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ABSTRACT 
 

Background: Illnesses due to contaminated food, particularly food of animal origin, are perhaps 
the most widespread health problem in the contemporary world. 
Aims: To detect Shiga toxin-producing Escherichia coli (STEC) in food animals in Ado-Ekiti, 
Nigeria and the possible risk to human health. 
Study Design: Non-repeat faecal samples from various animals and poultry birds were examined 
for STEC. 
Place and Duration of Study: Department of Microbiology, Ekiti State University, Ado-Ekiti, 
between January 2010 and December 2011. 
Methodology: We investigated 722 non-repeat faecal samples from animals and poultry birds for 
the presence of STEC using bacteriological, serological, and tissue culture techniques. Detection of 
virulence genes was performed by PCR. 
Results: Overall, 316 isolates of E. coli were recovered from 62.3% cattle, 19.6% local chicken, 
10.1% goats, 4.1% broiler, 2.9% layers, and 0.9% cockerels. Of the non-sorbitol fermenting E. coli 
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phenotype selected from the isolates, 13.3% were presumptively identified as O157 serotype 
based on inability to ferment sorbitol on sorbitol MacConkey agar (SMAC). 
Serotyping using commercial kits capable of detecting O157 and non-O157STEC confirmed 6.6% 
of these as O157 comprising 4.1% from cattle and 2.5% from local chicken. Only 4.7% of the 
strains were serologically confirmed as non-O157 of which 0.9% was from cattle, 3.2% from goat 
and 0.6% from local chicken. Verocytotoxicity test and the presence of virulence genes stx1, stx2 
and eae assayed by PCR showed the complete absence of virulence genes in the 13 serologically 
confirmed strains of O157 from cattle. The virulence gene stx1 was detected only in non-O157 
strain from goat and local chickens. 
Conclusion: This study has shown that the prevalence of E. coli O157 is low in food animals in the 
study area compared to reports from the developed countries. Furthermore, our study is the first to 
report the isolation of non-O157STEC in goat, a very common domestic animal, in the study area. 
 

 
Keywords: Shiga toxin; non-shiga-toxin; Escherichia coli; STECO157; non-O157STEC; food animals. 
 

1. INTRODUCTION 
 
Shiga toxin (Stx)-producing Escherichia coli 
(STEC) has been reported as one of the most 
important causes of foodborne infections and 
emerging issues worldwide [1-8]. STEC, also 
known as verocytotoxin-producing E. coli (VTEC) 
is a foodborne organism that has been 
associated with sporadic cases and outbreaks of 
bacterial enteritis in humans [4,9-14]. STEC 
infections in humans have been acquired through 
consumption of food or water contaminated 
directly or indirectly with cattle faeces [15]. Most 
infections due to STEC in humans have been 
attributed to serotype O157. Albeit, non-
O157STEC is increasingly being recognized to 
be of considerable importance as it is frequently 
associated with sporadic outbreak of both mild 
and severe STEC disease in humans globally 
[2,16-18]. 

 
Diseases caused by STEC are characterized by 
abdominal pain and bloody diarrhoea, and 5 to 
15% of those infected with serotype O157 
develop haemolytic uremic syndrome (HUS), a 
potentially life-threatening condition consisting of 
haemolyticanaemia, thrombocytopenia and 
kidney failure caused by Stx [19]. STEC is the 
primary aetiologic agent of HUS, and E. coli O 
157:H7 is the prevalent serotype detected 
[2,12,17,19-21].  

 
Shiga toxins are members of a family of highly 
potent bacterial toxins responsible for severe 
clinical symptoms and are the main virulence 
marker for STEC [5,22]. Stx belongs to a defined 
protein subfamily, the RNA N-glycosidases that 
can be classified into two antigenic groups: Shiga 
toxin 1 (Stx 1) and Shiga toxin 2 (Stx 2). Stx 1 is 
a rather homologous group with three variants 
(Stx 1, Stx1c and Stx1d). Stx 2 group is more 

heterogenous and comprises several subtypes 
[23,24,25]. Other virulence factors that may play 
a role in the pathogenicity of Shiga toxin include 
intimin (encoded by the eae A gene), which is 
required for intimate adherence of these 
pathogens and formation of attaching and 
effacing (A/E) lesion [5,23]. Stx production is not 
restricted to serotype O157 strains as over 100 
STEC serotypes have been isolated from 
humans with diarrhoeal illness [2,21,22]. 
 

