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Abstract

The Burr Type Il distribution attracts special attentionlife testing and reliability analysis as it |is
applied in several areas such as economics and environmetoog @thers. A composite distribution pf
Kumaraswamy and Burr Type Wlistributions, referred to as Kumaraswamy-Burr Typalitribution, is
introduced and studied. It contains some special well-knostrilditions, which are discussed in lifetime
literature, such as the Burr Type lll, exponentiated BupeTill and Kumaraswamy-Burr Type XI
among several others. Some properties of the proposed distmibarte studied including explicit
expressions for the moments, the density functions of the etdgstics, Rényi entropy, quantiles and
moment generating function. The method of maximum likelihoodpislied under Type Il censored
samples for estimating the model parameters, relialsility hazard rate functions. For different values of
sample sizes, Monte Carlo simulation is performed to stigate the precision of the maximum
likelihood estimates.

Keywords: Kumaraswamy distribution; stress-strength; reedrhazard rate function; censored sampling;
maximum likelihood method; asymptotic information matrix.
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1 Introduction

[1] Constructed a distribution with two shape parameters(0, 1) which is known as Kumaraswamy
distribution and denoted by Kum,(b). Its cumulative distribution function (cdf) is defined by

H(y)=H(y;ab)=1-@1-y*)", yO (D), (1)
where a,b > Qare shape parameters.

[1] argued that the beta distribution does not faithfully fittoyogical random variables such as daily
rainfall, daily stream flow, etc. He developed a moreegal probability density function (pdf) for double
bounded random processes. It has simple explicit foenfalathe distribution and quantile functions. This
distribution is applicable to many natural phenomena wbassomes have lower and upper bounds, such as
the heights of individuals, scores obtained on a test, atmasgbmperatures and hydrological dathe
Kum distribution is considered a better alternative to the dedtribution in hydrology and related areas
(see [2,3]).

Burr Type Il distribution attracts special attention siniceincludes several families of nonnormal
distributions (e.g. gamma distribution) and it includes tharacteristics of other distributions such as
logistic and exponential distributions. This distribution hasnbeidely applied in various fields such as
environmental studies, survival and reliability amsé, forestry, economics, meteorology and water
resourcesamong others. It is suitable to fit lifetime data siitckas flexible shape and controllable scale
parameterslits distribution is used to study of income, wages andltiveas it is employed in financial
literature. Its distribution can be used to simulate rendampling from a normal distribution. [5,6] focused
on the distribution in terms of derivation and properties #ed estimation through Bayesian and non-
Bayesian estimation and also Bayesian prediction (s&.[7,

[9] used a composite distribution functidh,as a generated function by composing attdfith another cdf
G. Kumaraswamy-Burr Type Il (Kum-Bl{a, b, ¢, k)) distribution is a composite distribution of Kum
distribution with parameters(b) and Burr Type llc, k) (Burr 111).

[10] proposed the Kumaraswamy generalized distributionn{(¥G) with the following cdf and pdf
respectively

F(x) = H[G(X)] =1-[1-{ G(X)}*]°, Cw< x<o; ab>0, @)

and

f(x;a,b) = abg(x) (G(x)* [1-{ G(X)}*1°, —0< x <o ab>0. (3)

The density family in (3) has many more properties bekten the class of generalized beta distributions
(see [11]), also it has some advantages in termsaoctatiility, since it does not involve any special
functions. The reliability function of the Kum-G distrilbut can be written in closed form, thus the Kum-G
distribution can be used quite effectively even if thedae censored. Recently the composite between Kum
and other distributions have been studied such as the Kum-Wjbjdl2,13] and [14], Kum-log-logistic by
[15], Kum generalized exponentiated Pareto by [16], alssnKBurr Type Xl by [17], Kum modified
Weibull by [18], exponentiated Kum-Dagum by [19] and Kiam by [20].

In particular, ifG has Burr I €, K, with cdf given by

G(x;c,k) = (1 +x)7k, x>0; ¢, k>0, (4
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wherec and k are shape parameters. Then the pdf corresponding tog@fatiows

g(x; ¢, k) = ckx=C*D(1 4 x=¢)~(k+D), x>0; ¢ k>0. (5)
Substituting (4) in (2), the cdf of the Kum-Bllt(b, c, B distributioncan be obtained as follows

F(x;a,b,c,k) =1—(1— (14 x7¢)%)b, x>0; ab,c k>0, (6)
and the pdf corresponding to (6) is given by

f(x; a,b,c,k) = abckx ™D (1 + x¢)~(@+D (1 — (1 4 x~¢)~ek)b-1

x>0; ab,c,k>0. (7)

