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ABSTRACT 
 

The need for a simpler, effective and less expensive predictive tool for the estimation of natural gas 
compressibility factor cannot be exaggerated. An accurate prediction of gas compressibility factor 
is essential because it plays a definitive role in evaluating gas reservoir properties used in the 
estimation of gas reserves, custody transfer and design of surface equipment. In this present work, 
a novel explicit correlation and a highly sophisticated computer program were developed to 
accurately predict natural gas deviation factor. The research also aims to effectively capture the 
relationship between Pseudo-reduced temperature and pressure in relations to the Z-factor. In this 
study, 3972 digitized data points extracted from Standing and Katz’s Chart were regressed and 
analyzed using Microsoft Excel Spreadsheet, the extraction of this data was done using 
WebPlotDigitizer developed by Ankit Rohatgi of GitHub, Pacifica, CA, USA. The correlation was 
developed as a function of Pseudo-reduced temperature and pressure with tuned parameters 
distributed across 1.05 ≤ Tpr ≤ 3.0 and 0 < Ppr ≤ 8.0. Subsequently, the input (Tpr and Ppr values) of 
the feed data was used to validate the correlation and compare it with other known and published 
correlations. Statistical analysis of the results showed that a 99.8% agreement exists between the 
predicted and actual compressibility factors for the various test scenarios and case studies 
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involving both sweet and sour gases. Also, the correlation was observed to outperform other 
models. Finally, the results were observed to perfectly mimic the Standing and Katz charts with an 
overall correlation coefficient of 99.76% and an adjusted R2 of 99.75%. The proposed correlation 
was subsequently used to develop a software using JavaScript. Undoubtedly, the proposed 
correlation and software are suitable for rapid and accurate simplification and prediction of natural 
gas compressibility factor. 
 

 
Keywords: Novel correlation; natural gas compressibility software; natural gas deviation predictive 

tool; gas compressibility factor; natural gas; z-factor. 
 

1. INTRODUCTION 
 

The need for a simpler, effective and less 
expensive predictive tool for the estimation of 
natural gas compressibility factor cannot be 
exaggerated. Natural gas is recently considered 
as a viable alternative energy source because of 
its availability, environmental friendliness and 
higher calorific value [1]. This growing 
significance has prompted the need for more 
efficient and accurate characterization of its 
properties [2]. Natural gas compressibility factor 
(Z) also known as gas deviation factor or simply 
‘Z-factor’ is an important thermodynamic property 
of natural gas [3]. Accurate prediction of this 
thermodynamics property is a prerequisite in the 
evaluation of gas formation volume factor, 
density, compressibility and viscosity; which are 
essential requirement for the evaluation of gas 
reserves, custody transfer and design of surface 
equipment [4,5]. 
 

Z-factor is generally used to account for the 
deviation of gases from ideal behaviors at higher 
operation conditions [6]. At lower, near 
atmospheric conditions, most gases behave like 
an ideal gas, however, as the operating 
conditions changes as encounter in field 
situations, the gases become more erratic and 
deviates greatly from the ideal gas conditions [7]. 
Modeling such gas properties with the ideal gas 
law could results into errors as great as 500% as 
opposed to 2-3% error observed at atmospheric 
conditions [8]. Real gas, as opposed to ideal gas, 
have significant volume, attractive and repulsive 
forces between their molecules and associated 
internal energy loss upon collision, thereby 
making them supercompressible [7,8]. To 
accommodate these changes in behavior, an 
empirical factor ‘Z’, called gas compressibility 
factor, gas deviation factor or Z-factor is 
introduced into the ideal gas equation to correct 
for the various deviations [9]. Equation 1 and 2 
below defines the ideal and real gas equations 
respectively. 
 

PV = nRT                                                            1 

PV = ZnRT                                                          2 
 

Where,  
  

P = Pressure   
V = Volume    
n = No of mole 
R = Gas constant  
T = Temperature   
Z = Gas deviation factor 
 
Various attempts have been made to accurately 
predict the gas deviation factor. These efforts 
have been geared towards the various traditional 
evaluation methods which includes the 
experimental methods, mathematical methods 
(the use of equation of State, corresponding 
states method and correlations) and the artificial 
intelligence methods (the use of artificial neural 
network, fuzzy inference system, group method 
of data handling, adaptive neuro-fuzzy 
interference system and generic algorithm) 
[10,11]. One common objective of these various 
evaluation methods is the production of a 
simpler, effective and less expensive predictive 
tool. 
 
