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Abstract 
 

Visualizing volumetric datasets using real-time volume rendering technique involves a large number of 
interpolation operations that are computationally expensive. This situation used to restrict real-time 
volume rendering methods to be used only on high-end graphics workstations or special-purpose 
hardware. This paper presented a real-time direct volume rendering (DVR) implementation of face 
centered cubic (FCC) datasets with box-spline interpolation on mobile devices. The latest version of 
OpenGL ES (Open Graphics Library for Embedded System) (3.0) is used for implementation to leverage 
cutting-edge 3D graphics technology, and it shows interactive performance (2.40 frame per second (FPS)) 
for moderate-sized volume datasets (64×64×64).  
Aims: To present a real-time direct volume rendering (DVR) implementation of face centered cubic 
(FCC) datasets with box-spline interpolation on mobile devices. 
Study Design:  Study is based on research conducted in computer lab, University of Seoul, South Korea. 
Place and Duration of Study: Computer Science Lab, Department of Computer Science, The graduate 
College, University of Seoul, South Korea, between June 2014 and April 2015. 
Methodology: The latest version of OpenGL ES (Open Graphics Library for Embedded System) (3.0) is 
used for implementation to leverage cutting-edge 3D graphics technology, and it shows interactive 
performance (2.40 frame per second (FPS)) for moderate-sized volume datasets (64×64×64). 
Results: In our implementation, we calculated the opacity using front–to-back composting whereby the 
viewing rays are traversed from the eye point into the volume. We also compared different volume sizes, 
having the same density. 
Conclusion: We have presented a real-time volume rendering technique for FCC datasets on mobile 
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devices that efficiently evaluate spline value. Our work has proven that mobile devices constitute a valid 
program to achieve interactive volume visualization, despite the fact that the rendering capabilities are 
concentrated in comparison to desktop solutions, due to their inherent autonomy limitations. 

 

Keywords: Volume rendering; ray-casting; FCC lattice; GPU; box-splines. 
 

1 Introduction 
 
Volume rendering is a method of visualizing a three dimensional volumetric data as a two dimensional 
image with a given view point. Such visualization is significant to gain accurate insight into the tremendous 
quantity of data. But it is impossible to provide this type of data with conventional rendering techniques due 
to which, the volume rendering has made its own line of business. 
 
Volume rendering can be employed by any industry or field of research involved with 3D datasets. Till now, 
the largest area of volume rendering research and its usage is performed by the medical industry. Medical 
imaging was one of the first applications of volume rendering, and has gone on to be the driving force 
behind most of the volume rendering research over the past two decades. The two most normally used 
medical datasets for volume rendering are CT (computed tomography) scans and MRI (magnetic resonance 
imaging) images. Today’s CT scanners and MRI machines typically generate scans of 512 x 512 or 1024 x 
1024 pixels. The slices can then be merged into a single 3D representation and used in volume rendering as 
shown in Fig. 1. 
 

 
 

Fig. 1. Illustration of the CT process [25] 
 

It was in the late 2000s that interactive volume visualization became possible in high range desktop and 
laptops by exploiting the texture functionality [1]. Nowadays, laptops are being replaced with smaller 
embedded devices like tablets and smartphones. Considering the current trend towards mobile information 
systems and ubiquitous graphical devices, native volume rendering on mobile devices has become an 
application with various potential uses; especially last few years have witnessed dramatic improvements that 
how much computation and communication power can be jammed into such a little gimmick.  
 