The Kum-BllII distribution can be obtained as a speciatraodel from the Beta-Burr Il distribution which
was introduced by [21] and exponentiated Kum-Dagum distabwtihich was introduced by [19].
The limiting distribution of the Kum-BlI(a, b, ¢, k) distribution, as the parametetends to infinity, is the
cdf of Kum-I generalized logistic distribution among sel/@taers as special sub-models and the limiting
distribution for the cdf of the Kum-Bll(a, b, ¢, k) distribution, given by (6), as the parameietends to
infinity, is the cdf of the Kum-inverse Weibull distributiamong several others as special sub-models.
The importance of the pdf in (7) is that it containsesabwell-known sub models distributions, such as the
Kum-Burr XIl, Kum-Burr Il, Kum-Weibull, Kum-exponential, KurRayleigh, Kum-Beta I, Kum-Beta II,
Kum-Pareto I, Kum-I generalized logistic, Kum-extrewma&lue, Kum-Gompertz and Kum-F distributions
(see Table 1, in page 10). Clearly, the Burr Il distituts the basic exemplar far= b = 1. Forb =
1, it becomes the exponentiated Burr Il distribution, whigts introduced by [22].

1.1 A general expansion for the density function ahe Kum-BIlII distribution

The cdf given in (6) can be simplified using the binomial exmemsieorem of the last bracket in the right
hand side as shown below

C (b
F(x;a,b,c,k) =1—ab Z(—l)’ ( ) T(x;Q),
j=0 J
x>0;ab,ck>0, (8)
where b > 0 is non-integera is integer and(x;Q) is the Burr 11l cdf in (4) with paramete = (c, akj).

If b > 0isinteger and is integer, then the indgxstops ab.

Similarly the pdf given in (7) can be written as follaw
f(x;a,b,c k) = abck x~(*D Z w;[1+x7¢]7%,
j=0
where s = ak(j + 1) + 1 and w; = (—1)/ (byl), 9)
hence

f(x;§)=ab2j-°=owjg(x;§), x>0; ab,c k>0, (20)
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where

b > 0 is non-integer q is integer ang (x;i) denotes the Burr Il distribution with parameters
§=(cak(j+1)+1).

If b > 1isinteger andis integer then the indgxstops ab - 1.
1.2 Reliability function

The reliability function (rf) for the Kum-BlIlII distribimn is given below:
R1(x;a,b,c,k) = P(X =2 x) = (1 — (1 + x~¢)"2k)b,
x>0; ab,c k>0, (12)
where the limit of rf, a& or a tends to infinity, equals one.
Stress-strength reliability
The stress-strength model is a measure of the reliability component. Considering thétis a random
strength of a component subjected to a random stressomponent fails if the applied stress is greater than

the strength at any time and there is no failure wkes less thanX. Hence the reliabilityR2 is the
probability that the unit is strong enough to overcome the siressan be defined as follows

R2=P(Y <X)= fx f(x) Fp(x)dx

whereFy(x) is a cdf of Y at the point andfy (x) is the pdfX andY are independent, also if X has the Kum-
BIll (al, bl, c, kl)and Y has the Kum-Bllla2, b2, c, k2 as the parametens b andk change but does
not change.

Then

R2= P(Y <X) = ["f(x; al,bl,c k1) F,(x; a2,b2,c, k2)dx, (12)

= [ alblckl x~(E+D(1 4 x=¢) =@ (] — (1 4 x~e)-ark1)bi-1

X [1 — (1 _ (1 + x—c)—aZkZ)bZ] dx

a1b1k1(-)HMr(b1-1)r»2)

_ _\'®© o)
=1-= 1% Xm=0 mill(alk1(m+1)+azk2l) [(b1—m—1)I (b2—1)

: (13)

where I'(.) represents the gamma function.

The stress-strength modeling was studied by many aufbee [23] and [24]].
Hazard and reversed hazardunctions

The hazard rate function (hrf) of the Kum-Blll distributisrgiven by

Fx) _ abckx~(C*D(14x¢)~(@k+1)
R1(x) - 1-(14x—¢)~ak

h(x;a,b,c, k) = , x>0, ab,c k>0, (14)
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and the reversed hazard (rh) rate function, which is ailsavk by the dual of the hazard rate, extends the
concept of the hazard rate to a reverse time directidrisagiven by

£ _ abokx (D49~ @ (1 - (14x=0y-ak) x>0; abck>0  (15)

rh(x;a,b,c, k) = oo =

1.3 Graphical description

— fix
fix hx
-- hix
_______________________
X
a =0.4, b=0.02, c=0.05, k=0.01
Figure 1
— x|
fix.hix ‘
-- hx

a=11,b=1.2,c=1.3,k=1.5

Figure 3

1—(1—(1+x-‘f)—ak)b

— fix
fix . hx ‘
FEN Eie h‘Xj
| A
1 \
] ‘\
! Y
I .
[ \\
p
a=1.1, b=0.9, ¢c=5, k=1.5
Figure 2
— fix
fix.hx
-- hx

a =11, b=0.9, c=0.5, k=1.5

Figure 4

The plots of the probability density and hazard rate funcions

From Figures 1-4, one can observe that the pdf is almost ogregtgroximately symmetric, decreasing and
positive skewed respectively. Theim-Blll distribution is a flexible model since the hrf repents major
hazard shapes: constant, monotone decreasing and positivedskespectivelyor different values of its
parameters. In Figure 1, when the paramédiersandk tend to zero, the hrf is approximately constant such

as the hrf of the exponential distribution.

