is called the origin of the galaxy Gala(4,N). The

triple (Xk(4, a),Yk (4,a),Zk (4,a)) satisfies
XZ(4,a)+Y(4,a)=2Z(4,a),keN, (4.3)
Xo (4, a)+Y0 (4,61)+Z0 (4,a):24 (4.4)

and

PP P

(X, (4.2).Y, (42),Z, (4,a))¢[pq,bq,cq], p,b,c.k,p,geN,a=0,q=0.(45)

e The model
X, (4,5)=4+4x5"
Y, (4,5)=4x5" +2x5%
Z, (4,5)=4+4x5% +2x5%
Gala(4,5) = (45) keI; g
(X,(4.5).Y, (4 4,5))=(8,6,10)
(x (4,5),Y,((4, 5) (4 5)):(24 70, 74)

is called the galaxy of sequences of positive integers of order 0. Every sequence

can be identified as a galaxy of order 0. We have
XZ(4,5)+Y7(4,5)=2(45),keN (4.6)

and

P PP

a Cq], p,b,c.k,q,peN,q=0. (4.7)

(X, (4,5).Y, (4,5).2, (4,5))¢[pq,bq,

e The elements of the sequence
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X, (4,6)=4+4x6"
Y, (4,6)=4x6" +2x6%

Gala(4.6)=, (4,6)=4+4x6"+2x6%
keN
satisfy
XZ(4,6)+Y7(4,6)=2;(4,6),keN (4.8)
and

p P P

(X, (4.6),Y,(4,6),Z, (4,6))¢(aq,bq,cq],a,q, p.b,ckeN,q#0. (49)

o The elements of the galaxy

X, (9,a)=9+6xa"
Y, (9,8.)=6><ak +2xa%
Gala(9,N) = Z,(9,a)=9+6xa" +2xa*
k,aeN,a=0
(X,(9.2).Y,(9,2),Z,(9,a)) = (15,8,17)

satisfy
sz(g,a)+Yk2 (9,a)=Zk2 (9,a),keN (4.10)

and

p

P P
(X, (9.a).Y, (9.2),2, (9,a))¢(d“,bq,cq), p,a.b,c.k,d eN,q=0. (4.11)

e The elements of the galaxy

X, (16,a)=16+8xa"
Y, (16,a)=8xa" +2xa*
Gala(16,N) = Z,(16,a)=16+8xa" +2xa*
k,aeN,a=0
(X,(16,2),Y, (16,a),Z,(16,a)) = (24,10,26)

satisfy
XZ(16,a)+Y7?(16,a)=27(16,a),k e N (4.12)

and

pp P

(X, (16,2),Y, (16,a),Z, (16,a))¢[dq,bq,cq], p.d.b,c.k,qeN,q#0. (4.13)

Example 4.3. Different Models of Galaxies with no Square Bases
The triples (Xk (2,:’:1.),Yk (2,a),Zk (2,a)), keN, ofthegalaxy
X, (2,a)=2+2xa"

Y, (2,a)=2xa" +a*

A(2,N)=
(2.1) Z,(2,a)=2+2xa"“+a*
k,aeN,a=0
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satisty
X7 (2,a)+Yi(2,a)=Z;(2,a),keN, (4.14)
X,(2,a)+Y,(2,2)+2,(2,a) =12 (4.15)

and

P P

,b“,cqj, p,q,b,c,k,d eN,q=0. (4.16)

(X, (2.2),Y,(2.a),Z,(2,a)) = [d

Example 4.4. The triples (Xk (2, 2),Yk (2, 2), Z, (2, 2)) of the galaxy

X, (2,2)=2+2x2"
Y, (2,2)=2x2" +2%

A@2)=l, (2.2)=2+2x2" +2%
keN
satisty
X2(2,2)+Y2(2.2)=22(2,2) ke N (4.17)
and

rpr P

(Xk(2,2),Yk(2,2),Zk(2,2))¢[dq,bq,ch, p.g,b,c.k,deN,q=0. (4.18)

Example 4.5. The triples (X, (2,3),Y,(2.3),Z,(2.3)) of the galaxy
| X, (2,3)=2+2x3" |
Y, (2,3)=2x3" +3*
Z,(2,3)=2+2x3"+3%*