However, despite big improvements, the mobile terminals are still clearly less capable than desktop 
computers in many ways. They operate at a lower speed; the display is smaller in size with lower resolution 
besides there is less memory for running the program and for storing them, and you can use the device for a 
short time because the battery will finally work away. The interactive 3D rendering on these devices is quite 
a challenging job, however gradually the public presentation of several mobile devices has been improving 
day by day. Recently, some novel devices are equipped with 3D dedicated graphics chips and a high 
resolution color display as well. In addition, many 3D graphics APIs have been developed such as OpenGL 
ES, and they are backed by almost every latest mobile device. Due to these advancements, the mobile 
devices become a possible platform for volume visualization and this made it a hot topic for the researches 
in this fields. 
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This paper is going to look how to achieve real-time volume visualization on mobile devices that possess 
fixed imaginations and not viewed as the appropriate platform for visualization. The present techniques of 
mobile volume visualization leverages tensor-based volume reconstruction methods such as trilinear or tri-
cubic interpolations, while for our algorithm, we adopted the 6-direction cubic box-spline with the FCC 
datasets due to its high quality and reasonable performance. In this paper we presented a real-time volume 
rendering technique for FCC datasets on mobile devices that efficiently evaluate spline value. This technique 
has been implemented and systematically compared with other technique in order to evaluate its 
performance and visual quality. 
 
The work is sequenced as follows. Section 2 describes the previous work, section 3 describes briefly 
background and section 4 will discuss implementation details, it goes on to trace the results we obtained in 
section 5. Section 6 concludes the paper with some proposition for future employment. 
 

2 Literature Review 
 
GPU-based direct volume rendering has been used for visualization of medical and scientific datasets. 
Numerous approaches have been proposed in the literature [2], [3]. Kruger et al. [4] presented one of the first 
GPU (Graphics Processing Unit) implementations. Their approach used proxy geometry, most often 
resembling the data set bounding box to specify ray parameters either through an analytical approach or by 
rendering the proxy geometry into a texture. GPU ray casting has been actively investigated but mostly 
limited to datasets on the Cartesian lattice. Kim [5] implemented a real time GPU iso-surface ray caster for 
FCC datasets. By GPU preprocessing, they achieved superior performance, efficient evolution of spline 
value and its gradient and efficient empty space skipping. 
 
In respect of mobile devices, interactive direct volume rendering is still a largely unexplored field. On 
mobile devices, 3D textures are supported through OpenGL ES 3.0 feature. Lamberti et al. [6] and Jeong et 
al. [7] tried to attempt a rendering server that carries out rendering of the volume and streams the resulting 
image to the mobile client over a network but unfortunately these server-based solutions require a persistent 
and fast network connection. Moser and Weiskopf [8] introduced a technique for volume rendering on 
mobile devices that adopts the 2D texture slicing scheme with a rendering speed of 1.5 frames per second. 
ImageVis3D [9] is an IOS application for the interactive visualization of very large volumetric datasets, that 
also uses a 2D textures slicing scheme as well as the GPU ray casting scheme . Then Congote et al. [10] 
implemented a ray-based technique using WebGL, obtaining a frame rate of around 2-3 FPS.  
 
Mensmann et al. [11] demonstrated that CUDA™ programming model is suitable for volume ray casting and 
more efficient than a shader-based implementation. With the introduction of loops in shaders in the Shader 
Model™ 3, a single-pass approach was pioneered by Stegmaier et al. [12]. Similar to other fragment shader 
based approaches, first a full screen quad is rendered on screen in order to invoke the fragment shader. Then, 
the ray casting fragment shader is applied. Using the assigned texture coordinates, the ray directions for 
sampling of volume are determined. Finally, the volume is traversed front-to-back. Such a single-pass 
approach shows great potential although more improvement is needed, especially for mobile devices where 
every additional texture lookup degrades performance considerably. 
 
Petkov et al. [13] showed the superiority of the lattice-Bolzmann method on the FCC lattice compared to the 
Cartesian lattice. Leveraging the isotropic structure of the FCC lattice, Qiu et al. [14] proposed an efficient 
global illumination method on the FCC lattice by discretizing photon tracing. The six-direction box-spline 
filter on the FCC lattice was first proposed by Entezari [15] and later investigated in detail by Kim et al. 
[16].  
 
In particular, there is limited work done on real-time volume visualization on mobile devices. One major 
issue is the technical limitation of mobile devices, which poses challenges for volume rendering 
visualization methods. 
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3 Background 
 
In this section we first describe Direct Volume Rendering (DVR) technique, then FCC lattice, and box 
spline. For a deep insight of volume rendering, refer to the book by Klaus et al [17] and for the perfect 
theory of box-spline, refer to the book by de Boor et al. [18]. And lastly we will review OpenGL ES 3.0. 
 