This research aims to provide a simplified 
correlation and software that accurately 
represents the Standing and Katz Z-factor chart. 
Also, the paper seeks to efficiently capture the 
relationship between the pseudo-reduced 
temperature and pressure in relationship to the 
Z-factor. The subsequent sections give a 
background of the data acquisition, model 
development, validation and comparison with 
existing models, software development and 
analysis with case studies. 
 

2. MATERIALS AND METHODS 
 

2.1 Materials  
 

The materials used in this project are: 
 

i. WebPlotDigitizer (Rohatgi, 2020) 
ii. Microsoft Excel spreadsheet 
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iii. Z-Factor (Designed software) 
 

2.2 Methods 
 
2.2.1 Data acquisition and analysis 
 
3972 digitized data points were extracted directly 
from the Standing and Katz’s chart using 
WebPlotDigitizer developed by Ankit Rohatgi of 
GitHub, Pacifica, CA, USA. The data points 
extracted were distributed across 1.05 ≤ Tpr ≤ 3.0 
and 0 < Ppr ≤ 8.0. Subsequently, the extracted 
data were separated into six groups based on 
the data ranges for efficient data handling and 
analysis. Table 1 below shows the group 
distributions, the range of data within each group 
and the number of data points used for the 
analysis of each groups; while Figs. 1 and 2 
below shows the digitization and data extraction 
for Tpr = 1.05. 
 

2.2.2 Model development 
 

The Data Analysis add-on on Microsoft Excel 
Spreadsheet was used to execute a multiple 
regression analysis on each group. Multiple 
regression analysis is generally used to examine 
the relationships between independent variables 
and a dependent variable [10]. In this case, the 
proposed correlation was developed as a 
function of Pseudo-reduced temperature and 
pressure; with the Pseudo-reduced temperature 
and pressure as the independent variables and 
the Z-factor as the dependent variable as shown 
in equation 3. 
 

𝑍 = 𝑓{𝑇𝑃𝑟 , 𝑃𝑃𝑟  }                                              3 
 

The separated data points predefined in Table 1 
for each group was used to regress for the 
groups; tuned coefficients were then generated 
for the various data ranges. The developed 
correlation and the associated tuned coefficients 
are presented in the result and discussion 
section. 
 

2.2.3 Correlation validation and comparison 
 

To validate the developed correlation, the input 
(Tpr and Ppr values) of the extracted data was 
used on the proposed correlation to predict the 
corresponding Z-factor. The input values were 
then used on selected well known and published 
explicit correlations. To compare the 
performance and accuracy of the new model, 
statistical error analysis was used. A combination 
of Mean Absolute Error (MAE), Mean Square 
Error (MSE), Root Mean Square Error (RMSE), 
Standard Deviation (SD) and Coefficient of 

Determination (R2) was used to compare and 
acertain the viability of the model. Also, the 
predicted values were related to the actual 
values with line charts for visualization. The 
results obtained from the analysis are presented 
in the result and discussion section of the paper.  
The selected correlations and their 
corresponding equations are presented in Table 
2 below for brevity, the reader is encouraged to 
consult the various reference for more details 
about the correlations. 
 

2.2.4 Software development  
 

After the correlation has been validated and 
confirmed suitable and accurate for gas 
compressibility factor prediction. A highly 
sophisticated computer program was developed 
using JavaScript, the software was designed to 
use the proposed correlation to evaluate Z-factor. 
It was also designed to work as a simple-to-use, 
free and more accurate predictive tool for rapid 
analysis and evaluation. The software works by 
accepting the TPr and Ppr values for datas within 
the correlation validity; performs an inbuilt 
selection to place the input value against a group 
to enhance coefficient selection then swiftly 
displays the results within seconds of data input. 
Fig. 3 shows the software interface while Fig. 4 
(a) shows a quick analysis of TPr = 1.67 and Ppr = 
4.50 with the software. The procedure for the use 
of the software is described by the flowchart 
below. 
 

