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Abstract

In this paper we have constructed Randers, Kropina and Matsumoto space of order-k and
their L-duals respectively, using the concepts of higher order(order k) Riemmanian, Finsler,
Lagrangian structures and Legendre transformation.
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1 Introduction

Finsler space with (α, β)-metric deals with numerous significant metrics. Researchers on different
level have worked upon, providing their beneficial and substantial results in various fields. The
concept of L-duality too have been studied upon and have been worked its wonder ([1], [2], [3], [4]).

*Corresponding author: E-mail: gsp.math.1978@gmail.com

www.sciencedomain.org
http://sciencedomain.org/review-history/13056


Shanker and Singh; BJMCS, 14(2), 1-11, 2016; Article no.BJMCS.23644

In ([5], [6]), one can see the L-duals of Randers and Kropina metric which are quite efficient and
interesting. In [7], L-dual of very famous Matsumoto metric has been determined. The L-duality of
Finsler and Lagrange spaces have been brought into by R. Miron[8] and researched on large scale
by other authors. The importance of L-duality is to most extent limited for computing the dual
of some Finsler fundamental functions as some of the geometrical problems of (α, β)-metrics are
getting resolved by considering not the metric itself, but its dual.

The concept of higher order(order k) Riemmanian, Finsler, Lagrangian structures were introduced
by R. Miron([9], [10], [11]). In the present paper the L-duals of higher order(order k) Randers,
Kropina and Matsumoto metric, using the definitions of higher order (α, β)-metrics and the legendre
mapping, has been constructed and proved that basically their L-duals are infact the first order
(α, β)-metrics.

2 Higher Order Spaces

The notion of autonomous and non-autonomous Lagrangians and Hamiltonians have been well
defined, but in order to describe Lagrange space and Hamilton space of order k it is advisable
for us to study the autonomous Lagrangians and Hamiltonians because the concepts of higher
order (order k) spaces are the geometrical ones. These geometries can be determined over the
differentiable manifolds T kM and T ∗kM , respectively. Thus we will make them as the base of our
work. It’s been proved that the geometries dealing with higher order Lagrange space and Hamilton
space are dual and this duality is obtained via a Legendre transformation [12].

Therefore to work upon the L-duality of Finsler spaces of order k we firstly have to introduce
Lagrange, Hamilton and Cartan spaces of order k.

Definition 2.1. [13]The mapping L : T kM → R is considered as the Lagrangian of order k,
(k ∈ N), where L = L(x, y(1), ..., y(k)) is a real valued function on T kM , i.e., with change of local
coordinates on T kM , we have L(x̃, ỹ(1), ..., ỹ(k)) = L(x, y(1), ..., y(k))

A differentiable Lagrange space of order k is of C∞-class on T kM , plus it is continuous on the
null section of the projection πk : T kM → M .

Consider a Lagrange space of order k a pair L(k)n = (M,L), where M is a real n-dimensional
manifold and L : (x, y(1), ..., y(k)) ∈ T kM → L(x, y(1), ..., y(k)) ∈ R is a differentiable Lagrangian of
order k, for which the Hessian with the entries

gij(x, y
(1), ...y(k)) =

1

2

∂2L

∂y(k)i∂y(k)j
,

has the property
rank ∥ gij ∥= n

Remark: [12] The pair L(k)n = (M,F 2(x, y(1), ..., y(k))) is a Lagrange space of order k. Conversely,
if L(k)n = (M,L(x, y(1), ..., y(k))) is a Lagrange space of order k, having the fundamental function
L positively, 2k-homogeneous and the fundamental tensor gij positively defined, then the pair
F (k)n = (M,

√
L) is a Finsler space of order k.

