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Abstract

Pulsar timing array (PTA) searches for a gravitational-wave background (GWB) typically include time-correlated
“red” noise models intrinsic to each pulsar. Using a simple simulated PTA data set with an injected GWB signal we
show that the details of the red noise models used, including the choice of amplitude priors and even which pulsars
have red noise, have a striking impact on the GWB statistics, including both upper limits and estimates of the GWB
amplitude. We find that the standard use of uniform priors on the red noise amplitude leads to 95% upper limits, as
calculated from one-sided Bayesian credible intervals, that are less than the injected GWB amplitude 50% of the
time. In addition, amplitude estimates of the GWB are systematically lower than the injected value by 10%–40%,
depending on which models and priors are chosen for the intrinsic red noise. We tally the effects of model and prior
choice and demonstrate how a “dropout” model, which allows flexible use of red noise models in a Bayesian
approach, can improve GWB estimates throughout.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Gravitational wave astronomy (675);
Gravitational wave detectors (676); Bayesian statistics (1900); Prior distribution (1927); Posterior distribution
(1926); Astrostatistics strategies (1885); Pulsar timing method (1305); Red noise (1956); Time series analysis
(1916); Millisecond pulsars (1062)

1. Introduction

Pulsar timing arrays (PTAs) are sensitive to gravitational
waves (GWs) in the nanohertz frequency band (Sazhin 1978;
Detweiler 1979; Foster & Backer 1990). The most promising
GW sources in that band are supermassive binary black holes
(SMBBHs) that are formed via mergers of massive galaxies
(Rosado et al. 2015). Orbiting SMBBHs can produce a stochastic
gravitational-wave background (GWB), individual periodic
signals, and transient GW bursts (Burke-Spolaor et al. 2018).
The GWB from SMBBHs manifests in pulsar timing data as a
stochastic signal that is correlated both temporally and spatially
between pulsars (Hellings & Downs 1983; Phinney 2001; Jaffe
& Backer 2003). The spatial correlations are defined by the
overlap reduction function known as the Hellings–Downs
curve(Hellings & Downs 1983), and the temporal correlations
follow a steep power-law spectrum(Phinney 2001; Jaffe &
Backer 2003)—i.e., the GWB is a spatially correlated “red” noise
process in pulsar timing data. The spatial correlations are a direct
consequence of general relativity, originating from the quad-
rupolar nature of GWs.

However, there are also a number of potential non-GW
sources of temporal correlations (red noise processes) in pulsar
timing data. Intrinsic spin noise exists in many canonical
pulsars(Cordes & Downs 1985) and at a lower level in
millisecond pulsars(Cordes 2013). Clock errors and solar
system ephemeris errors can manifest as spatially correlated
sources of red noise(Champion et al. 2010; Tiburzi et al.
2016). Finally, unmodeled trends in radio-dependent propaga-
tion delays, e.g., dispersion and scattering due to the interstellar
medium, will also produce red noise in pulsar timing data
(Cordes & Shannon 2010). Since the stochastic GWB is
modeled as a red noise process with a steep spectral index,

unmodeled or mismodeled noise in pulsars can have an
impact on GWB detection statistics and parameter estimation
(Hazboun et al. 2020). It is therefore imperative to accurately
model the noise in individual pulsars so that it does not
contaminate the GWB signal.
As PTA data sets have matured and reached astrophysically

interesting levels of sensitivity, 95% upper limits (ULs) on
the amplitude of the GWB, AGWB

95% , have been the flagship
statistic quoted by PTA collaborations (Shannon et al. 2015;
Arzoumanian et al. 2016, 2018a; Lentati et al. 2016). These
ULs have been used to constrain model parameters for
SMBBH populations (Arzoumanian et al. 2016; Simon &
Burke-Spolaor 2016), such as theM–Mbulge relationship between
SMBHs to their host galaxies, and to calculate the evidence
for various SMBBH population models (Shannon et al. 2015;
Sesana et al. 2018). The standard AGWB

95% quoted is the one-sided
credible interval of a Bayesian analysis and is therefore subject
to the choice of the signal+noise models, including the choice of
prior probability distributions for the parameters associated with
these models.