This paper is outlined as follows: In Section 2, soméssizal properties are studied, such as: quantile
function, skewness and kurtosis, order statistics and afeaistic functions. In Section 3, some limiting
distributions and relations between the Kum-BIIl and otligiributions are presented. Maximum likelihood
estimation based on Type Il censoring scheme is performedthendbserved information matrix is
determined in Section 4. In Section 5, Monte Carlo simuiagacarried out to investigate the precision of
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the maximum likelihood estimates (MLESs) for different valeé parameters and sample sizes. Finally some
concluding remarks are given in Section 6.

2 Some Statistical Properties

In this section, the quantile function, the characterfstiction, thert* central and non-central moments, the
mean, the variance, the skewness, the kurtosis and™thmder statistic of the Kum-Bll{a,b,c, k)
distribution are derived.

* The quantile function, can be obtained as follows:

]—1/0

x=F@ = [[1-[-u? -1, o<u<, (16)

One can easily generateéby takingu as a uniform random variable 60, 1).

Special quantiles can be obtained using (16). For example=il /2, the median of the Kum-Blll
(a,b,c, k) is given by

median= F~1(1/2) = [[1 —[1— o5 - 1]_1/0'

* The characteristic function is

@ (t) = abk X572, w; X3-o (%) B (1 - %,s -1+ %),
c>d, 1+5<s. (17)
wheres andw; are given by (9), B(., .) represents the beta functiof-iD/2 andt € R.
»  Ther®" non-central moments is as follows
w,=Ex") = akaij(l —g,s -1 +£),
j=0

c>r,1+£<s. (18)

The mean and the variance are given respectively by
C 1 1 1
u=akaWjB(1——,s—1+—), c>1,14+-<s,
et c c c
]:

and
V(x) = abk
2
{“ 2 2 < 1 1 }
ZWjB<1——,S—1+—)—abk ZW1B<1——,5—1+—> f
c c c c
[jzo J=0 J
2
c> 2, 1+Z<S'

where s anav; are given by (9).
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The central moments can be obtained using the relationshigdre the central moments and the non-
central moments in (18) as follows:

D (A N VT (19)
The standard moments can be obtained using (19), then
a, =—+=. (20)

Whenr = 3 in (20), then the skewness is given by

3
[2;?';0 ;B3 -3abk £, w;B1 132 o w;B+2(abk)?(252 w;B1 ) ]

a3 3/ ) (21)
1 21°/2
(abk) /Z[Z;';OWjBZ—abk(Z;’;OWjBl) ]
l l l
where B, = B(1——,s—1+—), 1=1,23 and c>3; 1+<s.
[ [ c
Whenr = 4 in (20), then the kurtosis is
0 = [Z;‘;OWjB4—4akaT;OWjBlZ;’;OWjB3+6(akaﬁ0w]-Bl)2Z;’;OWjBZ—3(abk)3(Z;ZOWjBl)4] (22)
4 — )

212
abk[Z;‘;OWsz—abk(Z}’-';ow]-Bl) ]
l l l
where B =B(1-1s—1+1), 1=1234, c>4 1+:<s
Cc [ Cc
sandw; are given by (9).
Rényi entropy

An entropy of a random variablé with the pdff(.) is a measure of variation of the uncertainty and is
denoted byHz(p). The Rényi entropy was introduced by [25]. It is defl by

Hp(p) = ﬁln[fx (fe))Pdx], p>0andp# 1. (23)

Substituting (7) into (23), then the Rényi entropy of Kum-Bdl|b, c, k) distribution is given by

Hi(p) =

P (na+Inb+1Inc+1Ink)
1-p

+ B (-1 (*0 ) (- 1) B, v2), (24)
where vl=p (1 + %) —%ande =ak(p +v) —%(p - 1.

