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ABSTRACT 
 

The kinetics of the reduction of 3,7-bis(dimethylamino)phenazothionium chloride (MB+) by 
benzenethiol in aqueous solution has been investigated in the acid range 0.3≤[H

+
  ≤ 0.9 mole dm

-3
, 

ionic strength (µ) of the reaction medium in the range: 0.4 ≤ µ ≤ 1.0 mole dm-3 (NaNO3) and 
temperature, T = 29ºC. The reaction is first order in both [oxidant] and [reductant] and display an 
inverse order acid dependence with an overall reaction that conforms to the rate law: 

��

��
 [MB+]  = (Kk4[H

+]-1 + k6)([MB+][ C6H5SH])  

at [H
+
] = 0.3 mole dm

-3 
and µ = 1.0 mole dm

-3
 (NaNO3). The rate of the reaction increased with 

increase in the ionic strength and decrease in dielectric constant of the reaction medium. Added 
HCOO

-
 and Cl

-
 accelerated the rate of the reaction. Spectroscopic investigation did not reveal the 
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formation of any stable reaction intermediate. Test for free radical was positive and a plausible 
mechanism consistent with these observations has been proposed. 
 

 
Keywords: 3,7-bis(dimethylamino)phenazothionium chloride; benzenethiol; kinetics; stoichiometry; 

Michaelis-Menten plot; outersphere. 
 
1. INTRODUCTION 
 
A recent review of methylene blue (here and 
thereafter represented by MB

+
 for convenience, 

(Fig. 1) by Schirmer et al. [1], reveals an array of 
its many uses especially in the field of medicine. 
It is reported to be the first fully synthetic drug in 
medicine. In recent years, there was a surge of 
interest in MB

+
 as an anti-malarial agent and as a 

potential treatment of neurodegenerative 
disorders such as alzheimer’s disease, possibly 
through its inhibition of the aggregation of tau 
protein. However, in most of these applications, 
literature on the mechanism of its reactions is 
scanty. In the last two decades, it has been 
shown that,  reduction of MB

+
 can be achieved 

with BrO3
- [2], SCN- [3], H2O2 [4], UV-H2O2 [5,6], 

ascorbic acid[7-11], Ce(IV) [12], thiosulphate 
[13], β-mercaptoethanol [14], photo-
decomposition on TiO2 [15,16], photo-reduction 
by the ureas and thioureas [17]. This work 
reports an investigation on the dynamics of 
oxidation of benzenethiol by methylene blue, with 
the aim of gaining insight and understanding of 
the mechanistic pathway of methylene blue 
reaction with benzenethiol.  
 

S

N

N(CH3)2(H3C)2N  
 

Fig. 1: Structure of  
3,7-bis(dimethylamino)phenazothionium 

chloride (methylene blue, MB
+
) 

 

2. MATERIALS AND METHODS 
 
All the reagents used were of analytical grade 
and were used as supplied. Standard solution of 
methylene blue was prepared by dissolving 
accurate weight amount of the dye in a known 
volume of water. The spectrum of the solution 
was determined over the wavelength range 400 
– 700 nm. The λmax which is the wavelength of 
maximum absorption was found to be 665 nm. 
This agrees with the value reported by Busari et 
al. [18], Snehalatha et al. [8], Ukoha [14], Sarah 
and Paul [7], and Mishra et al. [19]. A stock 

solution of benzenethiol (C6H5SH) was prepared 
by mixing a known volume of C6H5SH with little 
cm

3
 of concentrated nitric acid and made up to 

the mark of volumetric flask with distilled water. 
Standard solutions of sodium formate, sodium 
chloride and sodium nitrate were prepared by 
dissolving a known weight of respective salts in 
known volume of distilled water. 
 

2.1 Stoichiometric Studies 
 
The stoichiometry of the reaction of methylene 
blue with benzenethiol was determined at λmax = 
665 nm by spectrophotometric titration using the 
mole ratio method. The concentration of 
benzenethiol range was (4.68 – 93.5) x 10

-6
 mole 

dm-3 with a constant concentration of methylene 
blue (1.87 x 10

-5
 mole dm

-3
), [H

+
] = 0.3 mole dm

-3
 

and T = 29ºC. The absorbances of the solutions 
were measured at λmax, wavelength of maximum 
absorption = 665 nm, after the reactions were 
allowed to go to completion. This was when 
constant absorbance values were obtained. 
 
