
British Journal of Mathematics & Computer Science

11(1): 1-16, 2015, Article no.BJMCS.19199

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

Indirect RBF for High-Order Integro-Differential
Equations

Jafar Biazar1∗ and Mohammad Ali Asadi1

1Department of Applied Mathematics, Faculty of Mathematical Science, University of Guilan,

P.O. Box 41635-19141, P.C. 41938-33697, Rasht, Iran.

Article Information

DOI: 10.9734/BJMCS/2015/19199
Editor(s):

(1) Narayan Thapa, Department of Mathematics and Computer Science, Minot State University,
Minot, USA.
Reviewers:

(1) Anonymous, Turkey.
(2) Mohammed H. AL-Smadi, Dept. of Applied Science, Al-Balqa Applied University, Jordan.

(3) Anonymous, University of Cartagena, Colombia.
Complete Peer review History: http://sciencedomain.org/review-history/10462

Original Research Article

Received: 29 May 2015
Accepted: 01 July 2015

Published: 09 August 2015

Abstract

Two different approaches are applied to solve high-order integro-differential equations (IDEs),

based on Radial Basis Functions (RBF). The first approach, which is called the direct approach

(DRBF) is based on differentiation, and considers the solution as a finite linear combination of

RBFs. While the second, the indirect approach (IRBF), is based on integration and considers the

highest order derivative of the solution as a finite linear combination of RBFs. The results of this

study indicate that for low-order IDEs, both approaches are enough accurate, but for high-order

IDEs, the IRBF solutions are more accurate than those of direct RBF.

Illustrative examples are included to demonstrate the validity and applicability of the presented

technique.
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1 Introduction

Integral and integro-differential equations arise from various applications, like physics, engineering,
biology, medicine, economics, potential theory and many others (See [1, 2, 3] and references therein).
Since many of these equations can not be solved explicitly, it is often necessary to use numerical
techniques. In recent years, a lot of attention has been devoted to the study of high-order integro-
differential equations (IDEs) such as the Bernoulli matrix method [4], the collocation method [5],
Chebyshev polynomials [6, 7], Legendre polynomials [8, 9, 10], Homotopy Analysis Method [11],
Homotopy Perturbation Method [12], Adomian Decomposition Method [13], Variational iteration
method [14, 15, 16], Taylor polynomials [17, 18, 19], Compact Finite Difference Method [20],
reproducing kernel method [21, 22, 23, 24, 25, 26], radial basis functions (RBF) [27] and RBF
Networks (RBFN) [28].

In recent years, meshless methods as a class of numerical methods are used for solving functional
equations. Meshless methods just use a scattered set of collocation points, regardless any relationship
information between the collocation points. This property is the main advantage of these techniques
over the mesh dependent methods such as finite difference methods and finite element methods.
Since 1990, radial basis function method [29] are used as a well-known family of meshless method
to approximate the solutions of various types of linear and nonlinear functional equations such as
Partial Differential Equations (PDEs), Ordinary Differential Equations (ODEs), Integral Equations
(IEs), and Integro-Differential Equation (IDEs) [29, 30, 31, 32, 33, 34, 35].

In this paper, a modification of radial basis functions (RBF) is applied for numerical solution of
high-order integro-differential equations which is based on integration approach (IRBF) and first
introduced and used by Mai-Duy and Tran-Cong [36, 37, 38]. So far IRBF method has only been
applied to solve first-order IDEs [27]. This paper will focus on generalizing this method for high-
order IDEs. Iterated integrals appeared in this approach are converted to one integral by using a
formula of iterated integrals. A comparison is made between this approach and the differentiation
approach of RBF (DRBF). We investigate these two approaches on the high order integro-differential
equations and results demonstrate the good accuracy and efficiency of the presented technique for
higher order IDEs than low order IDEs.

The paper is organized as follows. In Section 2, the radial basis functions are introduced. Section
3, reviews the Legendre-Gauss-Lobatto integration process. Section 4, as the main part, presents
the solution of high-order integro-differential equations by direct and indirect process of radial basis
functions. Numerical illustrative examples are included in Section 5. A conclusion is drawn in the
Section 6.

2 Radial Basis Functions

Let’s define the main features of the method.

2.1 Definition of Radial Basis Functions

Radial basis functions usually approximate a function as the following [39]

s (x) =

N∑
i=0

λiϕ (∥x− xi∥) , x ∈ R.