3. RESULT AND DISCUSSION 
 

The correlation developed in this research is 
defined by equation 4 below, while Table 3 
presents the tuned coefficients according to 
predefined groups. The correlation is valid for 
1.05 ≤ Tpr ≤ 3.0 and 0 < Ppr ≤ 8.0. 
 

Proposed Correlation: 𝑍 =  𝛽0 +  𝑃𝑃𝑟(𝛽1 +
 𝛽3𝑃𝑃𝑟) +  𝑇𝑃𝑟(𝛽2 + 𝛽4𝑇𝑃𝑟) +  𝛽5𝑃𝑃𝑟𝑇𝑃𝑟            4 
 
Fig. 5 below presents a graphical representation 
of the result obtained from the use of the input 
(Tpr and Ppr values) of the extracted data on the 
proposed correlation. The results obtained were 
compared with the actual values for all data 
range using a line graph for easy visualization, 
while Fig. 6 presents a cross plot of the predicted 
value against the actual value. From Fig. 5, it can 
be observed that the predicted values model the 
actual values across the data range while Fig. 6 
shows a cluster of the values about the 45o line 
indicating an agreement between the predicted 
Z-factor value and the actual Z-factor value. 
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Table 1. Group distribution 
 

Group Data Range Separated Data Points 

Group 1 1.05 ≤ Tpr ≤ 1.2 0 < Ppr < 3.0 521 Data Points 
Group 2 1.2 < Tpr ≤ 2.0 0 < Ppr < 3.0 1018 Data Points 
Group 3 2.0 < Tpr ≤ 3.0 0 < Ppr < 3.0 323 Data Points 
Group 4 1.05 ≤ Tpr ≤ 1.2 3.0 ≤ Ppr < 8.0 341 Data Points 
Group 5 1.2 < Tpr ≤ 2.0 3.0 ≤ Ppr < 8.0 1121 Data Points 
Group 6 2.0 < Tpr ≤ 3.0 3.0 ≤ Ppr < 8.0 648 Data Points 

 

  
 

Fig. 1. Digitization of Chart 
 

Fig. 2. Extraction of data 
 

  
 

Fig. 3. Software interface 
 

Fig. 4 (a). Quick analysis with software 
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Table 2. Table of selected correlations 
 

Correlation Name Model Range of Validity 

Azubuike et al. [12,12a] 𝑍 = 0.4326 + 0.2775𝑇𝑃𝑟+ ∝ 𝑃𝑃𝑟 

∝ = 0.04984 − 0.0377𝑇𝑃𝑟 + 0.002971𝑃𝑃𝑟 

1.02 ≤  𝑇𝑃𝑟 ≤ 2.2 

0.1 ≤  𝑃𝑃𝑟 ≤ 20 
Obuba et al. [1] 𝑍 = 6.41824 − 0.013363𝑃𝑃𝑟 − 3.351293𝑇𝑃𝑟 1.26 ≤  𝑇𝑃𝑟 ≤ 1.7805 

0.2 ≤  𝑃𝑃𝑟 ≤ 8 
Azizi et al. [9] 

𝑍 = 𝐴 +  
𝐵 + 𝐶

𝐷 + 𝐸
 

Where A, B, C, D and E are independent equations 

1.1 ≤  𝑇𝑃𝑟 ≤ 2.0 

0.2 ≤  𝑃𝑃𝑟 ≤ 11 

Heidaryan et al. [10] 

𝑍 =  

𝐴1 + 𝐴2 ln(𝑃𝑃𝑟) +  𝐴3(ln 𝑃𝑃𝑟)2 + 𝐴4(ln 𝑃𝑃𝑟)3 + 
𝐴5

𝑇𝑃𝑟
+ 

𝐴6

𝑇𝑃𝑟
2

1 +  𝐴7 ln(𝑃𝑃𝑟) +  𝐴8(ln 𝑃𝑃𝑟)2 + 
𝐴9

𝑇𝑃𝑟
+  

𝐴10

𝑇𝑃𝑟
2

 

Where A1 to A10 are tuned coefficients 

1.2 ≤  𝑇𝑃𝑟 ≤ 3.0 
0.2 ≤  𝑃𝑃𝑟 ≤ 15 

Shell Oil Company 
Z = A + B𝑃𝑃𝑟 + (1 – A)exp(-C) - D(

𝑃𝑃𝑟

10
)

4

 

Where A, B, C and D are independent equations 

Valid for all ranges under 
consideration. 