It has been estimated that E. coli O157:H7 
causes two thirds of STEC infections in humans 
in the United States with the other one-third of 
cases attributed to non-O157STEC population 
[26]. Furthermore, studies in Europe indicate that 
non-O157STEC infections occur more frequently 
than do STECO157 infections [2,13]. In 
resource-poor countries, STEC strains belonging 
to serotype O157 are also the most common 
causes of human diseases. However, there is yet 
no report on the role played by non-O157 strains 
of STEC in these areas. 
 

Healthy cattle and small ruminants are the main 
reservoir of the organism while direct and indirect 
contact with animals is one of the transmission 
routes by which infection is acquired [5,27-29]. 
Person-to-person transmission by faecal-oral 
route occurs in families and institutional settings 
such as schools and nurseries. Ruminant 
animals carry a diversity of STEC and isolation 
rates have been reported to be generally higher 
in sheep than cattle [30]. However, cattle appear 
to be a major natural reservoir and an important 
source of human infection [31,32]. STECO157 
strains have also been isolated from other 
domestic animals including sheep, goats, horses, 
pigs, geese and turkeys [33]. In low income 
countries, the common transmission routes 
include animal-to-human, waterborne and 
person-to-person [34]. Faecal contamination is 
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one source of environmental contamination and 
is responsible for the presence of these 
pathogens in the environment [29,35]. 
Transmission of STECO157 to man occurs 
mainly by consumption of contaminated food, 
including undercooked beef and meat products, 
unpasteurized milk and ready-to-eat products 
including cooked meats and vegetables that 
have been contaminated [13,21,36].  
 
Although, meat is generally consumed well done 
in Southwest, Nigeria, cattle grazing is often 
carried out around residential areas in the 
locality. At times, grazing is done near riverbeds 
and flowing streams, which serve as sources of 
drinking water particularly in most villages, 
thereby contaminating the environment and 
water sources. Moreover, cattle faeces are used 
ignorantly and/or deliberately as manure in 
vegetable farms and gardens. Furthermore, 
cross-contamination of meat products with 
bacteria often occurs during slaughter and 
production. Consumption of chicken and other 
foods contaminated either through faecal contact 
or processing failure is the most important cause 
of indigenous foodborne outbreaks [29,32,37]. 
Moreover, faeces are washed off and water 
sources including rivers, streams, rivulets and 
wells meant for domestic use, are contaminated 
during heavy rainfall. Foods and vegetables 
meant for human consumption may subsequently 
become contaminated [7,38].  
 
Although considerable progress has been made 
in understanding the ecology of STEC in farm 
animal hosts and the modes of transmission to 
humans, it still remains unclear if all STEC 
present in animal reservoirs present a risk to 
human health. Substantial gaps in knowledge 
about the epidemiology of Shiga toxin-producing 
E. coli exists in the study area, Ekiti State. 
 
The aim of this study was to determine the 
prevalence of Shiga toxin-producing E. coli O157 
in known reservoirs of the organisms such as 
cattle, goats and chicken in Ekiti State, Nigeria 
as a prelude to assessing the presence of these 
pathogens in the environment and their possible 
risk to human health in the study area. 
 

2. MATERIALS AND METHODS  
 
2.1 Collection of Faecal Samples from 

Poultry Sources, Goats, and Cattle 
 
A total of 722 faecal samples from various 
sources were examined in this study. Of these 

361 were from cattle, 49 from goats, 19 from 
cockerels, 141 from local chickens, 100 from 
broilers and 52 from layers. The samples were 
collected with culturette. 
 
Faecal samples were also collected from cattle 
slaughtered at two central abbatoirs in Ado-Ekiti 
and samples were transported to the laboratory 
immediately and processed within one hour of 
collection. 
 