A(23)= keN
(X,(2.3).Y, 2,3))=(4,3,5)
(X,(23).¥ (2 s) ( 3)=(81517)|
satisty
XZ(2,3)+Y7(23)=27(23),keN (4.19)
and

pPPp

P
(xk(z,s),vk(2,3),zk(2,3))¢(dq,bq,cq} p,a,b,c.k,d eN,q#0. (4.20)

Example 4.6. The triples (Xk (2,7).Y,(2,7),Z, (2,7)) of the galaxy

X (2,7)=2+2xT"
Y, (2,7)=2xT7" +7%

A(2,7)=
(2.7) Z,(2,7)=2+2xT7" +7%
keN
satisty
Xe(2,7)+Y2(27)=2;(2,7),keN (4.21)
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and

)

P
(Xk(2,7),Yk(2,7),Zk(2,7))¢[dq,bq,cq} p.g,b,c.k,deN,q=0. (422)

5.X-Model
The triples (X, (2,a),Y,(2,2),Z,(2,a)) of the galaxy
X, (2,a)=2+2xa*
2= e Lo [ 20
k,aeN

satisfy

X7 (2,a)+Yi(2,a)=2;(2,a),keN, (5.1)

Xo(2,a)+Y,(2,2)+Z,(2,a) =12 (5.2)

and

P
b, q} p,q,b,c,k,d eN,g=#0. (5.3)

Example 5.1. The triples (X, (2,2).Y,(2,2),Z,(2,2)) ofthe galaxy
X (2,2)=2+2x2%
)=

Y, (2,2) =2x2% 4 2%
%(2.2)= zkgz(,z) 24+2x2% + 2%
k eN,
satisty
XF(2,2)+Y(2,2)=2(2,2),keN, (5.4)
X0(2,2)+Y,(2,2)+Z,(2,2)=12 (5.5)
and

P
(Xk(2,2),Yk(2,2),Zk(2,2))¢(dq,b , ]quckdeNq;tO (5.6)

=2x 3% 4 3%
2+2x3% 4 3%
keN
(X0(2.3).%,(2.3).Z,(2.3)) =(4.3.5)

(xl(z,;), ¥,(2,3),2,(2,3)) = (164,6723,6725)

%(2,3)=

satisty
Xk2(2,3)+Yk2 (2,3):Zk2 (2,3),keN, (5.7)
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X,(2,3)+Y,(2,3)+2,(2,3)=12 (5.8)

and

p P P

(X, (2,3).Y,(2.3),2, (2,3))¢[dq,bq,cq} p.q.b,c.k,d eN,q=0. (59)

6. Power Models of Galaxies of Sequences of Positive
Integers of Order 3

A model of a galaxy is a power model if the power of the lead of the model is a

k
power. For example, if we choose my= a** and m,—n, = 2xa?x A%, the

model
Xk(a,a,l):2xa2xlz+2ax/lxalk
Y, (a,a,ﬂ):2axﬂ,xalk +a2/1k

Z, (cx,a,/l):2><052><}f+205></1xaﬁk +a
a,a, L, keN,a=0,a-20,1%#0

URS(N,N,N) =

is a power model. The elements of the model URS(N,N,N) satisfy
Xi(a,a,2)+Y (a,a,1) =2} (a,a,4),keN (6.1)

and

p p P

(X, (@a,2).Y, (@.a,2),2, (a,a,ﬁ))i(dq,bq,cqj,d, p.b,c,qeN,q#0.(6.2)

Example 6.1. The elements of the galaxy
X, (2.2,2)=32+8xa’
Y (2,a,2)=8xa” +a’"

1

URS(2,N,2)= o la=0,
Z,(2,2,2)=32+8xa’ +a®
k,aeN
satisty
XZ(2a,2)+Y’(2a2)=2/(2,a2),keN (6.3)
and

p P P

(Xk(2,a,2),Yk(2,a,2),Zk(2,a,2))¢{pq,bq,cqj, p.b,c.q,reN,q#0. (6.4)

k+1
Example 6.2. If we choose M, =a> and m,—n,=2xa’, we could con-

struct the galaxy

X, (@.8)=a?+2xaxa’

_ 2k 2k+1
O(aN)= Y (a,a)=2xaxa’ +a aen.
2+

Z, (a,a)=a’ +2xaxa® +a
a,keN,a=0
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The elements of this galaxy satisty
X¢(a,a)+Y (a,a)=2Z}(a,a),keN (6.5)

and

p P P

(xk(2,a,2),Yk(2,a,2),zk(2,a,2))¢[pq,b‘1,cq} p.b,c.k,geN,q=0. (6.6)

The model URS(«,a,N) is called the galaxy of sequences of positive integ-
ers of order 1. The model URS(«,N,N) is called the galaxy of galaxies of se-
quences of positive integers of order 2. The model URS(N,N,N ) is called the

galaxy of galaxies of sequences of positive integers of order 3.