3.1 Direct Volume Rendering   
 
Volume rendering is frequently used method for the 3D visualization of medical images; based on 
transparency and coloration of voxel. A medical image is composed of a set of voxels, each voxel having a 
grey level that represents a physical property of the tissue. The approaches in DVR are based on the law of 
physics like emission, absorption and scattering. In that respect several different optical models used for 
light interaction with volume densities of absorbing, glowing, reflecting, and scattering material [19]. 
 

3.2 The FCC Lattice   
 
A three-dimensional lattice L is determined by all of the integer linear combinations of a non- singular 
generator matrix G as shown in equation (1): 
 

� ∶ {��: � ∈ ��, � ∈ ����, ���� ≠ 0}                                                                                          (1) 
 

The FCC lattice ����  is defined as a subset of the Cartesian lattice �� where the total of its constituents is 
even shown in equation (2) 
 

  � ���: = {� ∈ ��, � ∈ ����, ���� ≠ 0}                                     (2) 
 
or by generator matrix as can be seen in equation (3) 
 

���� ≔ �
0 1 1
1 0 1
1 1 0

�                                                                         (3) 

 

���� Can also be defined as follows in equation (4): 

 

���� ≔ {(�, �, �) ∈ ��: � + � + �  �� ����}                                            (4) 

 
The FCC lattice shows better sampling efficiency than the Cartesian lattice [20]. While the BCC lattice is the 
optimal 3D sampling Lattice for band-limited and isotropic signals, the FCC lattice is optimal when the 
signal is sampled at a depressed rate, as indicated by Künsch et al. [21]. 
 

3.3 Box Splines   
 
Box splines were introduced by de Boor at al. [22] as multivariate generalizations of uniform B-splines and 
have turned out to be remarkably useful. 
 
A box-spline is a piecewise polynomial with a finite support and certain continuity and is uniquely defined 

by a direction matrix. In equation (5), given an � ×  � (usually  � < � ) direction matrix Ξ, a box-spline 

�Ξ can be constructed by taking consecutive directional convolutions along each column direction (Fig. 2). 
In other words, starting from the base case (n = m). 
 



 
 

MΞ(�) ≔
1

|det Ξ|
XΞ(X),  

 

 
Fig. 2. Construction of box

(a) , (b)    and (c) 
 

Where � is invertible and ��(�) is the characteristic function on the half

box-spline defined by the direction matrix 
 

��∪{�}(�) ≔ ∫ ��
�

�
(�

 
Given a discrete dataset on the Cartesian lattice, we can reconstruct a continuous spline s(x) by a 

convolution of the dataset �: �� → �
 

�(�) ≔ � ∗ �� ≔ ∑�∈�

While the theory put forth by de Boor et al. [23] is based on shifts on the Cartesian lattice, box
non-Cartesian lattices can be easily obtained by change
 

3.4 OpenGL ES 3.0 
 
OpenGL ES (Embedded system) is an application programming interface (API) for an advanced 3D graphics 
targeted at handheld and embedded devices. Open GL ES (3.0) was released in 2012 August and is back
ward compatible with OpenGL ES 2.0, while OpenGL ES 2.0 was successful but significant features that 
enabled techniques such as shadow mapping, volume rendering, GPU based particle animation, geometry 
instancing, texture compression, and gamma correction were missing. Ope
to mobile devices while taking care of the constraints of embedded system. OpenGL ES 3.0 introduced 
many new features related to texturing i.e., 3D textures, 2D texture arrays, seamless cube maps and many 
more. There is likewise a major update in shading language. For brief description, refer to the book by 
Ginsburg at al. [27]. 

 

4 Implementation 
 
This part identifies the components of the real
evaluation for the spline on the FCC lattice, that’s been introduced by Kim at al. [5]. They introduced a ray 
casting algorithm that is fully implemented as a shader program.
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Fig. 2. Construction of box-splines with direction matrices 
 

and (c)    via consecutive directional convolutions. 