The it" order statistic

Let X3, X5, ..., X,, be independent identically distribution (iid) random Jalea from the Kum-BIII
(a, b, ¢, k) distribution. LetX;, denote the®" order statistic. Then the pdf Bf;) can be written as a linear

combination of Kum-Blll(a, b, ¢, k) density functions. It is well known that the pdfiff order statistic is
given by

hinm (@) = DOf (x))F (x(o)i_l[l —-F (X(o)]n_i' (25)
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substituting the cdf and pdf given by (6) and (7) in (25), @sidg the binomial expansion theorem, then the
pdf of hy.,(x(;)) can be rewritten as follows

hi:n(x(i)) = abkc D(l) sz1,dz.d3)=0 X(i)_a,
x>0, a,bck>0i=1,2,..,n, (26)
where

n! 1

D . —_ n — _
(l)_l(i)_(i—l)!(n—i)!_B(i,n—i—f-l)'

* i-1 o

-3 > S () ()(3),

(dq,d2,d3)=0  d1=0d;=0d3=0
6=cld;+1)+1,z=b(n—i+d,+1)—1andz, =ak(d, +1) + 1.
Special cases:

I.  The pdf of the first order statistic can be obtained;# 1 in (26), as follows

koK

n!
finlet) = gy abke ) x™

(9.91)=0
Xy > 0; a,b,¢,k >0, 27

where

B0 = Zimo Zmo (-7 () (1),
T=c(gy+1)+1,z,=bn—1andz, =ak(g+1) + 1.

II. The pdf of the largest order statistic can be obtainetl=fn in (26), and is given by

ook

n!
funC) = ooy abke ) xw ™
(92.93,93:)=0
Xmy > 0; a,b,c,k>0, (28)
where
=D (U (2)(2)
(92.95.93.)=0  92=0g3=0 g3,=0 gz 7 \gs/ Gz

T, =c(gs, +1)+1,2z,=b(1 +g,) —1andz;, = ak(g; +1) + 1.

[ll.  One can obtain the median observable in the odd caise;fhii in (26), which is given by
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fre <xn_ﬂ>=_n—!ab0k Z Xk ,
>\ () ESnESI &

2 2 (94.95,95+:)=0

x(nTH) >0; a,b,c,k>0, (29)
where
IO I I I [ 4]
(94.95,95:)=0  94=0 gs=0 gs.=0 9o/ N5/ \gs+
T,=c(gs. +1)+1,2,=b ("T“) + g, —1andzs, = ak(gs + 1) + 1.
Remark

All statistical properties of the Burr Type (i¢, k) distribution, which was introduced by [5], can be derived
from Kum-Blll (a, b, c, k) distribution, ifa = b = 1.

3 Some Limiting and Transformed Distributions

Kum-BIIl (a, b, ¢, k) distribution is related through variable transformationa teide range of some other
commonly distributions. In this section, some limitingdaimansformed distributions of the Kum-BllI
(a, b, c, k) distribution are derived.

3.1 Some limiting distributions

The following limiting distributions provide relationships beemeKum-BIll (a, b, c, k) and other well-
known distributions.

[. If X~Kum-Blll (a,b,c, k), then

lim P

c—00

X < exp (x (= C))] =1-[1 - [1 +exp(-2)] P,

—o<x <o abk>0, (30)

which is the limit of the cdf of the Kum-BlIlla, b, ¢, k) distribution, given by (6), as the parameteéends to
infinity, and also is the cdf of a Kum-I generalizedjiktic distribution with parametets b andk. If k=1,
the Kum-logistic distribution can be obtained. Wher= b = 1, the Type | generalized logistidk)(
distribution can be derived. Fbr= 1, it becomes the exponentiated Type | generalized logiiiribution.

Whena = b = k=1, the logistic distribution is given with mean = 0 and vat@an 7T2/3 .

II. If X ~Kum-Blll (a,b,c, k), then

lim P

k—oo

- 1 e 3 e
X_(E) x|=1-[1-exp(—ax9)]",

x>0, a,b,c>0, (31)

which is the limit of the cdf of the Kum-BIlla, b, ¢, k) distribution, given by (6), as the paramekeends to
infinity, which is the cdf of a Kum-inverse Weibull didtution with parameters, b andc. If ¢ =1, the
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Kum-inverse gamma distribution can be obtained. Whenb = 1, the inverse Weibull distribution can be
derived. Forb = 1, the exponentiated inverse Weibull distribution can topgsed. Whe = b = c= 1,
inverse gamma distribution can be obtained.

3.2 Some transformed distributions

Table 1 presents the transformations Xofwhich provide different relationships between Kum-Blll
(a,b,c, k) and other well-known distributions such as Kum-Burr X{Um-Burr |l, Kum-Weibull, Kum-

exponential, Kum-Rayleigh, Kum-Beta |, Kum-Beta lluid-Pareto II, Kum-I generalized logistic, Kum-
extreme value, Kum-Gompertz and Kum-F.

