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ABSTRACT

Aims: In single-nucleotide polymorphism (SNP) scans, SNP-phenotype association
hypotheses are tested, however there is biological interpretation only for genes that span
multiple SNPs. We demonstrate and validate a method of combining gene-wide evidence
using data for high-density lipoprotein cholesterol (HDLC).
Methodology: In a family based study (N=1782 from 482 families), we used 1000
phenotype-permuted datasets to determine the correlation of z-test statistics for 592 SNP-
HDLC association tests comprising 14 genes previously reported to be associated with
HDLC. We generated gene-wide p-values using the distribution of the sum of correlated z-
statistics.
Results: Of the 14 genes, CETP was significant (p=4.0×10-5 <0.05/14), while PLTP was
significant at the borderline (p=6.7×10-3 <0.1/14). These p-values were confirmed using
empirical distributions of the sum of χ2 association statistics as a gold standard (2.9×10-6

and 1.8×10-3, respectively). Genewide p-values were more significant than Bonferroni-
corrected p-value for the most significant SNP in 11 of 14 genes (p=0.023). Genewide p-

Original Research Article



British Journal of Medicine & Medical Research, 4(6): 1413-1422, 2014

1414

values calculated from SNP correlations derived for 20 simulated normally distributed
phenotypes reproduced those derived from the 1000 phenotype-permuted datasets were
correlated with the empirical distributions (Spearman correlation = 0.92 for both).
Conclusion: We have validated a simple scalable method to combine polymorphism-level
evidence into gene-wide statistical evidence. High-throughput gene-wide hypothesis tests
may be used in biologically interpretable genomewide association scans. Genewide
association tests may be used to meaningfully replicate findings in populations with
different linkage disequilibrium structure, when SNP-level replication is not expected.

Keywords: Bonferroni; hypothesis tests; combining evidence.

1. INTRODUCTION

Genomewide scans of DNA polymorphisms that may not be functional, but may be linked to
functional genetic differences are often used to study the association genes with phenotypes
[1]. Although interpretable biological hypotheses can typically be formulated regarding whole
genes or functional gene-domains, hypothesis tests are currently reported for individual
polymorphisms [1]. The inspection of multiple hypothesis tests is appropriately recognized as
a problem, currently resolved by using more stringent thresholds for significance as
suggested by Bonferroni [2], i.e., corrected threshold = threshold/number of tests;
alternatively: corrected p-value = calculated p-value*number of tests. Unfortunately,
Bonferroni’s calculation for independent hypothesis tests is overly conservative for multiple
polymorphisms within the same gene, which are expected to be in linkage disequilibrium.
Instead of the Bonferroni correction, several methods have been proposed of applying
sliding penalties to association statistics ranked from most significant to least significant [3-
6]. After any of these corrections, the significant hypotheses are still regarding specific
polymorphisms, rather than evidence for the association for the gene or functional genetic
domain. Such a finding cannot be replicated in a different population with a different
structure of linkage disequilibrium, different polymorphisms and different haplotypes even
though an association of that gene with the phenotype has the same biological relevance in
the other population.

Another set of techniques used to combine association statistics is the summation of
statistics. This summation may be on the logarithmic scale, e.g., in the case of Fisher’s
product of p-values [7], the logarithm of which is distributed as χ2 when appropriately scaled,
or may be on the original scale [8]. However, when the summed statistics are correlated, the
distribution is not analytically known, and must be empirically derived using a large enough
number of permutations [9]. Wille et al. [10] have suggested a method of summing
association statistics in order of statistical significance, deflating the remaining marker-level
statistic at every step, based on their correlation with the statistics for the markers already
summed. However, the asymptotic normality of association statistics is assumed, and this is
generally not present at the first few steps, which include the most significant results.

Therefore, we demonstrate and validate a method to combine polymorphism-level
hypotheses test statistics into a single gene-wide sum statistic testing of the hypothesis of
association, which has the potential to obviate the above problems.
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2. METHODOLOGY

2.1 Mathematical Basis for the Calculation of Combined P-values

Consider a number of hypothesis-test p-values pi that are to be combined into a single p-
value. For valid statistical tests, the probit transformation of p-value is a standard normal
variate:

Probit(pi) = Zi

We use the theorem [12]: if (Z1, Z2, ..., Zk)~N(0, ∑kxk), then SUM(Zi)~N[0, SUM(∑kxk)], where
∑kxk is the variance-covariance matrix, and “SUM” is the sum of the elements of the matrix.