1.1. Statement of the Problem

In this Letter, we systematically investigate how the choice
of different signal+noise models, including the choice of
priors, affects the estimates and ULs of the GWB returned by
PTA analyses. We shall see that of utmost importance is the
choice of noise model for the individual pulsars,6 as steep red
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6 As another pertinent example of the interplay of noise models and GWs, the
development of the ECORR noise parameter (Arzoumanian et al. 2014) was in
response to spurious single-source GW detections at frequencies higher than
1 yr−1 caused by noise correlated across frequencies on intraday timescales.
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noise in one or several pulsars can masquerade as red noise in
the GWB, potentially leading to a bias in the conditional
median estimate of the amplitude of the background, AGWB, or
its UL, AGWB

95% . Not surprisingly, a marginally significant GWB
can be absorbed by red noise models for individual pulsars
across the PTA, reducing the estimated amplitude of the GWB.
It is also possible for models that do not accurately model the
pulsar noise to lead to spurious increases in the estimated GWB
amplitude. As shown in Hazboun et al. (2020), the significance
of the detection of a GWB signal is strongly affected by which
red noise models are chosen for each pulsar.

Over the years the above considerations regarding red noise
led the PTA community to adopt a conservative approach that
includes a red noise model for every pulsar in the array
(Yardley et al. 2011; Demorest et al. 2013; Lentati et al. 2015;
Arzoumanian et al. 2016, 2018a; Lentati et al. 2016). An
obvious alternative to this approach is to not model intrinsic
pulsar red noise at all, which would effectively attribute any
observed red noise to the GWB. This approach is arguably
more conservative than the standard approach, since it results
in the largest ULs on the GWB amplitude. A third choice is to
allow a Bayesian analysis to choose which pulsars should
include intrinsic red noise models—i.e., letting the data decide
whether a red noise model for a particular pulsar is preferred to
a white-noise-only model in a search for the GWB. There are a
number of possibilities for implementing this more flexible
pulsar noise model, including transdimensional models (Ellis &
Cornish 2016), hierarchical modeling (Gelman & Hill 2007),
and product space methods (Carlin & Chib 1995; Godsill 2001;
Hee et al. 2015; Taylor et al. 2020). But for the analyses that
we perform in this Letter, we adopt a dropout method
(Aggarwal et al. 2019; discussed in more detail in
Section 2.1) to decide which pulsars should be assigned red
noise. As we shall see below, a pulsar red noise model that
utilizes the dropout method, and allows the data to decide
whether or not to include intrinsic red noise in each pulsar,
gives results that most robustly and accurately return the
injected AGWB.

1.2. Outline of the Letter

To compare the effects of different pulsar noise models on
the statistics of the GWB, we analyze 400 realizations of
simulated PTA data consisting of a GWB signal injected into
white timing noise (WN). Details of the simulations, signal
+noise models, and data analysis methods used are discussed
in detail in Section 2. We allow for different priors for both the
amplitude of the GWB and the red noise of the individual
pulsars, as well as whether or not a red noise model for a
particular pulsar should be included, i.e., the dropout method.
The results are described in Section 3 for both GWB parameter
estimation (Section 3.1) and 95% UL calculations (Section 3.2).
It turns out that the choice of the individual red noise models has
a surprisingly strong effect, especially in the case of UL analyses.
We consider more realistic simulations in Section 4, where we
inject red timing noise for a handful of pulsars, and show that the
dropout method can also handle this more realistic scenario
without any problems. Finally, in Section 5, we reanalyze the
NANOGrav 11 yr data set using the dropout method, obtaining a
revised 95% UL, = ´ -A 3.0 10GWB

95% 15. This is more than twice
as large as the value reported in Arzoumanian et al. (2018a).