 
Table 3. Table of tuned coefficients 

 

Group Data Range Tuned Coefficients 

Group 1 1.05 ≤ Tpr ≤ 1.2 
0 < Ppr < 3.0 

𝛽0 = -3.2219972; 𝛽1 = -1.0436231; 𝛽2 = 6.8875605; 𝛽3 = 0.1303664; 
𝛽4 = -2.6676404; 𝛽5 = 0.3795069 

Group 2 1.2 < Tpr ≤ 2.0 
0 < Ppr < 3.0 

𝛽0 = -0.2172753; 𝛽1 = -0.4121281; 𝛽2 = 1.5323799; 𝛽3 = 0.0147404; 

𝛽4 = -0.4684477; 𝛽5 = 0.1828234 
Group 3 2.0 < Tpr ≤ 3.0 

0 < Ppr < 3.0 
𝛽0 = 0.8214235; 𝛽1 = -0.0714658; 𝛽2 = 0.1275471; 𝛽3 = 0.0018574; 
𝛽4 = -0.0224132; 𝛽5 = 0.0241995 

Group 4 1.05 ≤ Tpr ≤ 1.2 
3.0 ≤ Ppr < 8.0 

𝛽0 = -1.0494353; 𝛽1 = 0.3694465; 𝛽2 = 0.7124665; 𝛽3 = 0.0016586; 

𝛽4 = 0.3409197; 𝛽5 =-0.2491262 
Group 5 1.2 < Tpr ≤ 2.0 

3.0 ≤ Ppr < 8.0 
𝛽0 = -0.7952649; 𝛽1 = 0.0838507; 𝛽2 = 1.3059620; 𝛽3 = 0.0061400; 

𝛽4 = -0.1945660; 𝛽5 = -0.0656840 
Group 6 2.0 < Tpr ≤ 3.0 

3.0 ≤ Ppr < 8.0 
𝛽0 = 0.3478762; 𝛽1 = 0.0207613; 𝛽2 = 0.3691067; 𝛽3 = 0.0022844; 
𝛽4 = -0.0480460; 𝛽5 = -0.0092499 
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Fig. 4(b). Flowchart for the software path 
 

  
 

Fig. 5. Line chart of results 
 

Fig. 6. Cross plot of results 

 
Table 4 below presents the statistical error 
analysis and the various statistical parameters 
that were used to compare the performance and 
accuracy of the new model against other existing 
models. The proposed correlation compared 
accurately with a coefficient of determination of 
0.9976 and an adjusted R2 of 0.99759; other 
parameter used are the Mean Absolute Error 
(MAE), Mean Square Error (MSE), Root Mean 
Square Error (RMSE), Mean Absolute Percentage 

Error (MAPE) and Standard Deviation (SD), also 
presented in Table 4. From Table 4, it can be 
observed that Azizi et al. [9] compared accurately 
with the proposed model; however, the proposed 
model surpasses Azizi et al [9] in range of validity 
and applicability, making it more preferred for 
wider range of Tpr beyond the scope of Azizi et al 
[9]. Also, Fig. 7 presents a graphical 
representation of Table 4. 
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Table 4. Statistical error analysis 
 

Correlations MSE MAE RMSE SD R2 MAPE 

Predicted 2.76003E-06 0.001264015 0.001661334 0.03401491 0.997616531 0.012266 
Heidaryan et al. [10] 0.001934514 0.027989445 0.043983108 0.14091319 0.902547189 0.013596 
Shell Oil Company 0.005021933 0.035720902 0.070865597 0.21285195 0.889127208 0.01902 
Azubuike et al. [12,12a] 0.021111358 0.104877575 0.145297482 0.09760843 0.121659469 0.40572 
Obuba et al. [1] 0.608940905 0.664940719 0.780346657 0.73801845 0.011885652 0.22401 
Azizi et al. [9] 3.56759E-05 0.004601185 0.005972933 0.14091403 0.998202674 0.0019332 

 

 
 

Fig. 7. Graphical comparison of statistical parameters 
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Table 5. Case 1 reservoir composition 
 

Components yi 

CO2 0.02 
N2 0.01 
C1 0.85 
C2 0.04 
C3 0.03 
i-C4 0.03 
n-C4 0.02 

 

 
 

Fig. 8. Analysis of case 1 
 

 
 

Fig. 9. Analysis of case 2 

3.1 Case Study 
 
3.1.1 Case 1: sweet gas reservoir 

 
Table 5 below gives the composition of a 
reservoir with an initial reservoir pressure and 
temperature of 3000 psia and 180o F, 
respectively. Calculate the gas reservoir  

 
compressibility under initial reservoir conditions 
[6]. 
 