2.2 Processing of Faecal Samples 
 
Faecal samples were inoculated directly onto 
Eosin Methylene Blue (EMB) agar (Fluka 70186), 
streaked to obtain discrete colonies and 
incubated at 37ºC for 24-48 h. The plates were 
examined for colonies with characteristic green 
metallic sheen, which is the distinguishing 
feature of E. coli on EMB agar. A maximum of 3 
distinct colonies of E. coli were picked per 
sample and stored as slants on Nutrient agar. All 
colonies showing green metallic sheen on EMB 
agar were streaked onto Sorbitol MacConkey 
agar plates (SMAC; Oxiod, Basingstoke, 
Hampshire, UK) and incubated at 37ºC for 24 
hours.  

 

2.3 Identification and Serotyping of        
E. coli  

 
The bacterial isolates from the various sources 
were identified on the bases of their cultural, 
morphological and biochemical characteristics as 
described by Barrow and Feltham [39]. 
 
The strains of E. coli O157 were identified 
culturally on the basis of inability to ferment 
sorbitol on SMAC agar and confirmed 
serologically as O157 by latex agglutiation 
serotyping kit (Dryspot E. coli O157 latex test) for 
E. coli O157 (Oxoid, Basingstoke, UK) and 
(Dryspot E. Coli serocheck and seroscreen latex 
test) for the detection of six non-O157 serotypes 
O26, O91, O103, O111, O128 and O145. 
 

2.4 Cytotoxicity Assay 
 
The cytotoxicity of E. coli on vero cells (African 
Green Monkey kidney cell) was determined as 
described by Clarke et al. [40]. The vero cells 
were grown in a 24-well microtitre plate in 
Eagle’s minimal essential medium (MEM) 
supplemented with 10% fetal calf serum and 
incubated at 37ºC until a confluent monolayer 
growth had formed. All E. coli strains tested were 
grown overnight in Brain Heart Infusion broth and 
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the supernatant was clarified by membrane 
filtration with 0.22 µm size Millipore filter. The 
clarified supernatant was diluted fivefold (1/5 to 
1/25) and added to 2.5x10

5
 cells/ml of confluent 

vero cells in a 24-well microtiter plates. The 
plates were incubated in a CO2 environment for 
72h. The cells were examined for the cytotoxic 
activity and the strain was considered cytotoxic if 
there was >50% cytotoxic effect on the vero 
cells.  
 

2.5 Detection of Virulence Genes Stx1, 
Stx2 and Eae by PCR 

 

The chromosomal DNA used in this study was 
extracted as described by Aranda et al. [41]. 
Overnight culture of 12 previously identified E. 
coli strains from poultry (3), cattle (6), and goat 
(3) were harvested from MacConkey agar and 
suspended in 250 µl of sterile water, incubated at 
100ºC for 5 min to release DNA and centrifuged. 
The supernatant was used in the PCR assay. 
The primers used (VT1-A, VT1-B, VT2-A, VT2-B, 
EAE-2 to amplify the virulence genes were 
capable of detecting stx1 and stx2 and eae. 
Amplification was performed using a 50 µl 
volumes containing 10 µl of the prepared sample 
supernatant; 150 ng oligonucleotide primers; 
0.2mM (each) dATP, dGTP, dCTP  and dTTP  
buffer solution (10mMTrisHCl (pH 8.8); 1.5 
mMMgCl2; 50mMKCl) and 1U of Taq 
polymerase (Roche Diagnostics GmbH, 
Germany).The conditions for the PCR were 94ºC 
for 2 minutes for initial denaturation of DNA 
within the sample followed by 35 cycles of 94ºC 
for I minute (denaturation), 55ºC for 1 minute 
(primer annealing) and 72ºC for 1 minute (DNA 
synthesis). This was performed in a thermal 
cycler (FT GENE5D, Techne, Cambridge, 
England). For every reaction, a negative (sterile 
distilled water) and a positive (reference strain 
ATCC 25929) controls and a molecular size 
marker were used to determine the size of 
amplified fragments. Base sequences and 
predicted sizes of amplified products for the 
specific primers used in the study are shown on 
Table 1. 