Table 1. Summary of transformations applied to the Kunaraswamy-Burr Type Ill and resulting
distributions

Transformations Distribution pdf Range
X1 Kum-Burr Type Xll(a,b,c,k)  abcky ¢~ [1 + y,¢]~(ak+1D) y1 >0
X [1=[1 4y, o4
cln (X) Kum-Burr Type ll(a, b, k) abk exp(—y,) —0 <y, <
X [1 + exp(—y,)] =@+
X [1 = [1 + exp(=y,)]~*]°*
[In(1 + X~€)]"e Kum-Weibull (a, b, ¢, k) abcky;¢1 y3>0
x [exp(—ky;)]*
x [1 — exp(=ky;)*]""*
In(1+X7°) Kum-exponentidla, b, k) abk[exp(—ky,)]? Yy >0
x [1 — [exp(=ky)]*]"~*
[In(1 + X~)]"2 Kum- Rayleiga, b, 2, k) 2abkys[exp(—kys?)]* ys >0
x [1 — exp(=kys*)*]"*
[1+Xx7¢]1 Kum-Beta Type Kak, b) abkyg ™11 — y *k]b-1 0<ys<1
X-¢ Kum-Beta Type Il(a, b, 1, k) abk[1 + y,](ak+D y; >0
X [1+(1+y,)74et
1+Xx°°¢ Kum-Pareto Type I{a,b,1,k)  abk(yg)~@k+D yg > 1
X [1— (yg)~®]"7*
In(X~°) Kum-Type | generalized- abk exp(—yq) —00 < yg < 00
logistic(a, b, k) X [1 4 exp(—yq)]~(@k+D
X [1—[1+ exp(=yo)]~ ]!
In[In(1 4 X ~¢)k]~1/k Kum-extreme value abk —00 < Y9 < 00
(a,b, k) X [exp[—kyio —a eXp(_ka)bJ]l
X [1 - [exp(exp(—kylo))]_a]
In[1 Kum-GompertZa, b, u, z) . Y11 >0
+1In(1 + X~9)]"/% abz |exp [uy11 + [exp (—a (uy11
a
]
Z
x 1= [exp (= Z fexpCuys,
a1b-1
-o))[]
kX—¢ Kum-F (a, b, 2,2k) V127~ @k+1)
ab[1+32 yiz >0

b-1

x [1 -(1+ %)_uk]

10
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4 Maximum Likelihood Estimation

Suppose thaX(;y < Xy < -+ < X, is a censored sample of size r obtained from a lifedash items
(Type Il censored sample) whose lifetimes have a Kurh{B)b, c, k) distribution. The likelihood function
in this case is given by

L(8]x) = (TL%L)!{H;.:I £ (e OMR Gy O] (32)
whered = (a,b,c,k)’, f(x); 8) andR(x; 0) are given by (7) and (11), respectively.
The natural logarithm af(8]x)is given by

£=InL(8;x) « X1 Inf(x4);8) + (n— 1) InR(xry; 0), (33)

and substituting (7) and (11) in (33) yields

£ « rin(a) + rIn(b) + rin(c) + rIn(k) — CZ ln(x(i))

i=1

—(ak+ 1Y _;In(z)+ (b— DY, In(1 —z7%) + b(n — ) In(1 — z,79), (34)
where
Z; = (1 + X(i)_c),
{Zo = (1 + x(,,)_c) . (35)

The maximum likelihood estimators (MLEs) @éfcan be derived by differentiatirfgin (34) with respect to
a, b, c andk and then setting to zero as given bellow,

ak
~ol_ kz In(z;) + k(b — 1)2 @z )(h_lffs))

(z.~*)(n(z))
+kb(n—r)[ —! (36)
a4 - -
X T ¥y In(l — %) + (n — ) In(1 - 2,7%), 37)

(ak + 1) Z _(xi_c)(?(x(i)))]
i=1 t

e TN
E = E - zl ln(x(i)) +
i=

—(ak+1) c
_ [ak(b _ 1)2 (z )(xl ln(x(l)))

(1 — z;~ak)

@) (" In(x)
(1-z.-K) . ] (38)

—ak b(n—r1) [

11
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and

a(b—1)

ok

9 C (z;“")(ln(zi))]
=——a ) In(z)+ —_—
)

(1 —z79)

—ak
+ab(n—7) [7(2"(1_;(_]222)")) : (39)

The solution of the system of nonlinear Equations (36), (38)2®) can be solved numerically to obtain the
MLEs of the parameters c, k and the MLE ob can be obtained by equating (37) to zero, hence

b= ‘— (40)
where

s; =Y In(1—z7%) + (n — r) In(1 — z,7%).
Remarks:

l. If b=t =9, then from (37) the uniformly minimum variance unbiasethegbr (UMVUE) of 9 is,
9 =22 In( -z~ + (=) In(L -z~ ], (41)
wherez; and z, are defined by (35).

Il. When r = n, all the results obtained for Type Il censored sangiece to those of the complete
sample.