Definition 2.2. A Hamilton space of order k, is the pair defined as

H(k)n = (M,H(x, y(1), ..., y(k−1), p))

consisting of real n-dimensional manifold M and a regular Hamiltonian function H : T ∗kM → R
defined on the manifold T ∗kM .
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We consider the defined Hamilton space as differentiable Hamiltonian whose Hessian with respect
to the momenta pi, with the entries:

gij(x, y(1), ..., y(k−1), p) =
1

2

∂2H

∂pi∂pj

is nondegenerate on T ∗kM , with its regularity condition expressed by

rank ||gij || = n, on T ∗kM.

As a matter of fact gij here is symmetric, contravariant of order 2 and a d-tensor field.

If the base manifold M is paracompact, then the manifold T ∗kM is paracompact too, and on T ∗kM
there exist regular Hamiltonians. Now we look upon the Cartan space,

Definition 2.3. The Cartan space of order k is a pair

C(k)n = (M,K(x, y(1), ..., y(k−1), p))

for which the following axioms hold:

1. K is a real function differentiable on the manifold T ∗kM and continuous on the null section of
the projection π∗k : T ∗kM → M .
2. K > 0 on T ∗kM .
3. K is positively k-homogeneous on the fibres of bundle T ∗kM , i.e.

K(x, ay(1), ..., a(k−1)y(k−1), akp) = akK(x, y(1), ..., y(k1), p), ∀a ∈ R+.

4. The Hessian of K2, with respect to the momenta pi, having the elements

gij(x, y(1), ..., y(k−1), p) =
1

2

∂2K2

∂pipj

is positively defined.

3 Legendre Transformation

Consider the Lagrange space of order k, L(k)n = (M,L(x, y(1), ..., y(k))) which determines a local
diffeomorphism φ : T kM → T ∗kM preserving the fibres. We have the following:

Proposition 3.1. [12] The mapping φ : u = (y(0), y(1), ..., y(k)) ∈ T kM → u∗ = (x, y(1), ..., y(k−1), p) ∈
T ∗kM given by

xi = y(0)i, y(1)i = y(1)i, ..., y(k−1)i = y(k−1)i,

pi =
1

2

∂L

∂y(k)i
(3.1)

is a local diffeomorphism, which preserves the fibres.

Proof. The mapping φ is differentiable on the manifold T kM and its Jacobian has the determinant
equal to det ||aij || ̸= 0. Of course, πk(y(0), ..., y(k)) = π∗koφ(y(0), ..., y(k)) = y(0).

The diffeomorphism φ is called the Legendre mapping (or Legendre transformation).
We denote

pi =
1

2

∂L

∂y(k)i
= φi(y

(0), y(1), ..., y(k)) (3.2)
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Clearly, φi is a d-covector field on T kM .

The local inverse diffeomorphism ξ = φ−1 : T ∗kM → T kM is expressed by

y(0)i = xi, y(1)i = y(1)i, ..., y(k−1)i = y(k−1)i, (3.3)

y(k)i = ξi(x, y(1), ..., y(k−1), p). (3.4)

With respect to a change of local coordinates on the manifold T kM , ξi is transformed exactly as
the variables y(k)i.

The mappings φ and ξ satisfy the conditions

ξoφ = IÛ , φoξ = IǓ , Û = (π∗k)−1(U), Ǔ = (πk)−1(U), (U ∈ M)

Therefore we have the following identities

aij(y
(o), ..., y(k)) =

∂φi

∂y(k)j
;

aij(x, y(1), ..., y(k−1), ξ(x, y(1), ..., y(k−1), p)) =
∂ξi

∂pj
(3.5)

and

∂φi

∂xj
= −ais

∂ξs

∂xj
;

∂φi

∂y(α)j
= −ais

∂ξs

∂y(α)j
, (α = 1, ..., k − 1);

∂φi

∂y(k)j
= aij ; (3.6)

∂ξi

∂xj
= −ais ∂φs

∂xj
;

∂ξi

∂y(α)j
= −ais ∂φs

∂y(α)j
, (α = 1, ..., k − 1);

∂ξi

∂pj
= aij (3.7)