) is the characteristic function on the half-open parallelepiped

spline defined by the direction matrix � ∪ {�}can be recursively defined as in equation (6)

( − ��)��, � ∈ ��.                                            

Given a discrete dataset on the Cartesian lattice, we can reconstruct a continuous spline s(x) by a 

� and a box-spline filter�� shown in equation (7) 

�(�)���� (� − �)                                           

 
While the theory put forth by de Boor et al. [23] is based on shifts on the Cartesian lattice, box

Cartesian lattices can be easily obtained by change-of-variables [24]. 

OpenGL ES (Embedded system) is an application programming interface (API) for an advanced 3D graphics 
targeted at handheld and embedded devices. Open GL ES (3.0) was released in 2012 August and is back

with OpenGL ES 2.0, while OpenGL ES 2.0 was successful but significant features that 
enabled techniques such as shadow mapping, volume rendering, GPU based particle animation, geometry 
instancing, texture compression, and gamma correction were missing. OpenGL ES 3.0 brought these features 
to mobile devices while taking care of the constraints of embedded system. OpenGL ES 3.0 introduced 
many new features related to texturing i.e., 3D textures, 2D texture arrays, seamless cube maps and many 

kewise a major update in shading language. For brief description, refer to the book by 

This part identifies the components of the real-time volume rendering algorithm we adopted for an efficient 
pline on the FCC lattice, that’s been introduced by Kim at al. [5]. They introduced a ray 

casting algorithm that is fully implemented as a shader program. 
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             (5) 

 

 

open parallelepiped �[0,1]�. A 

can be recursively defined as in equation (6) 

                                         (6) 

Given a discrete dataset on the Cartesian lattice, we can reconstruct a continuous spline s(x) by a 

                                        (7) 

While the theory put forth by de Boor et al. [23] is based on shifts on the Cartesian lattice, box-splines on 

OpenGL ES (Embedded system) is an application programming interface (API) for an advanced 3D graphics 
targeted at handheld and embedded devices. Open GL ES (3.0) was released in 2012 August and is back-

with OpenGL ES 2.0, while OpenGL ES 2.0 was successful but significant features that 
enabled techniques such as shadow mapping, volume rendering, GPU based particle animation, geometry 

nGL ES 3.0 brought these features 
to mobile devices while taking care of the constraints of embedded system. OpenGL ES 3.0 introduced 
many new features related to texturing i.e., 3D textures, 2D texture arrays, seamless cube maps and many 

kewise a major update in shading language. For brief description, refer to the book by 

time volume rendering algorithm we adopted for an efficient 
pline on the FCC lattice, that’s been introduced by Kim at al. [5]. They introduced a ray 



 
 

4.1 Implementation Setting 
 
The implementation of the real-time volume rendering is based on andr
using C language. OpenGL ES 3.0 and 
Multimedia Accelerator Software Development Kit. Many older devices do not support OpenGL ES 3.0 so 
for the test program we chose Google Nexus7 tablet with android version 4.4 KitKat. 
 

4.2 Evaluation of Spline on the GPU
 
For the evaluation of a spline, it is significant to know the polynomial structure induced by the knot planes 

of ��� since all the stages in the same polyno

finite data on ����  required for valuation. Kim et al. [5]

complete theory of GPU evaluation refer to the Kim et al. [5].
 

There are seven knot planes generated by

space into cubes; 
cubes into two groups: 
 

 
Notice that each group can be identified by calcul
remaining four knot planes, cubes in each group are decomposed into five tetrahedral {

{τ5, τ6, τ7, τ8, τ9} in  Fig. 5. Notice that each tetrahedron 

transformed to τ��� with a reflection with regard to the origin followed by a translation by (1, 1, 1):

 

 

Fig. 3. Shift-invariant tetrahedral polynomial pieces induced by
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time volume rendering is based on android NDK (Native Development Kit) 
using C language. OpenGL ES 3.0 and EGL 1.4 are used as graphics API’s as provided in Intel’s 
Multimedia Accelerator Software Development Kit. Many older devices do not support OpenGL ES 3.0 so 

Google Nexus7 tablet with android version 4.4 KitKat.  