I Considering thak;, X5, ..., X,, is a random sample of sizedrawn from a Kum-BIIl &, b,c, k)

distribution with pdf given by (7). One can obtain a sufficiantd complete statistic for the
parameteb using the exponential family which gs,

s; =2, In[1— (1 + x7¢)7%k], (42)
Maximum likelihood estimators for the reliability and hazard rate functions

Applying the invariance property, the MLEs of the rfidnf are obtained by replacing the parametgbsc
andk in (11) and (14) by their MLEs.

Hence, for a given value af the MLEs ofR (x) andh(x) are given, respectively by

R =(1-(1+ x—f)‘dk)b_l, x>0, (43)
and

R s an (241) _py—(@k+1)
Ax) = abékx™ D (14x )A ) x>0, (44)

1—(1+x—3)_ak

whered, b, ¢ and k are the MLEs ofy, b, ¢ andk.

12
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The asymptotic Fisher information matrix is given by

T=_|-2¢ j = 1,234 (45)
= 26,00, , L] = L1,4,54,

where 6, =a, 6, =b, 65 =c andf, =k and the elements of the information matrix are derived.

The asymptotic variance-covariance matrix of the M&Hs ¢ and k is the inverse of the asymptotic Fisher
information matrix.

For large sample size, the MLEs under regularity comlitiare consistent and asymptotically unbiased as
well as asymptotically normally distributed, hence the gaygtic confidence intervals (ACI) for the MLE is

obtained byP (—Z < y < Z) =1— awhereZis the 10@1 - g)th standard normal percentile. The
OimL
two sided approximat&00(1 — a)% the confidence intervals are as shown below

LLg = By, — Za 6y and ULg = Oy +Za bq,, (46)
2 2

iML
where G5, is the standard deviation afg,, isd, b, ¢ or k respectively.

5 Simulation Study

* In this section, a numerical study is given to illustrateriesults obtained on the basis of generated
data from Kum-Blll @, b, c, k) distribution.

 The computations are performed using Mathematica 9, wNere 1000 is the number of
repetitions, for different sample sizes=20, 50, 100) and the number of survival units are0(90
nand 0.80).

e Tables 2 and 3, in Appendix 1, show the MLEs of the parameteiand hrf where the initial
parameter values are=1.1, b=1.2, c=1.3 andk=1.5 based on two levels of Type Il censoring.
Similarly Tables 5 and 6 display the MLEs of the paramse rf and hrf with the initial parameter
valuesa =0.7,b=0.9,c=1.2 anck=1.4.

* Some measurements of accuracy are used to evaluate theraerde of the estimatoas b, cand
k. Tables 2 and 5 show the variances, bfaaed the estimated risks (ER) of the estimates to study
the precision and the variation of MLEs. Also Tablesnd & present the estimated risks of the
reliability and the hazard rate functions.

e Tables 4 and 7 present the two-sided 95% ACI for the paramefeasd hrf of Kum-Blll
(a, b, ¢, k) distribution. These tables contain the estimates, lowat (LL), upper limit (JL) and
the length of the intervals.

6 Concluding Remarks

« Tables 2 and 5 indicate that the variances, biasrd ER decrease when the sample size n
increases. For all sample sizes Table 2 shows thaERh@) performs better than other estimates.
It is observed that as the level of censoring decrehsegtianceshpias? and ER decrease.

» Tables 3 and 6 show that the ER of rf and hrf decrease \hatifferent values of timg, and the
sample size increase, while the hrf increases when theratitf values of time, and the sample
size increase.

 From Tables 4 and 7, for all different sample size®, can observe that the lengths of the ACI of
the four model parameters, rf and hrf become narrower wiesample size n increases and the
level of censoring decreases. Also the lengthé pkrforms better than other estimates.

13
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» The first and the last remark are expected since deogetd® level of censoring means that more
information is provided by the sample and hence increasesctiuracy of the estimates.
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Appendix 1

Table 2. ML estimates of the parameters, variances, biageand their estimated risks based on Type II
censoring,N=1000,r=0.80 nand 0.90 n a =1.1,b=1.2,c=1.3 andk=1.5

n r Estimates Variance bias? ER
a 0.0409 0.0045 0.0455
16 5 0.2087 0.0136 0.2223
¢ 0.1309 0.0274 0.1583
i 0.0729 0.0031 0.0760
20 a 0.0313 0.0023 0.0336
18 b 0.1554 0.0043 0.1598
¢ 0.0785 0.0212 0.0997
i 0.0556 0.0009 0.0556
a 0.0288 0.0011 0.0299
40 5 0.1589 0.0003 0.1593
¢ 0.0593 0.0313 0.0906
i 0.0512 0.0001 0.0513
50 a 0.0193 0.0001 0.0194
45 5 0.0760 0.0038 0.0799
¢ 0.0398 0.0259 0.0658
i 0.0343 0.0004 0.0347
a 0.0195 0.0000 0.0195
80 5 00836 0.0198 0.1034
¢ 0.0428 0.0432 0.0860
i 0.0347 0.0018 0.0364
100 a 0.0095 0.0001 0.0096
90 5 0.0313 0.0139 0.0453
¢ 0.0255 0.0269 0.0525
i 0.0168 0.0025 0.0193