Where ϕ : [0,∞) → R is a fixed univariate function, the coefficients (λi)
N
i=0 are real numbers,

(xi)
N
i=0, are finite number of distinct points (centers) in R and ∥ · ∥, denotes the Euclidean norm.
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2.2 Radial Basis Functions Interpolation

The radial basis functions approximation of a real function, say u(x), is given by [39]

u(x) ≈ uN (x) =

N∑
i=0

λiϕ (∥x− x i∥) =
N∑
i=0

λiϕi(x) = ΦT (x)Λ,

where
ϕi(x) = ϕ(∥x− xi∥),

ΦT (x) = [ϕ0(x), ϕ1(x), . . . , ϕN (x)],

Λ = [λ0, λ1, ...λN ]T ,

and distinct points (xi)
N
i=0 are in R. Consider N distinct support points (xj , u(xj)), j = 0, 1, 2, ..., N .

One can find λis by solving the following linear system

AΛ= u.

Where
A = [ϕ(∥xj − xi∥)]Ni,j=0,

Λ = [λ0, λ1, ...λN ]T , and u = [u0, u1, ...uN ]T . Some well-known RBFs are listed in Table 1, where
the Euclidian distance r is real and non-negative, and c is a positive scalar, called shape parameter.

Table 1: Some well-known RBFs

Name of the function Definition

Gaussian ϕ(r) = e−(cr)2

Inverse Quadric ϕ(r) = 1
r2+c2

Hardy Multiquadric ϕ(r) =
√
r2 + c2

Inverse Multiquadric ϕ(r) = 1√
r2+c2

Cubic ϕ(r) = r3

Thin plate splines ϕ(r) = r2 log(r)

Hyperbolic secant ϕ(r) = sech(cr)

3 Legendre-Gauss-Lobatto Integration Nodes andWeights

Let LN be the well-known Legendre polynomial of order N , on the interval [−1, 1]. Then the
Legendre-Gauss-Lobatto nodes are

(1− x2
j )L

′
N (xj) = 0,

− 1 = x0 < x1 < . . . < xN = 1, (3.1)

where xm, 1 ≤ m ≤ N − 1 are the zeros of L′
N , where L′

N is the derivative of LN with respect to
x ∈ [−1, 1]. No explicit formula for the nodes (3.1) is known, and so they are computed numerically
using sub-routines [40, 41, 42]. Now we approximate the integral of f on [−1, 1] as∫ 1

−1

f (x) dx =

N∑
i=0

wjf (xj) , (3.2)
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where xj in Eq. (3.1) are Legendre-Gauss-Lobatto nodes and wj are the weights given in [43]

wj =
2

N (N + 1)

1

(LN (xj))
2 , j = 0, 1, . . . , N.

Note that the integration in Eq.(3.2) is exact whenever f(x) is a polynomial of degree ≤ 2N + 1.

4 Application of RBF Method

In this paper Radial Basis Functions are used to approximate solution of high order integro-
differential equations of the second kind in the following general form

y(m)(x) + p (x) y(r) (x) = f (x) +

∫ b

a

K(x, t)y(s) (t) dt, a ≤ x ≤ b, (4.1)

y(a) = α0, y′(a) = α1, . . . , y(m−1)(a) = αm−1 (4.2)

where y(x) is an unknown real function defined on [a, b], r, s ≤ m, and p(x) and f(x) are analytic
known functions. Moreover the kernel K(x, t) is defined on the interval a ≤ x, t ≤ b.

4.1 Direct Radial Basis Functions

In the direct method, the unknown function of Eq. (4.1) approximates by a closed form of
radial basis functions, and its derivatives of any order, e.g. n-th order, can then be calculated
by differentiating such a closed form.

Let’s approximate the function y(x) in terms of radial basis functions, ϕi(x), as follows

y(x) ≈ yN (x) =

N∑
i=0

λiϕi (x) = ΦT (x)Λ, (4.3)

where
ϕi(x) = ϕ(∥x− xi∥),

xi, i = 0, 1, ..., N are shifted nodes of Legendre-Gauss-Lobatto quadrature,

ΦT (x) = [ϕ0(x), ϕ1(x), . . . , ϕN (x)]

and
Λ = [λ0, λ1, . . . , λN ]T

is an unknown vector.