We thus obtain a single standard normal variate that pertains to all of the hypothesis tests
that need to be combined, and this is converted back into a p-value.

The variance-covariance matrix (which is equivalent to the correlation matrix for standard
normal variates) is obtained by estimating the association of the polymorphisms on randomly
permuted datasets. The permuted phenotypes also serve to test null hypotheses.

Note regarding a simplifying assumption: The correlation between one-sided test-statistics of
the genotype-phenotype correlation is expected for SNPs in linkage disequilibrium. However,
p-values for hypothesis tests are two-sided, because either tail of the hypothesis represents
a biologically relevant genotype-phenotype association.

2.2 Demonstration Hypotheses and Dataset

We used 14 genes previously shown to be associated with HDL cholesterol (HDLC) levels
summarized in a review article by Pirruccello and Kathiresan [13] as our demonstration
hypotheses: ABCA1, ANGPTL4, APOA145C3, CETP, FADS1-2-3, GALNT2, HNF4A, LCAT,
LIPC, LIPG, LPL, MVK, PLTP, TTC39B. The hypotheses are of the form “polymorphisms
within the gene are associated with HDLC levels”. For comparability we also tested the
hypotheses “the most significant reported SNP by Pirruccello and Kathiresan in the gene
was associated with HDLC levels”. If the SNP was not genotyped we used the imputed
genotype score using MACH [14].

To test these hypotheses, we used data from European-Americans enrolled in GeneSTAR, a
study of families identified from probands (N=482) who were admitted with documented
coronary artery disease (CAD including myocardial infarction or angina with angiographically
proven stenoses >50%, or that required percutaneous intervention or bypass graft surgery).
This study was approved by the Institutional Review Board, and all research participants
gave informed consent. Siblings of probands, offspring of the siblings, and co-parents of the
offspring, all of whom were apparently healthy were enrolled into the study (N=1782). The
individuals have been genotyped using the Illumina Human 1M chip. Only genotyped (non-
imputed) SNPs with sample minor allele frequency > 5%, annotated to be within the 14
hypothesized genes were included for analysis.

Additive SNP associations with fasting serum HDLC were estimated using a mixed model
with family as the random effect, with a sex-SNP interaction and main effect, including age,
smoking, statin use and two population stratification adjustment variables obtained using
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EIGENSTRAT [15] as covariates. A 2-degree of freedom chi-squared test simultaneously
testing the SNP main effect and the sex-SNP interaction was considered as the hypothesis
test.

For determining the correlation between p-values, phenotype-permuted datasets were
generated by permuting measurements within families, and permuting measurements
between families of the same size. This maintains the underlying heritability of the
phenotype, but breaks any genotype-phenotype correlations. For the purpose of this
analysis, the number of permuted datasets was 1000. Using Fisher’s z-transform of the
correlation coefficient, this allows a minimum precision of ±0.06 in the estimate of the
correlation coefficient at 95% confidence. Estimates of correlation coefficients were also
made using 20 simulated normally distributed phenotypes, these have a minimum precision
of ±0.44 at 95% confidence for truly uncorrelated variables. However, if the true correlation is
higher the 95% precision is also much better (e.g., for a true population correlation of 0.9,
the precision interval is 0.76 to 0.96).

The mathematical theorem and calculation of combined gene-wide p-value are described
above. For comparison the Bonferroni-corrected p-value is calculated as (nominal p-
value)*(number of tests). If the calculation results in a value >1, the Bonferroni-corrected p-
value = 1.

3. RESULTS AND DISCUSSION

3.1 Results

Table 1 shows the association results for Pirruccello and Kathiresan’s [13] lead SNP in each
of the 14 genes, along with the replication-wide Bonferroni corrected p-value. Of 14 SNPs 3
were genotyped, the others were imputed. The lead SNP reported by Pirruccello and
Kathiresan [13] in 3 genes, namely CETP, HNF4A, and LIPC are significant at the
Bonferroni-corrected level in GeneSTAR, while PLTP is additionally significant at the
nominal level.