7. Construction of the Galaxy of Sequences of Positive
Integers of Order 4 and Proof of the Main Result

In this section, we prove our main result and we show that there are galaxies
which are bigger than the galaxy URS(«,a,1). Recall that
X, (a,a,1)=2xa’ x A? +2axAxat

Y (a,a,4)= 2ax Axar +a?*

Z, (oc,a,ﬂ,):2><052><ﬂ,2+205><ﬂ.><a1k +a2
a,a,A,keN,a=0,a=0,1#0

URS (N,N,N) =

Let us choose (b, 8)=b" as a function of two variables in URS(N,N,N).
One has the GADA model defined by

X, (b, B8, 1) = 2xb™ x A2 + 2b” x A xa™
Y, (b, B,a,2)=2b” x Axa* +a**

Zk(b,ﬂ,a,/l)=2><b2'3><ﬂ,2+2b/’?></1><a/1k +a?
b,s,a,4,keN,a=0,a=0,4=0

GADA(N,N,N,N) =

The elements of the galaxy GADA(N,N,N,N) satisfy
X7 (b, B,a,2)+Y2 (b, B,a,1)=2Z} (b, B,a,1) keN. (7.1)
The order of the galaxy GADA(N,N,N,N) is 4.
Example 7.1. The elements of the galaxy
I X, (2.3,2,3)=2x2° x3 +2x 2° x3x 2%
Y, (2,3,2,3)=2x2° x3x 2% + 2%
GADA(2,3,2,3) = Z,(2,3,2,3) = 2x2° x3 +2x2° x3x 2% 1+ 22

keN
(X0(2,3,2,3),Y,(2,3,2,3),Z,(2,3,2,3)) = (1248,100,1252)

satisty
X} (2,3,2,(.*’»)+Yk2 (2,3,2,3)= z; (2,3,23),keN. (7.2)

We can now give the characterization of the solutions of the equation
X +yi=27%.
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Remark 7.2. Let X,Y,72,%,Y,,Z, € N be positive integers such that

Xy =2 X 4y =1 (7.3)
Then
LA U )
(X,yyz)i[aq,b“,c“},p,q,a,b,CGN,q;tO, (7.4)
P P P
(leyl,zl)i[af‘,bf,cl‘*],p,q,al,bl,cleN,Qvto, (7.5)
and
(X y,2)# (%, ¥, 2). (7.6)

Theorem 2.5 and Remark 7.2 allow us to prove our main result.
Proof of Theorem 1.1.

Assume that there exist three positive integers X,Y,Z € N such that

X" +y*" =z""n>2,neN. (7.7)
This means that
(Y () (2. o
Therefore,
(x",y".2") e, (N)={(ab,c)eN’:a’ +b* =c’}. (7.9)

We have a contradiction because the set F,(N) has no power element. Finally,

there exist no positive integers X,Yy,Z € N such that
X2 4 y? =7, (7.10)
O

Our main result allows us to claim that there exist no positive integers X,Y,ze€ N
such that

(xz)n+(y2)n:(zz)n,n22. (7.11)
Our main result allows us to prove Fermat’s Last Theorem for n>3.