Further, to achieve our results we shall use the following theorem:

Theorem 3.1. [12] The Hamiltonian function

H(x, y(1), ..., y(k−1), p) = 2piž
(k)i − L(x, y(1), ..., y(k−1), ξ(x, y(1), ..., y(k−1), p)), (3.8)

is the fundamental function of a Hamilton space of order k, H(k)n and its fundamental tensor field
is

gij(x, y(1), ..., y(k−1), p) = aij(x, y(1), ..., y(k−1), ξ(x, y(1), ..., y(k−1), p)),

aij being the fundamental tensor field of the Lagrange space of order k, L(k)n = (M,L).

Proof. From (3.8) we have,

1

2

∂H

∂pj
= ž(k)j + pm

∂ž(k)m

∂pj
− 1

2

∂L

∂y(k)m

∂ξ(k)m

∂pj

= ž(k)j + pm
∂ž(k)m

∂pj
− pm

∂ž(k)m

∂pj
= ž(k)j (3.9)

Consequently,

gij(x, y(1), ..., y(k−1), p) =
1

2

∂2H

∂pi∂pj
=

1

2

∂ž(k)j

∂pi
=

1

2

∂ξ(k)j

∂pi

= aij(x, y(1), ..., y(k−1), ξ) (3.10)
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From the above statement it is clear that we have a regular Hamiltonian H with gij as its
fundamental tensor having a constant signature on the manifold T ∗kM . The Hamilton space of
order k, H(k)n = (M,H) is called the dual of the Lagrange space of order k, L(k)n = (M,L).

In this way for Cartan and Finsler space of order k, let F 2 = ξ∗(K2) be the Lagrangian, where the
mapping ξ∗ is a local diffeomorphism which preserves the fibres of T ∗kM and T kM ,

F 2(x, y(1), ..., y(k)) = 2piz
(k)i(x, y(1), ..., y(k−1), ξ∗)−K2(x, y(1), ..., y(k−1), φ∗) (3.11)

where φ∗ is the local inverse of ξ∗, from which we state that

The pair (M,F ), with F from (3.11), has the properties:

1. It is a Finsler space, having the fundamental function F 2, 2k -homogeneous on the fibres of
T kM .
2. Its fundamental tensor field is given by

aij(u) = gij(x, y
(1), ..., y(k1), φ∗(u))

So, the space (M,F ) is called the Finsler space of order k dual to the Cartan space of order k,
C(k)n = (M,K).

4 The L-dual of an (α, β) Finsler Space of Higher Order

In this section the idea and assumption taken at the beginning of this research paper have been
proved, in form of theorems.

a. The L -dual of Randers space of order-k

We consider F (k)n = (M,F ) to be Randers space of order-k, where F = α+ β is a Randers metric,
in which α2 = aijz

(k)n and β = bi(x)z
(k)n. Then, we have the following:

Theorem 4.1. Let (M,F ) be a Randers space of order-k and b =
√

aijbibj the Riemmanian length
of bi.Then:

1. If b2 = 1, the L-dual of (M,F ) is a Kropina space on T ∗M with:

H(x, p) =
1

2

(
aijbibj
2bipi

)2

(4.1)

2. If b2 ̸= 1, the L-dual of (M,F ) is a Randers space on T ∗M with:

H(x, p) =
1

2
(
√

(āijpipj ± b̄ipi)
2 (4.2)

where

āij =
1

(1− b2)
aij +

1

(1− b2)2
bibj ; b̄

i =
1

(1− b2)
bi

(in(4.2) ′−′ corresponds to b2 < 1 and ′+′ corresponds to b2 > 1).