4.2 Evaluation of Spline on the GPU 

For the evaluation of a spline, it is significant to know the polynomial structure induced by the knot planes 

since all the stages in the same polynomial piece share the stencil, which is the relative position of 

required for valuation. Kim et al. [5] already analyzed the spline structure. For the 

complete theory of GPU evaluation refer to the Kim et al. [5]. 

knot planes generated by����, three of which are axis-aligned and decompose the whole 

. Depending on the lower corner j of each cube, we can split the 

 

Notice that each group can be identified by calculating the parity of j; j (1) + j (2) + j (3). Then by the 
remaining four knot planes, cubes in each group are decomposed into five tetrahedral {τ0, τ1

5. Notice that each tetrahedron τ� in the second group (Figs. 3 (f) 

with a reflection with regard to the origin followed by a translation by (1, 1, 1):

 

 
 

invariant tetrahedral polynomial pieces induced by Mfcc for (top) even and (bottom) 
odd parity cubes 

 
 
 

ticle no.BJMCS.19044 
 
 
 

6 

oid NDK (Native Development Kit) 
EGL 1.4 are used as graphics API’s as provided in Intel’s 

Multimedia Accelerator Software Development Kit. Many older devices do not support OpenGL ES 3.0 so 

For the evaluation of a spline, it is significant to know the polynomial structure induced by the knot planes 

mial piece share the stencil, which is the relative position of 

already analyzed the spline structure. For the 

aligned and decompose the whole 

of each cube, we can split the 

ating the parity of j; j (1) + j (2) + j (3). Then by the 

1, τ2, τ3, τ4} and 

3 (f) – (j)) can be 

with a reflection with regard to the origin followed by a translation by (1, 1, 1): 

 

n and (bottom)  
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4.3 Challenges 
 
During this algorithm, we came across a number of problems because real-time rendering on a mobile device 
is subject to a number of limitations. 
 

1. In the fragment shader, we came across with a floating point texture problem. We can accept two 
options either to use texelFetch() or texture() and both are quite different in functionality. texture is 
the usual texture access function, which handles filtering and normalized ([0,1]) texture coordinates 
whereas the texelFetch()  directly access a texel in the texture without using un-normalized 
coordinates .In our implementation we were not able to fork out using texelFetch () so we decided to  
use texture(). 

2. The limited size of graphics memory is another major problem for volume rendering: 16 MB is 
typically very small for volume datasets. Simply here we cannot render with a 16MB dataset hence 
the datasets we used is about 32KB~622KB. 

3. With 3D textures we were unable to employ a floating point texture (GL_R32F, GL_R32UI etc.). 
Floating point textures have a special designated range of internal formats (RGBA_16F, RGBA_32F, 
etc.). Regular textures store fixed-point data, so reading from them gives you [0, 1] range values. 
Contrary, floating point textures give you floating point numbers as a result. Also not all hardware 
supports filtering of floating point textures so is the case here, our hardware doesn’t support it as well 
so we decided to use unsigned-byte (GL_R8) and it worked. Fig. 4 shows the GLSL code piece that 
fetches FCC data coefficients for evaluation and Fig. 5 shows the GLSL code piece that evaluates the 
coefficients [5]. 

 
 

ivec3 nearest; 
 vec3              plocal; 
 ivec3            unit; 
origin = floor(p_in); 
 p_cube = p_in-origin; 
 parity = int(dot(origin,vec3(1,1,1)))&1; 
 plocal = p_cube; 
p_cube += float(parity)*(1.0-2.0*p_cube); 
 vitet = vec4( 
    dot(p_cube,vec3(-1,-1,-1))>-1.0, 
    dot(p_cube,vec3( 1, 1,-1))> 1.0, 
    dot(p_cube,vec3( 1,-1, 1))> 1.0, 
    dot(p_cube,vec3(-1, 1, 1))> 1.0 
    ); 
 type = 1.0-dot(vitet,vec4(1.0,1.0,1.0,1.0)); 
 itet = int(dot(vitet.yzw,vec3(1,2,3))) + 4*int(type) + parity*5; 
 ivec3 offset = int(vitet.y+vitet.z+vitet.w)*(1-ivec3(vitet.wzy)); 
 offset += parity*(1 - 2*offset); 
 unit = 1-2*offset; 
 plocal = vec3(offset) + vec3(unit)*plocal; 
 nearest = ivec3(origin) + offset; 
#define    FETCH_COEFF(i)  c[i] = texture(volume_tex,                   
 