Table 1. SNP with the most significant p-value in genes reported by Pirruccello and
Kathiresan [13] and p-value for that SNP in the GeneSTAR study

Gene lead SNP in [13] SNP p-value in [13] p-value GeneSTAR
ABCA1 rs1883025 1.00×10-9 0.10
ANGPTL4 rs2967605 1.00×10-8 0.56 (i)
APOA145C3 rs964184 1.00×10-12 0.20 (i)
CETP rs173539 4.00×10-75 2.48×10-7 (i)
FADS1-2-3 rs174547 2.00×10-12 0.51
GALNT2 rs4846914 4.00×10-8 0.44 (i)
HNF4A rs1800961 8.00×10-10 4.5×10-4 (i)
LCAT rs2271293 9.00×10-13 0.20 (i)
LIPC rs10468017 8.00×10-23 2.6E-03 (i)
LIPG rs4939883 7.00×10-15 0.95 (i)
LPL rs12678919 2.00×10-34 0.21 (i)
MVK rs2338104 1.00×10-10 0.66 (i)
PLTP rs7679 4.00×10-9 0.014 (i)
TTC39B rs471364 3.00×10-10 1.00

(i) Imputed genotype in GeneSTAR.



British Journal of Medicine & Medical Research, 4(6): 1413-1422, 2014

1417

Table 2 shows the number of genotyped SNPs, the minimum p-value for any genotyped
SNP, the Bonferroni-corrected p-values correcting for SNPs in the gene, and the Bonferroni-
corrected p-values for the whole gene-replication study (592 SNPs) are tabulated. Gene-
wide p-values obtained using the correlated chi-2 towards greater significance (12/14,
p=0.009 nonparametric sign rank test) than the within-gene Bonferroni-corrected minimum
p-value.

Table 2. Most significant SNP and gene-wide association p-values in candidate genes
related to the HDLC phenotype

Gene Gene-wide p-values
#
SNPs

Minimum
p-value
for any
SNP

within-
gene-
minimum
Bonferroni-
p for SNP

Using
permuted
χ2

distribution

Using MVN
SUM z-
statistic (1000
permutations)

Using MVN
SUM z-
statistic (20
permutations)

ABCA1 85 8.3×10-4 0.070 0.23 0.36 0.36
ANGPTL4 4 0.035 0.14 0.084 0.083 0.075
APOA145C3 75 6.9×10-3 0.52 0.21 0.30 0.31
CETP 25 3.9×10-7 9.8×10-6 2.9×10-6 3.97×10-5 9.03×10-5

FADS1-2-3 40 0.021 0.86 0.30 0.30 0.32
GALNT2 82 8.1×10-3 0.67 0.30 0.24 0.23
HNF4A 49 8.0×10-3 0.39 0.36 0.34 0.33
LCAT 5 0.079 0.40 0.14 0.12 0.13
LIPC 84 0.039 1 0.49 0.56 0.56
LIPG 16 0.13 1 0.61 0.69 0.68
LPL 27 0.032 0.86 0.30 0.25 0.30
MVK 7 0.22 1 0.57 0.54 0.54
PLTP 16 2.7×10-3 0.044 0.012 0.007 0.004
TTC39B 77 3.4×10-3 0.26 0.37 0.59 0.58

For both of the proposed simplified methods, using 1000 simulated phenotypes and 20
simulated phenotypes, respectively, to estimate the correlation matrices, the p-values
obtained are rank-correlated with the gold standard empirical χ2 p-values with a Spearman
correlation coefficient of 0.92 (p=4×10-6), both simplified methods having a Spearman rank-
correlation of 1.00 with each other. For the simplified method using 1000 simulated
phenotypes, gene-wide p-values that were more significant than Bonferroni-corrected p-
value for the most significant SNP in the 11 of 14 genes (p=0.023).

The null-p distributions of the 14 genes for 1000 simulated phenotypes are presented in the
histograms in Fig. 1. The variance inflation factors (lambda) for the 14 genes ranged from
0.90 to 1.11.
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Fig. 1. Gene-wide p-value histograms for null-hypothesis tests and variance inflation
factors (lambda) for the 14 genes.

The gene-wide p-values where correlation was estimated using only 20 simulated normally
distributed phenotypes are plotted against the permutation estimated p-values in Fig. 2. The
Spearman rank correlation of these p-values with the permutation test p-values is 1.0, and
the p-values are also numerically quite close together, lying over the line of identity.

Fig. 2. Correlation of gene-wide p-values derived from 20 simulated normally
distributed phenotypes vs. permutation test with 1000 permutations for the 14 genes.