By m times differentiating from Eq. (4.3), we obtain

y(m)(x) ≈ y
(m)
N (x) = DmΦT (x)Λ (4.4)

where
DmΦT (x) = [ϕ

(m)
0 (x), ϕ

(m)
1 (x), . . . , ϕ

(m)
N (x)]

Obviously y(r) and y(s) are calculated.

Substituting y(m), y(r), and y(s) in Eq. (4.1), leads to

DmΦT (x)Λ+ p(x)DrΦT (x)Λ = f (x) +

∫ b

a

K(x, t)DsΦT (t)Λdt, a ≤ x ≤ b,
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or (
DmΦT (x) + p (x)DrΦT (x)−

∫ b

a

K(x, t)DsΦT (t)dt

)
Λ = f (x) .

For obtaining λi, i = 0, 1, . . . , N , by collocating at the points x = xj for j = 0, 1, . . . , N , we have(
DmΦT (xj) + p (xj)DrΦT (xj)−

∫ b

a

K(xj , t)DsΦT (t)dt

)
Λ = f (xj) , (4.5)

where xj , j = 0, 1, ..., N are shifted zeros of the Legendre-Gauss-Lobatto integration nodes.
By using the Legendre-Gauss-Lobatto integration formula, we can approximate the integral in Eq.
(4.5) and hence these equations can be written as follows:(

DmΦT (xj) + p (xj)DrΦT (xj)−
N∑
i=0

wi K (xj , ti)DsΦT (ti)

)
Λ = f (xj) , (4.6)

for j = 0, 1, . . . , N . Where ti ∈ [a, b] and wi, for i = 0, . . . , N are Legendre-Gauss-Lobatto
integration nodes and weights, respectively. Eq. (4.6) generates a system of linear equations for the
unknowns Λ.
Many researchers substitute initial conditions

ΦT (a) = α0,

DΦT (a) = α1,

...

Dm−1ΦT (a) = αm−1,

for the same number of equation in the foregoing linear system. There is not any criterion for such
substitution and seems it is the author’s option. This freedom usually reduces the accuracy.

4.2 Indirect Radial Basis Functions

In order to apply indirect radial basis functions approach, let’s approximate the highest order
derivative in terms of radial basis functions ϕi(x) as follows

y(m)(x) ≈ ŷN =

N∑
i=0

λiϕi (x) = ΦT (x)Λ (4.7)

Successive integrating the obtained expression yields expressions for lower order derivatives and
finally for the original function itself. For example∫ x

a

y(m)(t)dt = y(m−1)(x)− y(m−1)(a)

≈
N∑
i=0

λi

∫ x

a

ϕi (t) dt = IΦT (x)Λ

or

y(m−1)(x) ≈ IΦT (x)Λ+ y(m−1)(a),

where

IΦT (x) =

[∫ x

a

ϕ0(t) dt,

∫ x

a

ϕ1(t) dt, . . . ,

∫ x

a

ϕN (t) dt

]
.
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Similarly

y(m−2)(x) ≈
N∑
i=0

λi

∫ x

a

∫ t2

a

ϕi (t) dt dt2 + y(m−1)(a)x+ y(m−2)(a)

= I2ΦT (x)Λ+ y(m−1)(a)x+ y(m−2)(a),

and finally

y ≈ ImΦT (x)Λ+ y(m−1)(a)
xm−1

(m− 1)!

+ y(m−2)(a)
xm−2

(m− 2)!
+ · · ·+ y′(a)x+ y(a) (4.8)

where the i-th component of ImΦT (x) is∫ x

a

∫ tm

a

. . .

∫ t3

a

∫ t2

a

ϕi (t) dt dt2 . . . dtm−1 dtm

and y(a), y′(a), . . . , y(m−1)(a) are known from initial conditions.
Also we have

y(r)(x) ≈ Im−rΦT (x)Λ+ y(m−1)(a)
xm−r−1

(m− r − 1)!

+ y(m−2)(a)
xm−r−2

(m− r − 2)!
+ · · ·+ y(r−1)(a)x+ y(r)(a) (4.9)

and

y(s)(x) ≈ Im−sΦT (x)Λ+ y(m−1)(a)
xm−s−1

(m− s− 1)!

+ y(m−2)(a)
xm−s−2

(m− s− 2)!
+ · · ·+ y(s−1)(a)x+ y(s)(a) (4.10)

Substituting from Eqs. (4.7), (4.9), and (4.10) in Eq. (4.1), leads to

ΦT (x)Λ+ p(x)Im−rΦT (x)Λ

+ p(x)

(
y(m−1)(a)

xm−r−1

(m− r − 1)!
+ y(m−2)(a)

xm−r−2

(m− r − 2)!