        vec3(fcc)*scale_position_inv).r; 
 unit *= 2; 
 ivec3 fcc = ivec3(nearest);      

 FETCH_COEFF(0) 
 fcc[0] += unit[0];       

 FETCH_COEFF(1) 
 fcc[0] -= unit[0]; fcc[1] += unit[1];    FETCH_COEFF(2) 
 fcc[1] -= unit[1]; fcc[2] += unit[2]; FETCH_COEFF(3) 
 fcc[0] += unit[0]; fcc[1] +=(unit[1]>>1); 
fcc[2] =(unit[2]>>1)FETCH_COEFF(4) 
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fcc[0] -= unit[0];                                                 FETCH_COEFF(5) 
 fcc[2] -= unit[2];   FETCH_COEFF(6) 
 fcc[1] -= unit[1];   FETCH_COEFF(7) 
 fcc[2] += unit[2];                  FETCH_COEFF(8) 
 fcc[0] += (unit[0]>>1);fcc[1] += ((3*unit[1])>>1);      
FETCH_COEFF(9) 
 fcc[1] -= unit[1];                                             FETCH_COEFF(10) 
 fcc[0] -= unit[0];                  FETCH_COEFF(11) 
 fcc[2] -= unit[2];   FETCH_COEFF(12) 
 fcc[0] += unit[0];   FETCH_COEFF(13) 
 fcc[1] += (unit[1]>>1); fcc[2] += ((3*unit[2])>>1);  
FETCH_COEFF(14) 
 fcc[2] -= unit[2];   FETCH_COEFF(15) 
 fcc[0] -= unit[0];   FETCH_COEFF(16) 
 fcc[1] -= unit[1];   FETCH_COEFF(17) 
 fcc[0] += unit[0];   FETCH_COEFF(18) 
 
#undef FETCH_COEFF 

 
Fig. 4. GLSL code piece that fetches FCC data coefficients 

 
#define CUBE(x) ((x)*(x)*(x)) 
#define SQR(x) ((x)*(x)) 
#define x plocal[0] 
#define y plocal[1] 
#define z plocal[2] 
 
 
 float u0, u1, u2, u3, val0, val1; 
 
 u0 = (1.0-x-y-z); 
 u1 = x; 
 u2 = y; 
 u3 = z; 
 val0 = 
 0.0416666667* 
 ( 
    SQR(u0)*( 
    u0*(-4.0* c[0] + c[5] + c[10] + c[15] + c[11] + c[16] + c[8] + c[6] 
                + c[18] +c[13] + c[7] + c[12] + c[17]) + 
     3.0*( 
    -4.0*(c[5]*(u2 + u3) + c[10]*(u1 + u3) + c[15]*(u1 + u2)) + 
     u1*(2.0*(c[10] + c[15] + c[18] + c[13]) + c[5] + c[8] + c[6]   
                      + c[7]) + u2*(2.0*(c[5] + c[15] + c[16] + c[6]) + c[10] +  
                      c[11] + c[13] + c[12]) +u3*(2.0*(c[5] + c[10] + c[11] +  
c[8]) + c[15] + c[16] + c[18] + c[17]) ) 
  ) + 
  4.0*( 
    ( 
   c[0] + 
    c[5]*CUBE(u2 + u3) +c[10]*CUBE(u1 + u3) +c[15]*CUBE(u1 + u2)  
                     +SQR(u1)*(u1*(c[18] + c[13] + c[1]) + 3.0*(c[13]*u2 +      
                     c[18]*u3)) +SQR(u2)*(u2*(c[16] + c[6] + c[2]) + 3.0*(c[16]*u3  
                     + c[6]*u1)) +SQR(u3)*(u3*(c[11] + c[8] + c[3]) +  
3.0*(c[11]*u2 + c[8]*u1)) 
   ) + 
     3.0*( 
    c[0]*u1*u2*u3 +(u1*u2 + u2*u3 + u3*u1)*(c[0]*(1.0 + u0) +  
                     c[5]*(u2 + u3) +c[10]*(u1 + u3) + c[15]*(u1 + u2)) +u0*( 
          c[0] + (u1 + u2)*(c[15] + c[6]*u2 + c[13]*u1) +(u2 +  
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u3)*(c[5] + c[11]*u3 + c[16]*u2) +(u1 + u3)*(c[10] + c[8]*u3  
                     + c[18]*u1)) 
    ) 
    ) 
    );  
 u0 =  x+y+z-1.0; 