The reported result is 0.85 [6] solving the same 
problem with the earlier defined accepted models 
gives the results presented in Table 6 and Fig. 8. 
The procedure of the proposed model is 
presented in the appendix. 
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Table 6. Result analysis for case 1 
 

Tpr Ppr  Actual Z Predicted Z Shell Oil Company Heidaryan et al. [10] Azubuike et al. [12,12a] Obuba et al. [1] Azizi et al. [9] 

1.67 4.5 Obtained Value 0.85 0.85111 0.85104 0.82889 0.89715 0.76145 0.859004 
  Accurary 1 0.998694118 0.998776 0.975165 0.944529 0.895824 0.989407 
  MSE 0 1.2321E-06 1.08E-06 0.000446 0.002223 0.007841 8.11E-05 
  MAE 0 0.00111 0.00104 0.02111 0.04715 0.08855 0.009004 
  RMSE 0 0.00111 0.00104 0.02111 0.04715 0.08855 0.009004 
  MAPE 0 0.0013059 0.0012235 0.024835 0.055471 0.10418 0.010593 

 
Table 7. Result analysis for case 2 

 

Tpr Ppr  Actual Z Predicted Z Shell Oil Company Heidaryan et al. [10] Azubuike et al. [12,12a] Obuba et al. [1] Azizi et al. [9] 

1.68 5.55 Obtained Values 0.89 0.8917 0.8854 0.8348 0.9154 0.7139 0.893629 
  Accurary 1 0.998089888 0.994831 0.937978 0.971461 0.802135 0.995922 
  MSE 0 2.89E-06 2.12E-05 0.003047 0.000645 0.031011 1.32E-05 
  MAE 0 0.0017 0.0046 0.0552 0.0254 0.1761 0.003629 
  RMSE 0 0.0017 0.0046 0.0552 0.0254 0.1761 0.003629 
  MAPE 0 0.0019101 0.0051685 0.062022 0.028539 0.19786 0.0040778 
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3.1.2 Case 2: Sour gas reservoir 
 
Calculate the deviation factor of a sour natural 
gas at 3500 psia and 160oF. The compositional 
analysis of the gas shows that it contains 5% 
CO2, 10% H2S and has a specific gravity of 0.7 
[8]. 
 
The reported result is 0.89 [8]. Solving the same 
problem with the various models gives the results 
presented in Table 7 and Fig.9. The procedure of 
the proposed model is presented in the 
appendix. 
 
From the analysis of the various case studies 
[13-50] considered, it can be observed that the 
proposed model gave the most accurate results 
with an outstanding accuracy above 99.8% in 
both scenarios. It should also be noted that Fig. 4 
in the software development section solves the 
first case study with an equivalent performance. 
 

4. CONCLUSION 
 
In this research, a novel explicit correlation and a 
software application for rapid and accurate 
simplification and prediction of natural gas 
compressibility factor were developed. 3972 
digitized data points was extracted from the 
Standing and Katz’s chart for the development of 
the model. Upon evaluation and comparison with 
other existing models for different case studies, 
the proposed correlation and software were 
observed to outperformed other models and 
perfectly mimic the Standing and Katz charts with 
a 99.8% accuracy, an overall correlation 
coefficient of 99.76% and an adjusted R2 of 
99.75%. 
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APPENDIX 
 
Analysis of Solutions to Case Study 
 
Case Study 1 
 
Question: Table 5 gives the composition of a reservoir with an initial reservoir pressure and 
temperature of 3000 psia and 180o F, respectively. Calculate the gas reservoir compressibility under 
initial reservoir conditions [6]. 
 