+ · · ·+ y(r−1)(a)x+ y(r)(a)

)
= f (x) +

∫ b

a

K(x, t) Im−sΦT (t)Λdt

+

∫ b

a

K(x, t)

(
y(m−1)(a)

tm−s−1

(m− s− 1)!
+ y(m−2)(a)

tm−s−2

(m− s− 2)!

+ · · ·+ y(s−1)(a)t+ y(s)(a)

)
dt,

or (
ΦT (x) + p (x) Im−rΦT (x)−

∫ b

a

K(x, t)Im−sΦT (t)dt

)
Λ = g (x) , (4.11)
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in which

g(x) = f(x)

− p(x)

(
y(m−1)(a)

xm−r−1

(m− r − 1)!
+ y(m−2)(a)

xm−r−2

(m− r − 2)!

+ · · ·+ y(r−1)(a)x+ y(r)(a)

)
+

∫ b

a

K(x, t)

(
y(m−1)(a)

tm−s−1

(m− s− 1)!
+ y(m−2)(a)

tm−s−2

(m− s− 2)!

+ · · ·+ y(s−1)(a)t+ y(s)(a)

)
dt,

Fortunately, integrals on left hand side of (4.11), can be reduced to one dimensional integrals by
using the formula of iterated integrals [44], for example∫ x

a

∫ tm

a

. . .

∫ t3

a

∫ t2

a

ϕi (t) dt dt2 . . . dtm−1 dtm =
(x− a)m

(m− 1)!

∫ 1

0

tm−1ϕi (x− (x− a) t) dt (4.12)

Now numerical quadratures can be applied.

For calculating λi, i = 0, 1, . . . , N , we apply collocation process similar to direct approach by using
Legendre-Gauss-Lobatto nodes as collocation points. Integrals appeared in process, determined by
Legendre-Gauss-Lobatto quadrature. Finally approximate solution of Eq. (4.1), is given by (4.8).

In the integration process all initial conditions are considered in the RBF expansion of solution and
extra equations for initial conditions do not required. Furthermore, in the differentiation process,
initial conditions substituted for the same number of equations and this substitution usually reduces
the accuracy. Indeed it is expected that through the indirect process, the approximating functions
are much smoother and therefore have higher approximation power.

The convergence of radial basis function interpolation has been discussed by [39, 45] and other
researchers [46, 47, 48].

5 Numerical Examples

In this section, some examples are provided to illustrate the efficiency of this approach. For the
sake of comparing purposes, we use the norm two of errors.

5.1 Example

Consider the following second order Fredholm IDE

y′′(x) = −ex +
x

2
+

∫ 1

0

xty(t), y(0) = 0, y′(0) = −1, 0 ≤ x ≤ 1. (5.1)

The exact solution is y(x) = 1− ex.
Errors of the numerical solutions for N = 5, 10, 15 and GA-RBF, MQ-RBF, and IMQ-RBF are
shown in Table 2 and Fig. 1,2, and 3.

5.2 Example

Consider the following third order Fredholm IDE

y′′′(x) = sin(x)− x−
∫ π

2

0

xty′(t)dt, , 0 ≤ x ≤ π

2
. (5.2)

7



Biazar & Asadi; BJMCS, 11(1), 1-16, 2015; Article no.BJMCS.19199

Table 2: Errors for Example 5.1

GA MQ IMQ

N DRBF IRBF DRBF IRBF DRBF IRBF

5 6.1815e-01 3.6710e-06 1.4967e+00 8.3951e-06 2.5269e+00 4.1628e-05

10 3.5582e-04 4.9120e-09 3.3468e-02 2.8375e-09 1.7722e-01 1.5954e-08

15 1.3948e-05 3.1498e-08 3.2377e-04 4.3236e-09 1.9503e-03 7.6985e-10

with the initial conditions y(0) = 1, y′(0) = 0, and y′′(0) = −1. The exact solution is y(x) = cos(x).
Errors of the numerical solutions for N = 5, 10, 15 and same RBFs as Example 5.1 are shown in
Table 3 and Fig. 4,5, and 6.