Theorem 7.3. Let ( XY, Z) € C® be an element of the complex universe

IF((C):{(a,b,c)e(c3:a"+b”:c”},neN,nZS. (7.12)

Then (x,y,z)¢N3.
Proof. Let (x,y,z) e[, (C),neN,n>3. Then
X" +y"=2". (7.13)

This implies that
1

(R (07 () = (= (e

()2 () = () @(XEJZ +(y;]2 =(z J (7.15)

and

NS
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We can now claim that the elements of the universe F,(N) have the same
properties. Theorem 1.1, Theorem 2.5 and Remark 7.2 allow us to claim that

n n n

(\/;,\/y,\/;)eIE‘Z(N),(XZ”,yZ”,ZZ”)e]FZ(N),{XZ,yZ,ZZJeIE‘Z(N),n23(7.16)

since IF, (N) has no power solutions. In other words,

n n

(ﬁ,ﬁ,ﬁ)e N,(xz”, yZ“,ZZ“)gN,[xz, yZ,ZEJe N,n>3. (7.17)

The fact that
(", y*",2*")¢N,n>3 (7.18)

implies that
(x,y,2)¢N. (7.19)
0

8. The Main Reasons Why Fermat'’s Last Theorem Is True
The main reasons why the Fermat Last Theorem is true are:
e V(xvV,2)eF, (N) , one has

pp P

(x,y,z)i{aq,bq,cq],p,q,a,b,CGN,q;tO. (8.1)

o V(xvV,2)eF, (N), one has

2 2 2
(x”,y”,z"JeIFn((C),nZS,neN. (8.2)

e Every element (X, Y, Z) eF, ((C), n>3,neN satisfies

(ﬁ,ﬁﬁ)emn(C)'(xz"'vz”,zz”)elﬂ(C)y[xz,yz,ﬂjem(@- (8.3)
2
e Everyelement (x,y,z)elF,(C),n>3,neN satisfies

n n n

(Vxfyz) e By (W), (X", y", 2" ) ¢ F, (N),(xz, yZ,ZZ] ¢F,(N). (8.4)

8.1. Problems

Our study generates several problems:

Problem 1: How can we construct the galaxy of galaxies of sequences
A(5,a),6eN.

Problem 2: How can we construct other models of the galaxies of sequences

links to the root

_ —b-+b*-4ac 2(mg —ng ) —/8mg (M, —ny )
2

2

a, € Z,ny <M.

Problem 3: How can we construct models of galaxies of sequences of real
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numbers generated by the roots of the polynomial

£ i Z— L
defined by setting
o m (X) = X2 +3(ng =My )x* +3(ng —m3 ) x+(ng —mg ).

Problem 4: How can we construct models of the galaxy of galaxies of se-

quences of real numbers generated by the roots of the polynomial

f" 1 Z->7Z

No.Mg *

defined by setting
frgmy (X) =X +Z(n k)lk' X (ng™ =mg™),ny <mg,n >4,

The resolution of these problems will lead to the birth of a new theory called
Galaxies of Numbers Theory.

8.2. What We Learn

We learn so far that the equation
XZ + yZ — ZZ

is the law of stability of the universe of sequences of positive integers. Also, the

distance between the origin of the galaxy Gala(9, a), which is
(X,(9.a),Y(9.2),Z,(9.2))=(15,8,17)

and the second element of the sequence A(2,3) of the galaxy A(2,a), which

(X,(2.3),Y,(2.3),2,(2.3)) =(8,15,17),

is fixed. We can claim that origins of galaxies are connected to sequences of oth-
er galaxies. It follows that all the sequences of the universe of sequences of posi-
tive integers which satisfy the equation x*+y? =z” are linked to each other

and are in parfait harmony by the law of stability.

9. Disjoint Multiverses of Complex Numbers

A multiverse (or parallel universes) is the collection of alternate universes that
share a universal hierarchy. The idea of the existence of the multiverse has been
around for long time. An idea which many theoretical physicists have been try-
ing to prove by using string theory which is a branch of theoretical physics that
attempts to reconcile gravity and general relativity with quantum physics. In
2018, Stephen Hawking on his paper entitled “A smooth exit from eternal infla-
tion?” predicted that there are not infinite parallel universes in the multiverse,
but instead a limited number and these universes would have laws of physics like
our own [26]. Perhaps our strangle of understanding the existence of the multi-

verse and its structure is coming from the absence of a strong mathematical tool

DOI: 10.4236/ajcm.2022.121009

181 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2022.121009

J. M. Mouanda

capable of representing our entire universe in terms of triples of numbers. Re-
presentation theory and continuous functions would play an important role here.
Our mathematical approach of describing the structure of a multiverse allows us
to observe that disjoint multiverses are made of finite number of universes
which have different stability laws. It is quiet clear that our observation is exactly
the same to the one predicted in 2018 by Stephen Hawking. In this section, we
are going to show that it is possible to associate triples (X, Y, Z) of complex
numbers which satisfy the equation x"+y" =2z" with planet systems of a un-
iverse. Our representation allows us to show that every planet (or star) can be
associated to the graph of an appropriate continuous function which depends on
the triple (X, Y, Z) of complex numbers of a universe and our universe is made

of an infinite number of galaxies.