2. Simulated Data and Signal+Noise Models

To investigate the effect of different models and priors for
the intrinsic red noise in pulsars, we performed a number of
simulations and analyses. The software libstempo (Vallis-
neri 2020) is used to simulate 400 realizations of a GWB with
amplitude AGWB=1.4×10−15 in WN at a level of 1 μs for a
simple PTA data set based on the pulsars in the IPTA’s second
mock data challenge (Hazboun et al. 2018). The WN is
simulated using the time of arrival (TOA) errors, identical in
amplitude for all pulsars. (Pulse TOAs are the fiducial data
used in PTA analyses.) The amplitude of the WN is treated as a
known quantity for all of the analyses. We then compare the
results of the different models and priors to the results of a
model that incorporates only what we know to be in the
simulated data: a red GWB signal plus WN.
The construction of the likelihood and analysis methods

match exactly those used in recent PTA data analysis work
such as Arzoumanian et al. (2018b) and developed over the
past decade in the literature (Ellis et al. 2013; Taylor et al.
2013, 2017; Arzoumanian et al. 2014, 2016; van Haasteren &
Vallisneri 2014). Therefore, we do not describe the analysis
methods in detail here except to note a few features connected
to the signal+noise models relevant to this work.
The GWB is modeled as a Gaussian process (Williams &

Rasmussen 2006) in the Fourier domain (van Haasteren &
Vallisneri 2014; Lentati et al. 2016) with a power spectral
density given by a power law. The main results quoted from
searches for the GWB assume a fixed spectral index γ=13/3
for the induced timing residuals:
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where fyr≡1 yr−1 is a reference frequency. The choice
γ=13/3 corresponds to a spectral index of −2/3 for the
characteristic strain of the GWB, appropriate for inspiraling
binaries (Phinney 2001; Jaffe & Backer 2003). Typical
analyses, in addition to the GWB, include a separate red noise
model for each pulsar, parameterized in the same way as the
GWB,
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where both the spectral index γRN and red noise amplitude ARN

are allowed to vary for each pulsar. This adds 2Npulsars

parameters to the search. The prior on the spectral index is
taken to be uniform from 0 to 7. This covers the range from
white noise (γ=0) to the the steepest power spectral density
for which the quadratic spin down removes dependence on any
lower cutoff frequency in that power spectral density
(Blandford et al. 1984; van Haasteren & Levin 2013). In
principle, the prior on the spectral index could also be chosen
differently (see, e.g., Callister et al. 2017), but we do not
investigate the effects of those choices here. However, we do
consider the effect of different priors on the amplitudes of both
the GWB and pulsar red noise, AGWB and ARN. We use either
uniform or log-uniform (uniform in log space) probability
distributions for these individual amplitudes, defined over the
range of values 10−18 to 10−14. Table 1 lists the various signal

2

The Astrophysical Journal Letters, 905:L6 (9pp), 2020 December 10 Hazboun et al.



+noise models and prior probability distributions used in our
analyses. Note that in most cases the GW signal does not
include Hellings–Downs spatial correlations as these consider-
ably decrease the computational efficiency. The alternative
signal model searches for a common red noise process
(Arzoumanian et al. 2018a) are subscripted in Table 1
with CRN.

All searches use the software ENTERPRISE (Ellis et al. 2019)
and enterprise_extensions for modeling the PTA data
likelihood, the GWB, and the various signal+noise models. We
used the Parallel Tempering Markov Chain Monte Carlo
(MCMC) sampler PTMCMCSampler (Ellis & van Haaste-
ren 2017) for sampling the likelihood.

2.1. Pulsar Red Noise Dropout Method

In addition to the two models where we only search for the
GWB (GWB-only in Table 1) or where we model intrinsic red
noise for every pulsar (GWB+RN in Table 1), we consider a
more flexible per-pulsar noise model that uses the data to
determine whether or not an individual pulsar should be
modeled as having red noise (GWB+RNDO in Table 1). This
model is implemented using the so-called dropout method
(Arzoumanian et al. 2020) on the red noise model, which uses a
discrete parameter to switch the red noise model for a particular
pulsar on or off during the MCMC sampling of a Bayesian
analysis. This extremely flexible tool has been used for
investigating the support of deterministic and stochastic signals
in particular pulsars (Aggarwal et al. 2019, 2020). The
GWB+RNDO analyses therefore include a red noise model
for each pulsar with an amplitude and spectral index along with
a dropout parameter. The dropout parameter is sampled from a
uniform distribution over the unit interval. If the dropout
parameter samples above a certain threshold, then the red noise
model acts as usual. If the threshold is not met, then the red
noise model is turned off completely. The threshold defines the
prior odds ratio for a red noise model to be turned on.