Table 3: Errors for Example 5.2

GA MQ IMQ

N DRBF IRBF DRBF IRBF DRBF IRBF

5 5.0037e-01 9.2822e-06 5.9669e-01 1.8861e-05 6.8239e-01 1.0677e-04

10 5.6828e-02 1.1815e-10 2.2210e+00 1.0834e-08 1.1974e+00 6.2370e-08

15 5.9581e-02 3.4710e-10 8.0248e-01 8.3737e-11 1.3336e+00 4.4014e-10

5.3 Example

Now consider the following fourth-order Fredholm IDE

y(4) = −1 + sin(x) +

∫ π
2

0

ty(t)dt, 0 ≤ x ≤ π

2
. (5.3)

with the initial conditions y(0) = y′′(0) = 0, y′(0) = 1, and y′′′(0) = −1. The exact solution is
y(x) = sin(x).
Errors of the numerical solutions for N = 5, 10, 15 and different RBFs are shown in Table 4 and
Fig. 7,8, and 9.

Table 4: Errors for Example 5.3

GA MQ IMQ

N DRBF IRBF DRBF IRBF DRBF IRBF

5 9.2288e-01 3.4373e-06 2.0403e+01 1.2329e-05 1.0582e+01 5.3253e-05

10 3.4521e-02 6.0687e-12 3.4740e-01 5.1621e-09 6.3145e+01 2.6527e-08

15 7.3037e-03 4.2092e-10 3.3438e-01 5.6452e-12 9.6491e-02 1.4849e-11
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0 0.2 0.4 0.6 0.8 1 1.2

GA−RBF

 

DRBF, N=5
DRBF, N=10
DRBF, N=15
IRBF, N=5
IRBF, N=10
IRBF, N=15

Figure 1: log |yExact − yApprox| for Example 5.1 by GA-RBF

0 0.2 0.4 0.6 0.8 1 1.2

MQ−RBF

 

DRBF, N=5
DRBF, N=10
DRBF, N=15
IRBF, N=5
IRBF, N=10
IRBF, N=15

Figure 2: log |yExact − yApprox| for Example 5.1 by MQ-RBF
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0 0.2 0.4 0.6 0.8 1 1.2
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DRBF, N=5
DRBF, N=10
DRBF, N=15
IRBF, N=5
IRBF, N=10
IRBF, N=15

Figure 3: log |yExact − yApprox| for Example 5.1 by IMQ-RBF

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

GA−RBF
 

DRBF, N=5
DRBF, N=10
DRBF, N=15
IRBF, N=5
IRBF, N=10
IRBF, N=15

Figure 4: log |yExact − yApprox| for Example 5.2 by GA-RBF
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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DRBF, N=5
DRBF, N=10
DRBF, N=15
IRBF, N=5
IRBF, N=10
IRBF, N=15

Figure 5: log |yExact − yApprox| for Example 5.2 by MQ-RBF

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

IMQ−RBF
 

DRBF, N=5
DRBF, N=10
DRBF, N=15
IRBF, N=5
IRBF, N=10
IRBF, N=15

Figure 6: log |yExact − yApprox| for Example 5.2 by IMQ-RBF
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

GA−RBF

 

DRBF, N=5
DRBF, N=10
DRBF, N=15
IRBF, N=5
IRBF, N=10
IRBF, N=15

Figure 7: log |yExact − yApprox| for Example 5.3 by GA-RBF
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MQ−RBF

 

DRBF, N=5
DRBF, N=10
DRBF, N=15
IRBF, N=5
IRBF, N=10
IRBF, N=15

Figure 8: log |yExact − yApprox| for Example 5.3 by MQ-RBF
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

IMQ−RBF

 DRBF, N=5
DRBF, N=10
DRBF, N=15
IRBF, N=5
IRBF, N=10
IRBF, N=15

Figure 9: log |yExact − yApprox| for Example 5.3 by IMQ-RBF

6 Conclusion

Amodified radial basis function approach was used for solving high-order integro-differential equations.
Some numerical examples are presented to demonstrate that the method is very effective and useful
for finding approximate solutions of high order integro-differential equations. A comparison with
direct process, for numerical solution of the high-order integro-differential equations, shows that this
technique is accurate enough to be known as a powerful device. Figures and tables show that the
IRBF solutions are more accurate than RBF solutions. Especially, as the order of integro-differential
equations is increased, the difference of the graphs of error for IRBF and DRBF methods increased.
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