9.1. nth Root of a Complex Number

It is well known that de Moivre’s formula can be used to compute roots of com-

plex numbers. Assume that n is a positive integer and @ is the i root of the
1

complex number zdenoted by @ =z", then we have ®" =2 . Let
o= p(cosg+ising)= pe? =x+iy 9.1)

and

z=r(cos@+isin@)=r(cos(0+2km)+isin(6+2kn)),k € Z. (9.2)

Due to the fact that @" =z, we can claim that
p"(cosg+ising)" =r(cos(0+2kn)+isin(0+2kn)),k € Z. (9.3)

The well known de Moivre Theorem allows us to say that

p" (cos(ng)+isin(ng))=r(cos(0+2kn)+isin(6+2kn)),keZ. (9.4)
It follows that

keZ. (9.5)

The distinct values of the i root of the complex number z = r(C056’+ isin 6’)

are

1
o =r" [cos[9+2kﬁj+isin[9+2knjj,k =012,---,n-1 (9.6)
n n

In other words,

1 i(0+2kn
e

o =re" " ),k=0,1,2,---,n—1. (9.7)

We can deduce the solutions of the equation @" =1 which are:

2ni 4ni br Bni 10n l2d Wm0
{@p, 0,0, }=1le" ,e” e",e",e" e e" ..e " (9.8)

This means that the equation @" =r,r € N, would have the set
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1 2mi 1 4ni 6mi 1 8ni 1 2(n-1)xd
{@p, 0, 0, }={r",r"e" ;rhen rre" rhen ... rve " (9.9)

S

as the set of solutions. In the same way, we could say that the equation

®" =—r,r e N, would have the complex numbers

1 i(n+2kn

o —rre " k012 n-1 (9.10)

as solutions. We know that (3,4,5)eF,(N). We can construct elements of
I, (C). Let us compute (9,16,25)=(X, Y, Z)3 = (X3, y?, 23) . Assume that

)y, ) el
x, =3axe' ¥y, =6xe /7, =Y25xe' P k=012 (9.11)

That is,
[ 2km [ 2kn
X, :%xe[ ) :2.080083823><e( 3 ],k:0,1,2; (9.12)
(2kn .(2km
Y, :%xe( 3]=2.5198421er 3 J,k:0,1,2 (9.13)
and
(2] (2
7, =325xe" * ) =2.9244017738xe" */ k=0,1,2. (9.14)

The triples (Xm, Y Z ), m, j,k =0,1,2 satisfy the equation X + y? =z,

9.2. Multiverse (or Parallel Universes) of Complex Numbers

In this section, we show that every multiverse contains a finite number of un-
iverses. Mouanda’s choice functions could allow us to compute the complex so-

lutions of the equation x*+Yy® = z*. Denote by

I, (C) :{(x, y,z)eC®:x* +y? =17% xyz ;tO}.
The set F,(C) is called the first universe of complex numbers (or complex un-
iverse of degree 2). For example, the triples (X, (,).Y, (2.a),Z, (a.,a)),keN
of complex number of the galaxy

X, (a,a)=-2a" +2aixa’
Y, (a,a)=a% +2aixa‘

Q(C,C)=
(€.C) Z,(a,a)=-2a% + 2aixa* +a*
keNa,aeC,a=0,a#0
satisfy
YZ (a,a)+Y? (a,a)=Z}(a,a),keN,Q(C,C)cF,(C). (9.15)

Q(C,C) is called the galaxy of galaxies of triples of complex numbers. It fol-
lows that

F,(N)cF,(Z)cF,(Q)cF,(R)cF/(C). (9.16)

We can say that the universe [, (C) is a multiverse which contains at least 4

universes. The set
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F (C):{(x,y,z)eC3:X”+y” :z”,xyz¢0},n23,neN, (9.17)

n

is called the universe of complex numbers (or complex universe) of degree n.
The equation X" +Yy" =2z" is the stability law of the complex universe F,(C).
The elements of the complex universe F,(C) allow us to construct disjoint

complex universes F, ((C),ZS p <n.In fact,
P P P
F,(C)= x",y”,z”J:x‘%y”:zp,x,y,ZE(C ,2<p<n,p,neN. (9.18)

Every element (X, y,Z) of the set IFp ((C) generates n® elements of the set
F,(C),neN,2< p<n.Indeed, let (X,y,z) be an element of the set F,(C).