Throughout this work we use a threshold of 10/11 for the
red noise model to be turned on. This means that given no

support for red noise, the red noise model will be turned on
only 1/11 of the time. This threshold effectively set an odds
ratio of 10:1 as a hurdle to overcome in order to use a red noise
model for a particular pulsar. Although one can consider using
different threshold values for the dropout model, we do not
investigate here how these different values affect the GWB
statistics.

2.2. Sensitivity to Choice of Priors

As discussed in Section 1.1, the statistics derived from
Bayesian analyses depend on the choice of signal+noise
model, including the choice of prior probability distributions
for the parameters associated with those models (Kass &
Wasserman 1996). Given sufficiently informative data the prior
choices will matter little; however, PTA data sets are not yet at
this point (Arzoumanian et al. 2018a). As the data sets continue
to increase in duration and sensitivity increases, it is critical to
understand any potential pitfalls and limitations of our analysis.
Specifically, the simulations and analyses chosen for this

work allow us to compare the performance of different models,
and their fidelity in returning injected GWB parameters, when
applied to a relatively simple data set. If the signal+noise
model matches that used in the simulations, we should obtain,
on average, the expected coverage for our credible intervals.
For signal+noise models that do not match the simulations,
over- or undercoverage is possible. Thus, the analyses that we
perform here can be thought of as a “sensitivity analysis”
(Efron 2015), which checks the robustness of our statistical
inference results to the choice of models and priors. However,
these simulations do not completely test the “coverage” of
different signal+noise models. Coverage is the fidelity of
Bayesian credible intervals (or likewise frequentist confidence
intervals) over many iterations of an analysis (Heinrich et al.
2004), which allows us to answer the question “does the
injected value of a parameter fall within an X% interval in X%
of simulations?” In order to formally check the coverage of a
Bayesian pipeline, one would need to sample from the prior on
AGWB, as well as look at different realizations, something that
would be too prohibitive to do across all of the models

Table 1
Different Signal+noise Models and Prior Probability Distributions Used in Our Analyses

Model Signal Prior Noise Priors

GWBCRN-only π(AGWB)=logunif(10−18,10−12) L

GWBCRN-only π(AGWB)=unif(10−18,10−12) L

GWBCRN+RN π(AGWB)=logunif(10−18,10−12) π(ARN)=logunif(10−20,10−11)
π(γRN)=unif(0,7)

GWBCRN+RN π(AGWB)=unif(10−18,10−12) π(ARN)=unif(10−20,10−11)
π(γRN)=unif(0,7)

GWBCRN+RNDO π(AGWB)=logunif(10−18,10−12) π(ARN)=logunif(10−20,10−11)
π(γRN)=unif(0,7)

GWBCRN+RNDO π(AGWB)=unif(10−18,10−12) π(ARN)=unif(10−20,10−11)
π(γRN)=unif(0,7)

GWBHD+RN π(AGWB)=logunif(10−18,10−12) π(ARN)=logunif(10−20,10−11)
π(γRN)=unif(0,7)

Note.RN stands for the pulsar red noise model, DO stands for the red noise dropout model, CRN stands for a signal model without spatial correlations, and HD stands
for a signal model that includes spatial Hellings–Downs correlations. For the pulsar red noise models, there are different amplitude and spectral index parameters for
each pulsar, for a total of 2Npulsars parameters.
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considered here. As we shall see below, choosing the wrong
model—in this case, whether or not some or all pulsars have
red noise—can skew the final statistics.

3. Results of Analyses on Simulated Data

The following two subsections describe how the choice of
different signal+noise models and prior probability distribu-
tions affects both GWB parameter estimation and UL
calculations.