 
 

u1 = -x+y-z+1.0; 
 u2 =  x-y-z+1.0; 
 u3 = -x-y+z+1.0; 
 val1 = 
 0.0208333333* 
 ( 
 
  SQR(u0)* 
  ( 
   3.0*(2.0*(c[5]*(u1 + u3) + c[10]*(u2 + u3) + c[15]*(u1 + u2))  
+ c[14]*u3 + c[9]*u1 + c[4]*u2) +u0*(c[5] + c[10] + c[15] +  
c[14] + c[9] + c[4]))+ 
  SQR(u1)* 
  ( 
   3.0*(2.0*(c[0]*(u2 + u3) + c[5]*(u0 + u3) + c[15]*(u0 + u2)) +  
c[2]*u0 + c[16]*u3 + c[6]*u2) + 
   u1*(c[0] + c[5] + c[15] + c[2] + c[16] + c[6]) 
  )+ 
  SQR(u2)* 
  ( 
   3.0*(2.0*(c[0]*(u1 + u3) + c[10]*(u0 + u3) + c[15]*(u0 + u1))  
+ c[1]*u0 + c[18]*u3 + c[13]*u1) + 
   u2*(c[0] + c[10] + c[15] + c[1] + c[18] + c[13]) 
  )+ 
  SQR(u3)* 
  ( 
   3.0*(2.0*(c[0]*(u1 + u2) + c[5]*(u0 + u1) + c[10]*(u0 + u2)) +  
c[3]*u0 + c[11]*u1 + c[8]*u2) + 
   u3*(c[0] + c[5] + c[10] + c[3] + c[11] + c[8]) 
  )+ 
  3.0* 
  ( 
   c[0]*(u0*SQR(2.0- u0) + 6.0*u1*u2*u3) + 
   c[5]*(u2*SQR(2.0- u2) + 6.0*u0*u1*u3) + 
   c[10]*(u1*SQR(2.0- u1) + 6.0*u0*u2*u3) + 
   c[15]*(u3*SQR(2.0- u3) + 6.0*u0*u1*u2) 
    ) 
 ); 
 
 return val0*(1.0-type)+val1*type; 
 
#undef CUBE 
#undef SQR 
#undef x 
#undef y 
#undef z 
} 

 
 

Fig. 5. GLSL code for coefficient evaluation 
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5 Results 
 
The main drawback we have faced is the limited texture memory hence our implementation failed to 
compute the dataset having more than 86x86x86 size of voxels. So all the datasets had to be resampled in 
order to achieve more meaningful comparison, to serve this purpose we used MATLAB [26]. The datasets 
are provided by S. Roettger et al. [27]. All the tests are done on Windows 7 Professional (64 bit) with 
Intel
                                                                                                                                                                              
R 
Xeon
                                                                                                                                                                              
R CPU X5550 @2.67 GHz and 12GB memory.  
 