Assume that

X :{xk DX =xp,k:0,1,~-,n—1},Y :{yk tye =y k =O,1,---,n—1} (9.19)

and

Z={zk:ZQ=z",k=0,1,~-~,n—1},neN,n23. (9.20)

It is straightforward to see that

oD » » »
{xk",yi”,zj”je]l?n(c), XM <|x. |y <|y].|zp | <|2].i, j, k=0,1,---,;n=1. (9.21)

Let us notice that

F,(Q)<F,(R)cF,(C),n=3. (9.22)

We have an infinite number of disjoint complex multiverses with different

structures and stability laws. In other words,

NF,(C)={}=9. (9.23)

n>3

Let (X, Y, Z) eC® bea triple of complex numbers. Define the continuous func-

tion f(x’y’z) :[O,ZTc]x[O, 275] — C® by setting

iy (U V) = (xsin(u)cos(v)+x, ysin(u)sin(v) +y,2zcos(u)+3z). (9.24)

The graph of the function f(x,y,z) (u,v) is the sphere of centre (X,y,3z). We
can see that every triple of complex numbers (X, Y, Z) can be associated to a
(xy.2) OVer [0,27]x[0,27]. The shape of the graph of

the continuous function f(x,y,z) (u,v) depends on the values of x,y,z.

continuous function f

Example 9.1. Let us consider the galaxy

X, (2,a)=2+2xa"
Y, (2,a)=2xa" +a*
Z,(2,a)=2+2xa" +a*
k,aeN,a=0

A(2N)= CF(N).

The functions f(xkakak)(u’V) associated to the triples (Xk,Yk,Zk),k eN of
the planet system A(2,3) with
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600 -

400

L]

4*sin(u)*cos(v)+4,3*sin(u)*sin(v)+3,10*cos(u)+15 ——
8*sin(u)*cos(v)+8,15*sin(u)*sin(v)+15,34*cos(u)+51
20*sin(u)*cos(v)+20,99*sin(u)*sin(v)+99,202*cos(u)+303
-4*sin(u)*cos(v)-4,-3*sin(u)*sin(v)-3,-10*cos(u)-15
-8*sin(u)*cos(v)-8,-15*sin(u)*sin(v)-15,-34*cos(u)-51
-20*sin(u)*cos(v)-20,-99*sin(u)*sin(v)-99,-202*cos(u)-303
-4*sin(u)*cos(v)-4,-3*sin(u)*sin(v)-3,10*cos(u)+15
-8*sin(u)*cos(v)-8,-15*sin(u)*sin(v)-15,34*cos(u)+51
-20*sin(u)*cos(v)-20,-99*sin(u)*sin(v)-99,202*cos(u)+303
4*sin(u)*cos(v)+4,3*sin(u)*sin(v)+3,-10*cos(u)-15 ——

[T

\

8*sin(u)*cos(v)+8,15*sin(u)*sin(v)+15,-34*cos(u)-51 ——

200 -

-200

20*sin(u)*cos(v)+20,99*sin(u)*sin(v)+99,-202*cos(u)-303 ——

-400

-600

/

W 80
U pavivy Z0U SO0 i =

366 266

166

The graphs of f,.5, fg1017)1 fz000101) and symmetric functions.

X, (2,3)=2+2x3"
Y, (2,3)=2x3+3%*
Z,(2,3)=2+2x3 +3*
keN

A(2,3)=

can be represented graphically. A simple calculation shows that
(X0.Y9:Zo)=(4,35),(X,,Y,Z,) =(8,15,17),(X,.Y,,Z,) =(20,99,101). (9.25)

10. The Planetary Representation of F,(C)

Definition 10.1. The planetary representation of the universe F, ((C) Is the
identification process of each triple (X,y,z) of the universe T, (C) to the
planet P (X, Y. 2 )= f (or the star S(X, Y2 )= f

ciated universe.