2.2 Determination of Order 
 
The rate of reaction was studied by monitoring 
the decrease in absorbance of methylene blue at 
λmax = 665 nm using Corning 252 Colorimeter. 
Kinetic measurements were carried out under 
pseudo-first order condition with the [C6H5SH] in 
at least 100 - fold excess over [MB+] at 290C. 
Ionic strength of the reaction medium as well as 
hydrogen ion concentration were maintained 
constant for each of the runs. 
 

3. RESULTS AND DISCUSSION 
 
The result of the stoichiometry determination of 
the reaction shows that one mole of benzenethiol 
was consumed per mole of methylene blue 
according to equation 1. 
 
2MB+ + 2C6HSH     2MB + C6H5SSC6H5 + 2H+ [1] 

 
Similar stoichiometry have been reported in the 
reactions of methylene blue with thiosulphate ion 
[13], mercaptoacetic acid [14], L-ascorbic acid 
[20], thiourea [21], and 1-methyl-2-thiourea [22]. 
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Pseudo-first order plots of log (At - A∞) against 
time (where At and A∞ are the absorbances at 
time, t and at infinity respectively) were linear to 
more than 90% extent of the reaction. The 
linearity of the plots suggests that the reaction is 
first order with respect to [MB

+
]. The order of the 

reaction with respect to [C6H5SH] was 
determined by plotting log k1 against log 
[C6H5SH] from Table 1. The gradient of the linear 
graph was about unity. The first  order obtained 
with respect to methylene blue is in agreement 
with what has been reported in the literature 
[10,18,21-24].  

 
Table 1: Pseudo-first order and second order 

rate constant for the reaction of [MB+] and 
[C6H5SH] at [MB

+
] = 1.87 x 10

-5
 mole dm

-3
, [H

+
] 

= 0.3 mole dm
-3

, T = 29
0
C, µ = 1.0 mole dm

-3
 

and λmax = 665 nm 
 

10
3
[C6H5SH], 

mole dm-3 
10

3
k1, 

s-1 
k2, dm

3
 mole

-1
 s

-1
 

1.300 0.77 5.89 
1.496 0.86 5.75 
1.683 0.99 5.88 
1.870 1.08 5.78 
2.057 1.19 5.76 

2.244 1.28 5.71 
2.430 1.37 5.64 

2.618 1.56 5.46 

 
Within the hydrogen ion concentration range 0.3 
≤ [H+] ≤ 0.9 mole dm-3 at a constant ionic 
strength, µ = 1.0 mole dm-3 and T = 29ºC while 
keeping the [oxidant] and [reductant] constant, 
the reaction exhibited an inverse acid 
dependence. The nature of such H

+
 dependence, 

suggests release of proton in a pre-equilibrium 
step and that the deprotonated form of 
benzenethiol is non-reactive. This observation 
conforms with the finding in the reaction of this 
dye with ascorbic acid [8] but at variance with its 
reduction with thiol compounds such as 
mercaptoacetic acid [14], whose rate constant 
increases with increase in [H

+
]. The pseudo-first 

order rate constants, k1, and the acid 
dependence second order rate constants k2, 
determined are reported in Table 2. Linear plot of 
k2 versus 1/[H

+
] produced a straight line with an  

intercept (Fig. 2), suggesting that one of the two 
rate determining steps (equation 4) is preceeded 
by a rapid deprotonation equilibrium [25]. Both 
the deprotonated and the native species are 
reactive. A slope of 0.495  was obtained with 
R=0.996, when a linear plot of logk1 versus 

log[H+] was made (Fig. 3), an indication that 
order with respect to deprotonation of 
benzenethiol is probably one (equation 3). We 
suspect that other interactions within the reaction 
medium might have taken place to account for 
the non-integral value. 

 
Table 2: Acid dependence rate constants for 
the reaction of [MB

+
] and [C6H5SH] at [MB

+
] = 

1.87 x 10-5 mole dm-3, [C6H5SH] = 1.87 x 10-3 
mole dm

-3
, T = 29

0
C, µ = 1.0 mole dm

-3
 

and λmax = 665 nm 
 
[H

+
], mole dm

-3
 10

2
k1, s

-1
 k2, dm

3
 

mole
-1

 s
-1

 
0.3 1.081 5.78 
0.4 0.964 5.16 
0.5 0.847 4.53 
0.6 0.773 4.13 

0.7 0.724 3.87 
0.8 0.679 3.63 
0.9 0.625 3.34 

 
The observed first order and second order rate 
constants (k1 and k2 respectively) were 
determined as a function of ionic strength of 
reaction medium in the range 0.4 ≤ µ ≤ 1.0 mole 
dm-3 (NaNO3) and are reported in Table 3. The 
plot of log k2 against √µ (Fig. 4) indicates a 
positive Debye salt effect. This result suggests 
an interaction of species carrying same charge 
signs in the activated complex. According to 
Snehalatha et al. [8], reactions between two pairs 
of ions of like charges are usually accelerated by 
increasing ionic strength because of the 
increased favorable interactions of the activated 
complex with the denser ionic environment. 
 