Table 3. The estimated reliability and hazard rate fundbns at different time t, and different sample

sizes

n r to R(to) ER h(to) ER
16 0.4 0.9048 0.0059 0.4017 0.6572
1 0.6486 0.0166 0.6803 0.1015
20 18 0.4 0.9042 0.0040 0.4487 0.0592
1 0.6445 0.0138 0.6649 0.0717
40 0.4 0.9072 0.0028 0.4299 0.0998
1 0.6592 0.0085 0.6224 0.0266
50 45 0.4 0.9049 0.0019 0.4566 0.0269
1 0.6471 0.0064 0.6283 0.0196
80 0.4 0.9131 0.0015 0.4215 0.0204
1 0.6592 0.0047 0.6059 0.0101
100 90 0.4 0.9063 0.0011 0.4525 0.0137
1 0.6446 0.0031 0.6218 0.0094
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Table 4. Confidence intervals for the parameters, b, c, k rf and hrf based on Type Il censoring at
confidence level 95% at different sample sizes

n r Parameters Estimates UL LL Length
a 1.1671 1.5639 0.7703 0.7936

b 1.3167 2.2121 0.4213 1.7908

16 c 1.4656 2.1747 0.7564 1.4183

k 1.5561 2.0852 1.0270 1.0582

R(t) 0.6486 0.8989 0.3982 0.5008

20 h(t) 0.6803 1.2855 0.0751 1.2104
a 1.147, 1.494: 0.800¢ 0.693¢

b 1.2659 2.0386 0.4932 1.5454

18 c 1.4456 1.9947 0.8965 1.0982

k 1.5302 1.9925 1.0679 0.9246

R(t) 0.6445 0.8733 0.4157 0.4576

h(t) 0.6649 1.1749 0.1548 1.0201

a 1.1329 1.4655 0.8004 0.6649

b 1.1818 1.9633 0.4003 1.5629

40 c 1.4769 1.9544 0.9994 0.9549

k 1.5106 1.9539 1.0673 0.8866

R(t) 0.6592 0.8309 0.4875 0.3434

50 h(t) 0.6224 0.9394 0.3054 0.6341
a 1.109: 1.381¢ 0.837: 0.544:

b 1.1380 1.6785 0.5975 1.0810

45 c 1.4612 1.8522 1.0701 0.7820

k 1.4797 1.8424 1.1169 0.7256

R(b) 0.6471 0.8013 0.4930 0.3082

h(t) 0.6283 0.8979 0.3588 0.5391

a 1.0936 1.3673 0.8199 0.5474

b 1.0594 1.6262 0.4925 1.1338

80 c 1.5078 1.9135 1.1022 0.8113

k 1.4581 1.8230 1.0932 0.7298

R(t) 0.6592 0.7824 0.5360 0.2463

100 h(t) 0.6059 0.8023 0.4096 0.3928
a 1.0878 1.2785 0.8972 0.3813

b 1.0817 1.4283 0.7351 0.6932

90 c 1.4641 1.7774 1.1509 0.6265

k 1.4504 1.7046 1.1962 0.5084

R(t) 0.6446 0.7506 0.5385 0.2121

h(t) 0.6218 0.8081 0.4355 0.3726
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Table 5. ML estimates of the parameters, variances, biaseand their estimated risks based on Type Il
censoring,N=1000,r=0.80 nand 0.90 n a =0.7,b=0.9,c=1.2 andk=1.4

n r estimates variance bias* ER
a 0.0185 0.0318 0.0503
16 b 0.1153 0.0178 0.1331
é 0.0988 0.0030 0.1018
i 0.0391 0.0149 0.0540
20 a 0.0143 0.0278 0.0421
18 b 0.0858 0.0078 0.0934
é 0.0651 0.0033 0.0680
i 0.0303 0.0194 0.0497
a 0.0057 0.0184 0.0241
40 b 0.0454 0.0029 0.0483
é 0.0217 0.0072 0.0289
i 0.0121 0.0341 0.0461
50 a 0.0044 0.0184 0.0228
45 b 0.0315 0.0012 0.0328
¢ 0.0122 0.0043 0.0165
i 0.0093 0.0340 0.0433
a 0.0018 0.0144 0.0162
80 b 0.0191 0.0001 0.0192
¢ 0.0062 0.0087 0.0149
i 0.0038 0.0429 0.0467
100 a 0.0002 0.0140 0.0142
90 b 0.0112 6.0553 1078 0.0112
é 0.0050 0.0057 0.0107
i 0.0040 0.0403 0.0443