Proof. We put α2 = yiy
i, bi = aijbj , β = biy

i, β∗ = bipi, p
i = aijpj , α

∗2 = pip
j = aijpipj .We have,

F = α+ β, pi =
1

2

∂F 2

∂y(k)i
= F (

aijz
(k)j

α
+ bi) (4.3)

5



Shanker and Singh; BJMCS, 14(2), 1-11, 2016; Article no.BJMCS.23644

Contracting (4.3) by pi and bi, we get

α∗2 = F (
F 2

α
+ β∗)

and β∗ = F (
β

α
+ b2)

Hence

α∗2 = F (
F 2

α
+ β∗) and β∗ = F (

β

α
+ b2) (4.4)

Therefore from above equations, we have

β∗ = F (
F

α
+ b2 − 1) (4.5)

Now we will define two cases: Case (1). If b2 = 1, from (4.5) we obtain,

β∗ =
F 2

α
(4.6)

On substituting (4.6) in the first equation of (4.4) we get,

α∗2 = F (2β)

which implies

F (x, p) =
α∗2

2β∗ =
aijpipj
2bipi

and we know that H = 1
2
F 2, thus giving (4.1).

Case (2). If b2 ̸= 1 , from (4.5) and (4.6) we have,

1

F
α∗2 =

(
F 2

α
+ β∗

)
and β∗ =

F 2

α
+ F (b2 − 1)

and by substitution,

β∗

(1− b2)
− α∗2

F (1− b2)
= −(F +

β∗

1− b2
)

which implies,

F =
β∗

b2 − 1
±
√

(
β∗

1− b2
)2 +

α∗2

1− b2

⇒F =
1

b2 − 1
bipi ±

√(
1

(1− b2)2
bibj +

1

(1− b2)
aij

)
pipj

We know that H = 1
2
F 2. Hence we get equation(4.2), thus proving our required result.

b. The L-dual of a Kropina space of order-k

We consider F (k)n = (M,F ) to be Kropina space of order-k, where F =
α2

β
is a Kropina metric, in

which α and β have their usual meaning as defined earlier. Then, we have the following:

6
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Theorem 4.2. Let (M,F ) be a Kropina space of order-k and b =
√

aijbibj the Riemmanian length
of bi. Then:

1. If b2 = 1, the L-dual of (M,F ) is a Randers space on T ∗M with the Hamiltonian function:

H(x, p) =
1

2
(b̄ipi)

2 (4.7)

2. If b2 ̸= 1, The L-dual of (M,F ) is a Randers space on T ∗M with the Hamiltonian:

H(x, p) =
1

2
(
√

āijpipj ± b̄ipi)
2 (4.8)

where

āij =
b2

4
aij ; b̄i =

1

2
bi

(Here ’-’ corresponds to β < 0 and ’+’ corresponds to β > 0 ).

Proof. We use same notations as in the proof of previous theorem, we have F = α2

β
then

pi =
1

2

∂F 2

∂y(k)i
= F

(
2βα yi

α
− α2bi

β2

)

pi =
F

β
(2aijz

(k)j − Fbi) (4.9)

Contracting above equation with pi and bi, we get

α∗2 =
F 2

β
(2F − β∗) (4.10)

and

β∗ =
F

β
(2β − Fb2) (4.11)

From here we conclude two cases:

Case (1). If b2 = 1 then from (4.11) we get,

F =
β∗

2

or

F =
bipi
2

and we know that H = 1
2
F 2, thus getting equation (4.7).

Case (2). If b2 ̸= 1 then on multiplying both sides of equation (4.10) by b2, we get,

α∗2b2 =
F 2

β
(2F − β∗)b2

⇒ F =
1

2
(β∗ ± α∗b) = (b̄ipi ± b

√
āijpipj)

where

āij =
b2

4
aij , b̄i =

1

2
bi

and we know that H = 1
2
F 2, thus giving equation (4.8), and proving our theorem.