Table 3: Pseudo-first order and the ionic 
strength, µ dependence rate constants for the 
reaction of [MB

+
] and [C6H5SH] at [MB

+
] = 1.87 

x 10
-5

 mole dm
-3

, [C6H5SH] = 1.87 x 10
-3

 mole 
dm-3, T = 29ºC and λmax = 665 nm 

 
µ, mole dm

-3
 10

3
k1, s

-1
 k2, dm

3
 

mole-1 s-1 
0.4   4.47 2.39 
0.5   5.39 2.88 
0.6   6.34 3.39 
0.7   7.44 3.98 
0.8   8.36 4.47 
0.9 
1.0 

  9.16 
10.81 

4.90 
5.78 
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Fig. 2: Plot of the dependence of hydrogen ion concentration on second order rate  
constant of MB

+
- C6H5SH reaction 

 

 
Fig. 3: Plot of log k1 versus log [H+] of MB+- C6H5SH reaction 
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Fig. 4: Effect of ionic strength on MB

+
- C6H5SH reaction rate 

 

3.1 Effect of Added Anions on Reaction 
Rate 

 
Table 4 shows increase in reaction rate with 
increase in concentration of the anions (HCOO- 
and Cl

-
). Plots of k2 against [anions] for these 

reactions were found to be linear (Figs. 5 & 6). 
Ion catalysis of reaction rate has been reported 
as being characteristic of the outersphere 
reaction mechanism because of the possibility of 
the intervention of these ions in the activated 
complex [26]. In this investigation, the anions 
HCOO

-
 and Cl

-
 were found to catalyzed the 

reaction. This suggests that the coordination 
integrity of the reactants are intact prior to and 
during the electron transfer process implying the 
possibility of an outersphere reaction 
mechanism.  
 

3.2 Effect of Change in Dielectric 
Constant on Reaction Rate 

 
The effect of change in dielectric constant (D) on 
the rate of the MB+ - [C6H5SH] reaction was 
investigated at constant [oxidant], [reductant], μ 
and temperature. This was done by varying the 
% of acetone in acetone-water mixture as shown 
by equation 2. The decrease in rate constants 
with increase in D of reaction medium is 
presented in (Table 5). Observation of this nature 
is consistent with interaction of species of unlike 
charges or charged – neutral molecule in the rate 
determining step. This assertion conforms with 
equations 4 and 6. However, this is in contrast to 
the increase in reaction rate obtained upon 
increase in ionic strength of reaction medium. 

Therefore, we suspect that other interaction 
could be taking place in the reaction medium to 
account for the latter observation. 
 
Table 4: The effect of added HCOO- and Cl- on 
the rate of the reaction of methylene blue and 
benzenethiol at [MB+] = 1.8 x l0-5 mole drn-3, 

[C6H5SH]= 1.87 x 10
-3

 mole drn
-3

, µ = 1.0 mole 
drn-3, [H+] = 0.3 mole drn-3, T = 290C and  

λmax = 665 nm 
 

   [HCOO-] 

10
3
[HCOO

-
], mole 

dm-3
 

10
2
k1, s

-1
 k2, dm

3
 

mole-1 s-1 

20 1.38   7.40 

40 1.43   7.65 

80 1.60   8.54 

120 1.68   8.99 

180 1.81   9.67 

200 1.92 10.27 

300 2.10 11.23 

 

   [Cl
-
] 

103[Cl-], mol dm-3
 102k1, s

-1 k2, dm3 
mol

-1 
s

-1
 

20 1.30   6.97 

40 1.37   7.31 

80 1.46   7.80 

120 1.57   8.39 

180 1.69   9.06 

200 1.75   9.36 

300 2.98 10.59 
 

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

lo
g 

k 2

√μ
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Table 5: The effect of variation of dielectric 
constant on the rate constants of 

MB+ - C6H5SH Reaction at [MB+] = 1.8 x 10-5 
mole drn

-3
, [C6H5SH] = 1.87 x 10

-3
 mole drn

-3
,  

µ = 1.0 mole drn-3, [H+] = 0.3 mole drn-3, T = 
29ºC and λmax = 665 nm 

 