Table 6. The estimated reliability and hazard rate fundbns at different time ¢,
and different sample sizes

n r to R(ty) ER h(to) ER
16 0.2 0.8884 0.0081 0.5421 2.1067
0.4 0.7816 0.0095 0.6634 0.1995
20 18 0.2 0.8936 0.0051 0.5962 1.3250
0.4 0.7843 0.0078 0.6710 0.0662
40 0.2 0.8892 0.0023 0.6680 0.3002
0.4 0.7766 0.0037 0.7069 0.0286
50 45 0.2 0.8927 0.0415 0.6648 0.0361
0.4 0.7769 0.0036 0.6975 0.0267
80 0.2 0.8926 0.0009 0.6736 0.0196
0.4 0.7764 0.0019 0.7036 0.0172
100 90 0.2 0.8917 0.0008 0.6743 0.0169
0.4 0.7788 0.0013 0.6891 0.0135
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Table 7. Confidence intervals for the parameters, b, c, k rf and hrf based on Type Il censoring at
confidence level 95% at different sample sizes

n r parameters estimates UL LL Length
a 0.8784 1.1447 0.6120 0.5327

b 1.0335 1.6991 0.3679 1.3311

16 c 1.2549 1.8709 0.6389 1.2319

k 1.2776 1.6651 0.8902 0.7749

R(t) 0.7816 0.9697 0.5936 0.3761

20 h(t) 0.6634 1.5377 0 1.5377
a 0.8668 1.1013 0.6323 0.4689

b 0.9875 1.5616 0.4134 1.1481

18 c 1.2578 1.7577 0.7579 0.9999

k 1.2608 1.6018 0.9198 0.6821

R(t) 0.7843 0.9531 0.6155 0.3376

h(t) 0.6710 1.1745 0.1676 1.0069

a 0.8356 0.9837 0.6875 0.2961

b 0.9536 1.3713 0.5358 0.8354

40 c 1.2849 1.5736 0.9963 0.5773

k 1.2154 1.4308 1.0001 0.4307

R(t) 0.7766 0.8944 0.6587 0.2356

50 h(t) 0.7069 1.0357 0.3783 0.6574
a 0.8357 0.9656 0.7057 0.2599

b 0.9354 1.2835 0.5872 0.6962

45 c 1.2653 1.4818 1.0487 0.4331

k 1.2155 1.4046 1.0265 0.3781

R(t) 0.7769 0.8926 0.6612 0.2313

h(t) 0.6975 1.0173 0.3777 0.6396

a 0.8202 0.9032 0.7371 0.1661

b 0.9101 1.1813 0.6389 0.5423

80 c 1.2934 1.4472 1.1395 0.3078

k 1.1929 1.313 1.0721 0.2416

R(t) 0.7764 0.8607 0.6920 0.1687

100 h(t) 0.7036 0.9583 0.4488 0.5095
a 0.8245 0.9001 0.7370 0.1631

b 0.8998 1.1069 0.6926 0.4144

90 c 1.2756 1.4144 1.1367 0.2777

k 1.1993 1.3237 1.0749 0.2488

R(t) 0.7789 0.8587 0.6988 0.1599

h(t) 0.6891 0.9167 0.4615 0.4553
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Appendix 2

The elements of the information matrix; the second padaivatives of the log-likelihood function, are
given below

__ Z ()1 = 27)z % (kIn(z))* = [z, (k In(2)))?
i=1

| = =__
“9a?  a? [1— 7,92

2

(—)(zn_ak)(kln(zg))z-(1—Zn_ak)—[(zg_ak)(k ln(zg))]
+b(n—r )
(-7 . )

I _62{’_—_r
bb = 5p2 T pz ’

62{) —-Tr a (_)Z,:xi_c ln(X(i))z + (xi_c ln(X(i)))z
le=55=—~- (ak+1)Z1 T ~ -1
i=
- (1—zi‘ak)[(ak(ak+1)zi_(ak+2))(xi_cln(x(i)))2—(akxf"zfmkﬂ)(ln(x(i)))z)]
X {Zizl (1—Zi_ak)2

—(ak+1))? 1-2.=8KY(— (i) (2o~ P+ D) (= (In (¢ ) ))2
) }_ b(n _ ,r) [( ) (1_Z _ak)z( r ( (7’)) )

(akx; = In(x(;))z;
(1-z;-ak)*

+

(ak) (ak+1)z,~(ak+2) (x,-_cln(X(r)))2}+[(ak)(zu_(akﬂ))(xr_cln(X(T)))]Z :

(1-z,-ak)?

’

0%¢ —r

o =512 =32

T _[(1 — z,mk)z,~ak )21 — [,.—ak 312
RPN s e i L) el L)

1=z

—akg ln(za))2 —(1-2,"%)(z,"%(a ln(zg))z)]

+b(n—r) [_(Z"

(1—2‘,—‘”‘)2
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—Cq i
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[1-z7 2]
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Zo
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