7
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c. The L-dual of a Matsumoto space of order-k

We consider F (k)n = (M,F ) to be Matsumoto space of order-k, where F =
α2

α− β
is a Matsumoto

metric, in which α and β have their usual meaning as defined earlier. Then, we have the following:

Theorem 4.3. Let (M,F ) be Matsumoto space of order k and b = (aijb
ibj)

1
2 the Riemannian

length of bi. Then

1. If b2 = 1, the L-dual of (M,F ) is the space having the fundamental function:

H(x, p) =
1

2

−β∗

2

(
3
√
α∗2 + 3

√
(β∗ +

√
β∗2 − α∗2)2

)3

α∗2 + (β∗2 +
√

β∗2 − α∗2)2


2

, (4.12)

with α∗ =
√

ãij(x)pipj and β∗ = bipi where ãij = bibj − aij .

2. If b2 ̸= 1, the L-dual of (M,F ) is the space on T ∗M having the fundamental function:

H(x, p) =
1

2

 β∗

16α∗2

(−3α∗2 +
√

(9 + 8m)α∗4 − 8α∗2
√

mα∗2β∗2)√
mα∗2β∗2

 (4.13)

with 1− b2 = m , α∗ =
√

ãij(x)pipj and β∗ = bipi where ãij = bibj − aij .

Proof. We will prove this theorem using same notations. Here we have,

F =
α2

α− β

and

pi =
1

2

∂̇F 2

∂y(k)i
= F

[
2aijz

(k)j

(α− β)
+

α2bi − βaijz
(k)j

(α− β)2

]
(4.14)

Contracting (4.14) by pi and bi

α∗2 = pip
i =

F

(α− β)2

[
aijz

(k)jpi(α− 2β) + α2bipi
]

=
F

(α− β)2
[F 2(α− 2β) + α2β∗]

and

β∗ = pib
i =

F

(α− β)2

[
aijz

(k)jbi(α− 2β) + α2b2
]

=
F

(α− β)2
[
(α− 2β) + α2b2

]

Hence we get,

α∗2 =
F

(α− β)2
[F 2(α− 2β) + α2β∗] (4.15)

and

β∗ =
F

(α− β)2
[
(α− 2β) + α2b2

]
(4.16)

8
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In [14],for a Finsler (α, β)-metric F on a manifold M , there is a positive function ϕ = ϕ(s) on
(−b0, b0) with ϕ(0) = 1 and F = αϕ(s), s = β

α
, where α =

√
aijyiyj and β = biy

i with ||β||x <

b0,∀x ∈ M ,ϕ satisfies ϕ(s)− sϕ
′
(s) + (b2 − s2)ϕ

′′
(s) > 0, (|s| ≤ b0).

A Matsumoto metric is a special (α, β)-metric with ϕ = 1
1−s

.

Using Shen’s [14] notation s = β
α

above equations become:

α∗2 = F 2 1− 2s

(1− s)3
+ F

1

(1− s)2
β∗ (4.17)

β∗ = Fs
1− 2s

(1− s)2
+ F

1

(1− s)2
b2 (4.18)

Now we put 1− s = t, so s = 1− t and both equations become:

α∗2 = F 2

(
2t− 1

t3

)
+ F

1

t2
β∗ (4.19)

β∗ = F (1− t)

(
2t− 1

t2

)
+ F

1

t2
b2 (4.20)

Now from (4.20) we have,
β∗t2 = F (−2t2 + 3t+ b2 − 1)F (4.21)

From here we get two cases: Case (1). For b2 = 1 from (4.21) we get,

F = − β∗t

2t− 3
(4.22)

On substituting value of F from (4.22) in (4.19) we get,

α∗2 =

(
− β∗t

2t− 3

)
.
2t− 1

t3
+

(
−β∗t

2t− 3

)
.
1

t2
.β∗

⇒ t3−3t2 +
9

4
t− β∗2

2α∗2 = 0

Using Cardano’s method for solving above cubic equation, we have,

t = 1 + P +Q

where

P =

(
1

2

)
Z

2
3 , Z :=

[β∗ + (β∗2 − α∗2)
1
2 ]