X,¥,2) X,y,Z)) of the asso-

In this model of representation, the temperature, the mass, the radius, the or-
bital period, the surface area, the pressure, the distance between stars (or pla-
nets), the speed of rotation and the age limit of a star (or a planet) are functions
of (XY Z.). The investigation of these functions still remains opened. We
can now associate every sequence (X, Y, Z )kEN to a planet system of our un-

iverse. The map
¢" :F,(C) > C([0,2n]x[0,2n],C°)

defined by 0" (x,y,2)= f,, .

tion of the complex universe [F,(C). On this basis, we have the following ob-

can be considered as the planetary representa-

servations.
Remark 10.2. Prediction of the Structure and Laws of the Universe. The un-

iverse.
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® Has no centre.

® Has no origin (beginning).

® Hasno end.

® Has an infinite number of galaxies.

® The origins of all galaxies are linked by the stability law.

o A/l the galaxies are linked by the stability law.

® Galaxies of the same base ¢ are on the same plate.

o All the galaxies are generated from one identity structure 1, for example,
the galaxies of sequences Gala(a,a) and A(a,a) are generated from the
roots of the function 1= fni,mo (x).

® To keep his eternal nature, the death of one star is immediately replaced by
the birth of another star. The death of one galaxy gives birth to another ga-
laxy. The death of one planet system gives birth to a new planet system.

® Our solar system has undiscovered planets links to other galaxies.

® Due to the fact that the sun has got a destroyable structure in time, our solar
system will cease to give birth to another planet system with life on it.

® The sun turn around another planet of our galaxy.

® Every day new planet systems are born.

® The galaxies of the universe are in motion by keeping in them the law of sta-
bility.

® Humans are linked to every thing which exists on earth.

All these observations allow us to claim that humans need a clear under-
standing of their relationships with every thing on earth because their survival

depends on it.

11. Prediction of Life in Every Planet System of the Universe

The stability law of the natural universe F,(N) allows us to claim that there is
life in every planet system of every galaxy.

Theorem 11.1. There is life in every planet system of every galaxy of the un-
iverse. In other words, in each planet system of every galaxy of the universe,
there exists a planet with Iife on it.

Proof. Only the natural universe
IE‘Z(N):{(X, y,z2)eN Xt +y? = 22}

is not empty at all and the other natural universes F, (N),n>3 are completely

empty. First of all, let us notice that all the sequences of the galaxy of order 1

X, (4,a)=4+4xa"
Y, (4,2)=4xa" +2xa*
Z,(4,a)=4+4xa" +2xa* |
k,aeN

Gala(4,N)=

have the same shape and geometry and all the galaxies of order 1 of the galaxy of

order 2
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Xk(a,a)=a+2\/gxak
Y, (@,a) = 2JJa xa* +2xa*
Z,(a,a)= a+2Jaxa" +2xa*
a=r’kraeNr>2

Gala(N,N)=

have the same shape. The galaxy Gala(N,N) can be considered as a subset of the
natural universe [, (N). The planetary representation of the galaxy Gala(N,N)
allows us to say that each element (X,,Y,,2,) of any sequence of the galaxy
Gala(a,N) can be identified as the star S(X, Y.z )= f
net P (X Vi 2)= T ) o
radius, the orbital period, the surface area, the pressure, the distance between

) (or the pla-

X Yk 2k

) ) of our universe and the temperature, the mass, the

stars (or planets), the speed of rotation and the age limit of every star (or planet)
are functions of (X, Y,z ). The stability law and the planetary representation
of the natural universe T, (N) allow us to claim that every planet system of our
galaxy has the same properties. This means that every planet system of our ga-
laxy has got a sun. The fact that our solar system got life on it means that there is
life too in every single planet system of our galaxy. The stability law allows us to
claim that wherever you see a sun in our universe, that sun is linked to a planet

system which got life on it. U

12. Conclusions
o Let S(X,VY.Z) (or P(X.,Y, Z)) be a star (or planet) of our universe.
Then
X2 +y2 =22 (12.1)
e On earth:
1)
LOVE & x* +y* =17°,x,y,ze N. (12.2)
Therefore, the stability law on earth is love.
2) HATE is the law of self-destruction.

3) Every body came from the same origin.

4) Galaxy of Numbers Theory is linked to Astronomy.
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