Analysis of Solution 
 
The reported result is 0.85 [6] 
 

Components yi Tci, oR Tpc = yiTci Pci Ppc = yiPci 

CO2 0.02 547.91 10.96 1071 21.42 
N2 0.01 227.49 2.27 493.1 4.93 
C1 0.85 343.33 291.83 666.4 566.44 
C2 0.04 549.92 22.00 706.50 28.26 
C3 0.03 666.06 19.98 616.40 18.48 
i-C4 0.03 734.46 22.03 527.9 15.84 
n-C4 0.02 765.62 15.31 550.6 11.01 
   Tpc = 383.38  Ppc = 666.38 

 
From the above, Tpc = 383.38 while Ppc = 666.38 
 

Ppr = 
𝑃

𝑃𝑝𝑐
=  

3000

666.38
= 4.50;  Tpr = 

𝑇

𝑇𝑝𝑐
=  

180+460

383.38
= 1.67 

 
From the values of the Ppr and Tpr; it can be observed that the values fall into group 5 (Check Table 
3), thus the tuned coefficients for group 5 are used for the analysis. 
 
Recall that  𝑍 =  𝛽0 +  𝑃𝑃𝑟(𝛽1 + 𝛽3𝑃𝑃𝑟) + 𝑇𝑃𝑟(𝛽2 +  𝛽4𝑇𝑃𝑟) +  𝛽5𝑃𝑃𝑟𝑇𝑃𝑟 
 
And the tunned coefficient for group 5 are; 𝛽0 = -0.7952649; 𝛽1 = 0.0838507; 𝛽2 = 1.3059620; 
 
𝛽3 = 0.0061400; 𝛽4 = -0.1945660; 𝛽5 = -0.0656840 
 
Inserting the Ppr, Tpr and the tuned coefficients into the proposed equation; we have 
Z = -0.7952649 + (4.5*(0.0838507+(0.0061400*4.5))) + (1.67*(1.3059620 + (-0.1945660*1.67))) 
+ (-0.0656840*4.50*1.67) = 0.85111 
 
The predicted natural gas compressibility from the proposed correlation is 0.85111 
 
Case Study 2 
 
Question: Calculate the deviation factor of a sour natural gas at 3500 psia and 160oF. The 
compositional analysis of the gas shows that it contains 5% CO2, 10% H2S and has a specific gravity 
of 0.7 (Tarek, 2001). 
 
Analysis of Solution 
 
Calculating the uncorrected Pseudo-critical properties of the gas from Brown et al. (1948) as 
presented by Standing (1922) in the form of a correlation; the uncorrected Pseudo-critical properties 
are: 
 

Tpc = 168 + 325Ɣ
𝑔
 - 12.5Ɣ

𝑔
2
;   Tpc = 168 + 325 (0.7) - 12.5 (0.7)2 = 389.38°R 
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Ppc = 677 + 15Ɣ
𝑔
 - 37.5Ɣ

𝑔
2
;   Ppc = 677 + 15 (0.7) - 37.5 (0.7)2 = 669.1 psia 

 
Correcting the pseudo-critical properties 
 
A = yH2S + yCO2    A = 0.1+0.05 = 0.15 
B = yH2S     B = 0.10 

 
ɛ = 120 [A0.9 – A1.6] + 15 (B0.5 – B4.0); ɛ = 120 [0.150.9 – 0.151.6] + 15 (0.100.5 – 0.104.0) = 20.735 

𝑇𝑝𝑐
′  = 389.38 – 20.735 = 368.64oR 

 

𝑃𝑝𝑐
′ =  

𝑃𝑝𝑐𝑇𝑝𝑐
′

𝑇𝑝𝑐+𝐵(1−𝐵)𝜀
     𝑃𝑝𝑐

′ =  
669.1∗368.64 

389.38+(0.1(1−0.1)(20.635))
= 630.44 

 

𝑇𝑝𝑟 =  
160+460

368.64
= 1.68    𝑃𝑝𝑟 =  

3500

630.44
= 5.55 

 
This values also fall within group 5, therefore; 
 
Inserting the Ppr, Tpr and the tuned coefficients into the proposed equation; we have 
Z = -0.7952649 + (5.55*(0.0838507+(0.0061400*5.55))) + (1.68*(1.3059620 + (-0.1945660*1.68))) 
+ (-0.0656840*5.55*1.68) = 0.8517 
 
The predicted natural gas compressibility from the proposed correlation is 0.8517 
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