α
(4.23)

Q =

(
1

2

)
W

2
3 , W :=

[β∗ − (β∗2 − α∗2)
1
2 ]

α
(4.24)

We assume (β∗2 − α∗2) is positive and β∗ is positive, and W = 1
Z
, we obtain,

F =
−β∗t

2t− 1
= −β∗ (1 + P +Q)

2 + 2P + 2Q− 3
(4.25)

On putting values of P and Q in (4.25) we get,

F = −β∗

2

(Z
2
3 + 1)3

(Z
2
3 − 1)3

(4.26)

On substituting value of Z from (4.23) we have (4.12).

9
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Case (2). If b2 ̸= 1 (4.21) gives

F =
β∗t2

−2t2 + 3t+ b2 − 1
, (4.27)

and putting this in (4.19) we get,

α∗2 =

(
β∗t2

−2t2 + 3t+ b2 − 1

)2 (
2t− 1

t3

)
+

β∗t2

−2t2 + 3t+ b2 − 1

1

t2
β∗

⇒ t4 − 3t3 + t2
13− 4b2

4
+ t

6α∗2(b2 − 1)− 2β∗2

4α∗2 +
α∗2(b2 − 1) + β∗2(1− b2)

4α∗2 = 0 (4.28)

which is a biquadratic equation, providing four roots of t given by:

t1 =
3

4
− 1

2
λ− 1

2

√
µ− η

4λ

t2 =
3

4
− 1

2
λ+

1

2

√
µ− η

4λ

t3 =
3

4
+

1

2
λ− 1

2

√
µ+

η

4λ

t4 =
3

4
+

1

2
λ+

1

2

√
µ+

η

4λ

where

λ =

√
9

4
+

1

4
(−13 + 4b2)− −13α∗2 + 4b2α∗2

12α∗2 − p

(6× 21/3)q1/3
− 1

(12× 21/3)q1/3
,

p = −95α∗2 + 160b2α∗2 + 16b4α∗2 − 24β∗2 − 48b2β∗2,

q = (2(−13α∗2 + 4b2α∗2)3 + 216α∗2(−13α∗2 + 4b2α∗2)(−3α∗2 + 3b2α∗2 − β∗2)− 432α∗2(−3α∗2 + 3b2α∗2

− β∗2) + 3888α∗4(α∗2 − b2α∗2 − β∗2 + b2β∗2) + 288α∗2(−13α∗2 + 4b2α∗2)(α∗2 − b2α∗2 − β∗2 + b2β∗2)

+ (−4(−95α∗4 + 160b2α∗4 + 16b4α∗4 − 24α∗2β∗2 − 48b2α∗2β∗2)3 + (2(−13α∗2 + 4b2α∗2)3

+ 216α∗2(−13α∗2 + 4b2α∗2)(−3α∗2 + 3b2α∗2 − β∗2)− 432α∗2(−3α∗2 + 3b2α∗2 − β∗2)2

+ 3888α∗4(α∗2 − b2α∗2 − β∗2 + b2β∗2) + 288α∗2(−13α∗2 + 4b2α∗2)(α∗2 − b2α∗2 − β∗2 + b2β∗2))2)1/2)

µ =

√
9

2
+

1

4
(−13 + 4b2) +

−13α∗2 + 4b2α∗2

12α∗2 +
p

(6× 21/3)q1/3
+

1

(12× 21/3)q1/3
,

η = 27− 3(13− 4b2)− 4(−3α∗2 + 3b2α∗2 − β∗2)

α∗2 .

On using software Wolfram Mathematica 8.0 and equation (4.28) we get our desired equation (4.13).
Thus proving our required result.

Conclusion

Thus its been concluded that with the help of Legendre transformation, Lagrange space, Hamilton
space and Cartan space of higher order and using defined Randers, Kropina and Matsumoto metric,
we have constructed the L-duals of these metrics in order-k respectively.
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