British Journal of Medicine & Medical Research, 4(6): 1413-1422, 2014

1419

3.2 Discussion

We have demonstrated a method for the calculation of a more interpretable gene-wide p-
value using the theorem regarding the calculation of correlated p-values. We have shown
approximate validity of the calculation in terms of p-value distributions and variance inflation
factors (lambda) in spite of a major simplification in the calculation, namely, the use of the
distribution of the sum of correlated normally distributed z-variables, rather than the
distribution of the sum of correlated chi-squared variables. We have shown that this analysis
can be implemented even in complicated study sampling designs requiring mixed model
analysis, using permutation tests or appropriate simulated phenotypes to determine the
correlation in p-values.

If we do not hypothesize a particular direction for the SNP-phenotype association, a chi-
squared statistic, which is large whether the association is inverse or direct, is calculated and
compared against the chi-squared distribution. It is possible to summate χ2 statistics,
however in case of SNPs that are in linkage disequilibrium, the χ2 statistics are expected to
be correlated. This sum of χ2variables cannot be compared against the distribution of
uncorrelated χ2. This distribution is quite difficult to compute [11], hence we use permutation
of phenotype to generate the summated test statistic distribution. The number of
permutations allowed the p-value to be determined to 3 significant digits. For all genes
except CETP, 10,000 permutations were adequate, but for CETP 10,000,000 permutations
were needed. This is used as the gold standard for comparison with the simplifying
assumption where a multivariate normal distribution is used.

As a positive control for the method, we have demonstrated that gene-wide p-values are
able to reproduce association with some genes where strong HDLC phenotype-SNP
associations have been previously collated in a review article [13]. The greatest degree of
reproducibility is seen for imputed SNPs (4 of 14 SNPs showed nominally significant p-
values). This is presumably because the samples within the earlier report, as well as the
replication samples are European-Americans, who have a reproducible linkage
disequilibrium structure. This is not expected in non-European origin populations.

If genotyped SNPs were used, only SNPs within two genes meet the significance threshold
for within-gene Bonferroni correction, and only one gene meet correction for all 592 SNPs in
the 14 genes examined. Gene-wide p-values using our method also show two genes to be
significantly associated, and one of these is significant after correction for 14 tests. However,
the gene-wide p-values were typically lower that the gene-wide Bonferroni corrected p-
values, suggesting greater power to detect true associations.

Further we have shown that using 20 simulated variables, the correlation structure of SNP
association tests is adequately estimated, as compared to the computation intensive
permutation tests. Because this correlation structure could be used for any phenotype, this
simplification allows for massive increase in the throughput of the analyses.

Because of our probit transformation, our proposed sum statistic differs from that proposed
by Wille et al. [10].

Though we have discussed our method using “gene” as the unit of biological interpretation,
the method can be used to combine evidence from any collection of SNPs, a functional
domain of gene, a linkage disequilibrium block, or a genetic region bounded by
recombination hotspots, i.e., any collection of SNPs which are expected to be in linkage
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disequilibrium with non-genotyped functional polymorphisms. Thus our method differs from
ranked SNP-specific corrections [3-6].

The hypothesis tested by our method differs from the hypothesis tested by the method by
Gauderman et al. [16], who use principal component variables to summarize the implicit
haplotypes of the SNPs within the gene. Our approach provides a gene-wide test that can
summarize signals from correlated and uncorrelated markers, that may reside in different
haplotypes.

We recognize some caveats regarding the use of this method. This method should only be
used to test hypotheses of association of a whole gene with a phenotype, where SNPs are
not hypothesized to be functional, but only in linkage disequilibrium with unknown functional
loci. If there is a biological hypothesis regarding a certain polymorphism, this method does
not apply, and will be less powerful than a hypothesis test for the single hypothesized
polymorphism. This is because sum of chi-squared statistics for the hypothesized
polymorphism and other non-hypothesized polymorphisms, which may not be associated
with the phenotype may result in a bias towards the null for the summed chi-squared
statistic. The test statistic for this method is an overall p-value, and there is no interpretable
beta coefficient. However, even for SNPs in linkage disequilibrium with the true functional
polymorphism, there is no mechanistic interpretation of the beta coefficient. Indeed, when
the hypothesis is regarding the whole gene, which may have multiple polymorphisms with
different degrees of association with the phenotype, no specific beta coefficient is
meaningful.

4. CONCLUSION

We have demonstrated and validated a method for the estimation of the overall association
of gene with a phenotype by combining the association tests for genotyped polymorphisms
within the gene. If the hypothesis is regarding the whole gene and not a specific
polymorphism, this method is valid, and tends to be more powerful than the conservative
Bonferroni correction for multiple polymorphism tests.
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