3. RESULTS   
 
3.1 Isolation of Escherichia coli from 

Poultry and Animal Sources 
 
A total of 316 strains were isolated from 62 
(19.6%), 13 (4.1%), 9 (2.85%) and 3 (0.9%) 
samples of local chicken, broiler, layers and 
cockerels respectively. Escherichia coli was also 
isolated from 32 (10.1%) of goats and 197 
(62.3%) of cattle faecal samples (Table 2). 
 
3.2  Isolation and Serotyping of Non-

sorbitol Fermenting Phenotype of E. 
coli Isolated from Cattle, Local 
Chicken and Goats  

 
Of the 316 samples which yielded growth of E. 
coli, 42 (13.3%) were non-sorbitol fermenters.  Of 
the 42 non-sorbitol-fermenting strains tested, 
only 21 made up of 13 (4.1%) from cattle and 8 
(2.5%) from local chicken caused visible 
agglutination within one minute with the latex 
reagent for O157. None of the strains from 
broilers, layers and cockerels showed any visible 
agglutination with the O157 latex reagent. 
Furthermore, a total of 15 (4.7%) strains made 
up of 3 (0.9%) from cattle, 2 (0.6%) from local 
chicken and 10 (3.2%) from goats caused a 
visible agglutination with the seroscreen latex 
reagent for detecting the 6 common non-
O157STEC and were therefore identified as 
belonging to any of the non-O157 serotypes 
(Table 3). 
 
3.3 Detection of Verocytotoxin by Tissue 

Culture 
 
Only 5 strains from cattle and 2 from local 
chicken had cytotoxic effect on over 50% of the 
tissue cell monolayer after 24 hours of growth. 
Out of the 5 E. coli strains that showed cytotoxic 
effect, 2 were O157 serotype and three were 
non-O157. Also, the 2 strains from local chicken 
were non-O157 (Table 4). 

 
Table 1. Nucleotide sequence of primers used 

 

Gene Primer Oligonucleotide sequence Fragment size (bp)  
stx1 VT1-A 5ʹ- CGCTGAATGTCATTCGCTCTGC 302 

VT1-B 5ʹ- CGTGGTATAGCTACTTCACC  
stx 2 VT2-A 5ʹ- CTTCGGATCCTATTCCCGG 516 

VT2-B 5ʹCTGCTGTGACAGTGACAAAACGC  
Eae EAE-1 5ʹ-GGAACGGCAGAGGTTAATCTGCAG 775 

EAE-2 5ʹ-GGCGCTCATCATAGTCTTTC  
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Table 2. Isolation of Escherichia coli from poultry and animal sources in Ado-Ekiti 
 

Sources Number examined (%) Number positive for E. coli (%) 
Local chicken 141 (19.5) 62 (19.6) 
Broilers 100 (13.9) 13 (4.1) 
Layers 52 (7.2) 9 (2.9) 
Cockerels 19 (26.3) 3 (0.9) 
Goat 49 (6.8) 32 (10.1) 
Cattle 361 (50.0) 197 (62.3) 
Total 722 316 (43.8) 

 
Table 3. Serotyping of E. coli isolated from various animal sources in Ado-Ekiti 

 
Source of 
isolation 

Number 
isolated 

Non-sorbitol  
fementation on SMAC (%) 

 Serotyping  
E. coli O157 Non-O157 E. coli 

Local chicken 62 11 (3.5%) 8 (2.5) 2 (0.6) 
Broilers 13 0 0 0 
Layers 9 0 0 0 
Cockerels 3 0 0 0 
Goats 32 0 0 10 (3.2) 
Cattle 197 31 (9.8%) 13 (4.1) 3 (0.9) 
Total 316 42 (13.3%) 21 (6.6) 15 (4.7) 

 
Table 4. Detection of Shiga toxin by cytotoxicity effect on Vero cells and 

virulence genes by PCR 
 

Source Serotype 
examined 

No of strains 
examined 

No of strains with ˃50% 
cytotoxic effects 

Detection of virulence 
genesby PCR 

stx1 stx2 Eae 
Cattle O157 13 2 + - - 
Cattle Non-O157 3 3 + - - 
Goats Non-O157 10 0 + - - 
Local chicken Non-O157 2 2 - - - 
Total  28 7    