In our implementation, we calculated the opacity using front–to-back composting whereby the viewing rays 
are traversed from the eye point into the volume. Table 1 shows the performance comparison for the same 
size datasets. Fig. 6 shows the rendering results of linear interpolation and our implementation side by side. 
For reference images we included desktop generated images using box-spline interpolation, shown on the 
left hand side.  The rendering results seen on the right hand side are rendered with linear interpolation and 
the images in the center are rendered with our box-spline interpolation. It is seen that our results looks more 
blurry here, it is because we are using a very small dataset with a  low resolution, to claim this we carried out 
our test on desktop with a high resolution dataset. The result we got in desktop is shown in Fig. 8, where we 
used the same density datasets. Now it is clearer that with a high resolution dataset FCC box-spline 
interpolation has better performance than linear interpolation. Also the volume rendered images by the Box-
spline interpolation seem smaller than the ones by the linear interpolation, the difference is because of  the 
number of values required to evaluate a spline [18]. 
 
In the comparison of rendering with the FCC box-spline interpolation, it is conspicuous that our algorithm 
has good image quality, even though it employs only half of the dataset but still getting along with linear 
interpolation. Hence spline evaluation is an expensive operation and have limited support, we get a low 
frame rate. Further, it should be brought into amount that linear interpolation is hardwired on the graphics 
hardware according to what, it is much more time efficient. Table 1 shows the performance comparison (fps) 
of both techniques. 
 
We also compared different volume sizes, having the same density. Table 2 shows the performance 
comparison. Fig. 7 compared the rendering results, it can be seen easily that linear interpolation has more 
jiggling whereas our method has more sooth and clear results. Conclusively our algorithm showed better 
quality due to the diminished number of data fetches, and thus the lower complexity of the spline pattern. 
 

Table 1. Performance (in fps: frames per second) comparison 
 

Dataset Size Linear interpolation (fps) FCC box-spline interpolation (fps) 
Daisy 64×60×56 50.40 2.40 
Engine 64×64×64 46.79 2.40 
Foot 64×64×64 48.40 2.40 

 
Table 2. Performance comparison (same density of different volume sizes) 

 

Dataset Size linear 
interpolation 

Speed linear 
interpolation (fps) 

Size 
FCC box-spline 
interpolation 

Speed FCC  
box-spline 
interpolation (fps) 

Engine 65×65×65 45.20 82×82×82 2.40 
Daisy 49×46×43 64.80 62×58×54 2.80 
Foot 65×65×65 47.59 82×82×82 2.40 



 
 

 
 

                              (a)   

Fig. 6. Rendered images: (a) Desktop generated;
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            (b)                  (c) 
 

Desktop generated; (b) FCC datasets with box-spline interpolation 
and (c) linear interpolation 

 
 
 

ticle no.BJMCS.19044 
 
 
 

11 

 

 

spline interpolation  



 
 
 

Sarfaraz and Shaban; BJMCS, 11(1): 1-15, 2015; Article no.BJMCS.19044 
 
 
 

12 
 
 

  

  

  
 

                                    (a)                                    (b) 
 

Fig. 7. Rendered images: performance comparisons for table 2; (a) FCC datasets with box-spline 
interpolation and (b) linear interpolation 

 

 
 

Fig. 8. Desktop generated images: Linear interpolation and Box-spline interpolation 



 
 
 

Sarfaraz and Shaban; BJMCS, 11(1): 1-15, 2015; Article no.BJMCS.19044 
 
 
 

13 
 
 

6 Conclusion 
 
We have presented a real-time volume rendering technique for FCC datasets on mobile devices that 
efficiently evaluate spline value. Our work has proven that mobile devices constitute a valid program to 
achieve interactive volume visualization, despite the fact that the rendering capabilities are concentrated in 
comparison to desktop solutions, due to their inherent autonomy limitations. We compared our results with 
the linear interpolation, our experiments show that the FCC box-spline interpolation provides a slightly 
higher quality image, even though using only half of the datasets. This work is a clear contribution to the 
literature. However, there comes a challenge for speed and storage, though it paves a new research topic for 
future. 
 
As future work, our current research is centered on the betterment of the rendering performance and quality 
based on a continuous search of new techniques as well suited to this kind of devices. 
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