D % acetone 102k1, s
-1 k2, dm3 

mole
-1 

s
-1

 
81.0 0 1.197   5.79 
80.4 1 1.244   6.65 
79.8 2 1.403   7.54 
79.2 3 1.533   8.20 
78.6 4 1.621   8.67 
78.0 5 1.733   9.27 
77.4 6 1.907 10.20 
76.8 7 2.019 10.80 
76.2 8 2.132 11.40 
75.6 9 2.289 12.20 

 

��������� ������ =  
����×�������������×��������

����� ������ �� ��������
  [2] 

 
where ����, ����, ��������  and �������� are 

dielectric constant of water, volume of water, 
dielectric constant of acetone and volume of 
acetone respectively.  
 
A linear plot of 1/k1 against l/[C6H5SH], also 
called Michaelis- Menten plot  (Fig. 7) which 
passed through the origin, shows that there was  
no binuclear complex formation of significant 
stability during the course of the reaction, 
affirming that an outersphere mechanism for this 
reaction is probable. 
 
 
 
 

 
Fig. 5. Plot of [HCOO-] dependence on second order rate constants of MB+ - C6H5SH reaction 

 

 
Fig. 6: Plot of [Cl

-
] dependence on second order rate constants of MB

+
 - C6H5SH reaction 
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Fig. 7: Plot of 1/k1 versus 1/C6H5SH of MB
+
- C6H5SH reaction 

 
 

3.3 Reaction Mechanism 
 
Taking recourse to the above findings, the 
following possible mechanism is proposed: 
 
 C6H5SH                    C6H5S

- + H+                     [3] 
 

MB
+
 + C6H5S

-
                 [MB

+
, C6H5S

-
]   slow   [4] 

 

[MB
+
, C6H5S

-
]                 MB

 
+ C6H5S

•     
[5] 

 

MB+ + C6H5SH            MB + C6H5S
•
+ H+   slow [6] 

 

C6H5S
• 

+ C6H5S
•
              C6H5SSC6H5  [7] 

 
From equations 4 and 6 which are the rate 
determining steps, the rate law can be written as 
 

��

��
 [MB

+
] = k4[MB

+
][ C6H5S

-
] + k6[MB

+
][C6H5SH]                                                                           

[8] 
 

and from equation 3 
 

[C6H5S
-
] = 

�[������]

[��]
                                      [9] 

 
Making the substitution of equation 9 into 
equation 8, the rate of the MB+ - C6H5SH reaction 
can be represented by the expression  
 

��

��
 [MB+] = 

��������[������]

[��]
+ ��[���][������]  

[10] 

��

��
 [MB

+
] = k4K[MB

+
][ C6H5SH][H

+
]
-1

 + k6[MB
+
] 

[C6H5SH]                                                      [11] 
 

Therefore, 
��

��
 [MB+] = (Kk4[H

+]-1 + k6)[MB+] 

   [C6H5SH]                                                      [12]  
 
Investigation of intermediate complex formation 
gave a negative result, suggesting that such 
species is not important in the reaction. Free 
radicals test that was carried out by adding about 
1g of acrylamide to a partially oxidized mixture in 
excess methanol formed some suspension, an 
indication of generation of some free radicals in 
the reaction medium. This is consistent with the 
proposed mechanism (equations 5 and 6). It is 
worth noting, however, that the proposed 
formation of [MB+, C6H5S

-], an ion-pair in one of 
the pre-electron transfer steps did not lead to a 
shift in the λmax of 665 nm for methylene blue. 
This suggests that MB+ and this ion-pair absorb 
at the same λmax.  It is therefore proposed, based 
on the above results that, the reaction of 
methylene blue with benzenethiol occurs by the 
outersphere mechanism. 
 

4. CONCLUSION  
 
The kinetics and the mechanism of electron 
transfer reaction of methylene blue with the 
benzenethiol have been investigated in nitric acid 
medium. The reaction displayed a stoichiometry 
of 1: 1. It shows inverse first order hydrogen ion 
dependence and is catalyzed by added anions. 
The rate of the reaction increased with increasing 

k4 

k5 

k6  

K
''’
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ionic strength and decreasing dielectric constant 
of the reaction media respectively. The test for 
radicals was positive. The reaction is therefore 
believed to occur by the outersphere mechanism 
and plausible mechanism consistent with these 
observations has been proposed.  
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