+ Present; - Not detected 
 

3.4 Detection of Virulence Genes (Stx1, 
Stx2, Eae) by PCR 

 
Three out of the selected 12 strains whose genes 
were amplified by PCR showed the presence of 
detectable bands with molecular sizes ranging 
between 302 and 303 bp. This molecular size of 
302 bp corresponds to the molecular size of stx1 
used in the experiment. Of the three strains two 
were non-O157 isolates from goats, one from 
cattle and none from poultry. None of the other 
isolates from cattle investigated harboured any of 
the virulence genes examined. 
 
4. DISCUSSION 
 
Shiga toxin-producing E. coli (STEC) are 
essentially zoonotic enteric pathogens, 
commonly associated with human gastroenteritis 

globally and cattle and small ruminants are 
considered an important animal reservoirs for 
STEC [33]. The present study investigated 
animal reservoirs for STEC in Ado-Ekiti, Nigeria.  
 

A total of 21 (6.6%) and 15 (4.7%) of O157 and 
non-O157 E. coli strains were respectively 
isolated from the faeces of various domestic 
animals in this study. Strains of O157 were 
isolated from 8 (2.5%) local chicken and 13 
(4.1%) cattle while non-O157 was isolated from 
local chicken (0.6%), cattle (0.9%) and (3.2%) 
goats (Table 2). The finding in this study agrees 
with earlier reports that cattle are the primary 
source of O157strain of E. coli [34,42,43]. 
Various prevalence rates of E. coli O157 ranging 
from 0% to 70% in dairy calves [44], 66.6% in 
sheep, 56.1% in goats, 7.5% in pigs, 13.8% in 
cats and 4.8% in dogs and  < 0.7% in chickens 
have also been reported [45]. The low incidence 
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of O157 serotype in this study may explain why 
infection with E. coli O157 in humans is not 
common in the study area. Furthermore, this 
finding corroborates the report of a low incidence 
of E. coli O157 infections in humans in Nigeria 
[46]. However, studies in other countries have 
reported a strong seasonal influence on the 
occurrence of E. coli O157 in cattle [47] and 
prevalence rates have been reported to vary with 
method of detection, geographical location      
[48-50,51], season of the year and age group in 
the animal reservoir [9]. Moreover, the finding of 
Ramoneda et al. [9] indicated that even under 
good manufacturing practices and stringent 
European standards, the total absence of STEC 
may not be absolutely guaranteed. However, our 
method of detection using SMAC, which was 
indirect may not have been very selective and 
sentive enough. 
 
Result from this study also showed a prevalence 
of 4.1% of E. coli O157 in healthy cattle and 
3.2% non-O157 E. coli strains in healthy goats 
(Table 3). These are slightly higher than a similar 
study in an Irish abattoir McCann et al. [52]. 
However, the fact still remains that while non-
O157 E. coli is carried by other domestic animals 
such as goats, serogroup O157 remains the 
most dominant E. coli strain in the study area. 
This agrees with the findings of McCann et al.  
[52] who also reported a  prevalence of  2.6%  for 
O157STEC from cattle faeces and a  prevalence 
ranging between 0.8-1.8%  for non-O157STEC in 
an Irish abattoir and Renter et al. [53] recorvered 
14% non-O157STEC strains in cattle faeces in 
Alberta, Canada. Khandaghi et al. [28] reported 
the recovery of non-O157STEC strain O26 from 
bovine faeces in Iran. 
 
Ruminants, especially cattle constitute a vast 
reservoir of STEC, and it is not surprising that 
human infection can frequently be traced to 
contamination of food or water with manure. The 
carriage of the pathogens by cattle can be 
targeted as an area in which interventions may 
reduce contamination of food and the 
environment with pathogenic STEC shed by 
healthy cattle. More than 470 serotypes of STEC 
have been reported from humans [54] and most 
of these being serotypes that have been 
identified in cattle. In North America, cattle are 
the most significance reservoir of STEC, but in 
countries such as Australia, sheep are of greater 
significance [55]. 
 
Our study is the first published report of the 
isolation of non-O157STEC from goat in the 

study area, hence the role of non-O157 in STEC-
associated disease may need to be further 
established in the study area. The significance of 
non-O157STEC as enteric pathogens is probably 
underestimated because there are no simple 
laboratory methods to detect and isolate these 
organisms. However, high incidence rates of 
non-O157STECserogroups have been reported 
under conditions of enhanced surveillance 
[35,56,57]. Reports have shown that global “hot 
spots” exist including Argentina, Australia and 
Germany in which non-O157STECserogroups 
dominate over O157 serogroups, [58]. For 
example, in Germany, non-O157STEC account 
for up to 80% of STEC-associated diarrhoeal 
illnesses [2,10]. 
 
Production of Shiga toxins is the critical virulence 
factor in STEC diseases. There is an evidence of 
an association of stx2 with a higher risk of 
developing HUS and the presence of both eae 
and stx2 in a STEC isolate is considered to be a 
predictor of HUS [59]. Furthermore, stx2 is about 
1,000 times more toxic for human renal 
microvascular endothelial cells than stx1 [60]. In 
this study, only virulence gene stx1 was detected 
both in O157 and non-O157STEC isolated from 
cattle and non-O157 from goat (Table 4). This 
may probably explain the low severity of the 
infection and possibly lack of awareness, serious 
concern and attention for the organisms in the 
study area [61]. In a previous study, Smith et al. 
[62] reported the isolation of E. coli O157:H7 
from some food animals including goats in Lagos 
State, Nigeria. Adefarakan et al. [63] on the other 
hand, reported the isolation of E. coli that lack of 
stx and eae genes from apparently healthy ram 
and goat. 
 
Although several other reports outside Africa 
cited goats as potential sources of E. coli 
O157:H7 infection [64-66] none was isolated 
from goats in our present study. Outbreak of E. 
coli O157:H7 associated with unpasteurized goat 
milk has been described in Canada [67]. This 
study did not focus on the detection of the H 
antigen which may probably have eliminated the 
dectection of E. coli O157:H among the isolates 
and a limitation of the study. However, the role of 
goats as potential reservoirs of non-O157STEC 
in the study area is established in this study. The 
presence of stx1 detected in isolates from goat in 
this study is the first report of the presence of 
virulence associated-genes in E. coli isolates 
from animal origin in Nigeria. The fact that some 
of the serologically confirmed O157 strains 
isolated from cattle in this study did not harbour 
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any of the virulence genes shows that carriage of 
the virulence genes by O157STEC is not 
automatic.  
 
Chicken is one of the most common animal 
protein sources consumed by the Nigerian 
population; they are readily reared at homes 
thereby many individuals come in close contact 
with them and their faeces than other animals 
which are reared in farms. A previous study in 
Nigeria also reported isolation of E. coli O157 
from poultry even though they appeared healthy 
[46]. Therefore, irrespective of serotype, carriage 
of the combination of stx, eae, and EHEC-hlyA 
may be a good indicator for the pathogenic 
potential of STEC strains.    
 
Ruminants have been identified as the major 
reservoir of E. coli O157:H7 and also appear to 
be a reservoir of non-O157:H7STEC [68] 
although non-O157STEC have also been 
detected in non-ruminant animals [69]. STEC has 
been isolated from a variety of domestic animals. 
However, it is believed that in many cases they 
are present as transient bacteria that the animals 
acquired from feeds or water probably 
contaminated with faecal materials from 
ruminants. This may be a possible reason why 
non-O157 E. coli was isolated from local chicken 
which are free-range domestic animals but was 
absent in categories of poultry chicken which are 
caged and do receive medical attentions. 
However, STECO157 has been isolated in life 
layer hens in Italy.  
 

5. CONCLUSION 
 
This study has shown that the prevelence of E. 
coli O157 is low both in cattle (6.6%) and local 
chicken (2.5%) in the study area compared to 
that observed in developed countries. 
Furthermore, our study is the first to report the 
isolation of non-O157STEC in goats, a very 
common domestic animal, in the study area. 
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