3.1. Effect of Signal+Noise Models on GWB Parameter
Estimation

We begin by showing the effects of different signal+noise
models and priors on estimates of the amplitude AGWB of the
GWB. The first analysis that we performed, which serves as the
base model for all comparisons, uses the GWB-only signal
+noise model—i.e., we only search for the GWB and use
TOAs weighted by their WN errors. Not surprisingly, given
that we are analyzing the data using the same model that we
used to produce the simulations, we recover posterior
distributions for the median value of AGWB that agree well
with the injected value, = ´ -A 1.4 10GWB

inj 15 (see the blue
violin plots in the two panels of Figure 1). The two panels
correspond to two different prior probability distributions for
AGWB, either log-uniform or uniform over the range 10−18 to
10−14. Analyses using log-uniform priors are usually referred
to as “detection runs” in the PTA literature as they are
especially effective for obtaining a Savage–Dickey approx-
imation (Dickey 1971) to the Bayes factor for weak signals.
Uniform priors on the amplitude of the GWB are usually used
in “upper limit” runs, in order to provide more conservative
ULs on AGWB.

The other violin plots in Figure 1 show the recovered
distributions of the median value of AGWB at two different
observation times (11.5 and 15 yr) for the other signal+noise
models and priors listed in Table 1. From these recovered
distributions we are able to draw several conclusions:

1. As the signal-to-noise ratio increases the choice of prior
on the signal amplitude (in this case AGWB) has little
effect on the median value of AGWB, which is expected in
a Bayesian analysis. This can be seen by comparing the

GWB-only and log-uniform ARN results (blue and orange
violin plots, respectively) in the two panels of Figure 1.
The choice of prior on AGWB does not considerably
change the distribution of median values.

2. The choice of prior on ARN has a dramatic effect on the
recovery of the median value of AGWB. This can be seen
by comparing the orange and purple violin plots in the
right panel of Figure 1. These correspond to log-uniform
and uniform priors on ARN, respectively.

3. With log-uniform priors on both AGWB and ARN,
recovered median values of AGWB are systematically
lower than the injected value 1.4×10−15 (orange violin
plots in the left panel of Figure 1). This bias remains even
if HD correlations are included in the signal model (green
violin plots in the left panel of Figure 1).

4. The dropout model mitigates the effects of the ARN prior
on the posterior. It does that by including an intrinsic RN
model only when it is really needed, returning results
consistent with the injected amplitude of the GWB (red
and brown violin plots, respectively, in the two panels of
Figure 1). The difference between the brown and purple
distributions shows that even uniform priors on both
AGWB and ARN return fairly accurate median values for
AGWB when the dropout method is used.

While the differences in the third point above seem fairly
small (i.e., the orange and green/second and third violin plots
in each set of the left panel of Figure 1 are shifted lower by
about 7%), these shifts can have fairly drastic results when
considering the interpretation of a single posterior from real
data. Instead of distributions of the median, one can tally the
quantile position of the injected value for each of the “detection
runs” (which use log-uniform priors for AGWB). In the models
where red noise is assumed for all pulsars, the injected value
falls higher than a given credible interval 3–7 times more often
than it falls lower than the same credible interval. In other
words, one is 3–7 times more likely to underestimate AGWB

than overestimate it. However, when the red noise dropout
method is used, the discrepancy between the injected value
falling higher or lower than the credible interval is reduced
considerably, giving only a 20% difference, corresponding to a
factor of 1.2.

Figure 1. Comparison of the distributions of median values of AGWB for various signal+noise models and prior distributions, obtained from analyzing 400 realizations
of the GWB+WN simulations. The left and right panels correspond to log-uniform and uniform prior distributions for AGWB. The two groups of four violin plots per
panel correspond to two different observation times (11.5 and 15 yr). The horizontal bars show the median of the recovered median values of AGWB, while the vertical
bars show the central 68% credible interval around that median value. The different color violin plots correspond to the different signal+noise models and prior
distributions listed in Table 1.
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3.2. Effect of Signal+Noise Models on GWB Upper Limits

We also determine the effects of the different signal+noise
models and prior distributions on the 95% UL, AGWB

95% . For all of
the UL analyses, we use the standard convention of using a
uniform prior on AGWB (Arzoumanian et al. 2016, 2018a;
Lentati et al. 2016). For the GWB-only signal+noise model,
we recover results for AGWB

95% consistent with expectations (see
the solid blue curve in either the left or right panel of Figure 2).
As discussed in Section 3.1, this is because the GWB-only
signal+noise model agrees with that used to produce the
simulated data. The distribution of UL values calculated for the
400 realizations of the simulated data has values that are greater
than the injected value of the background roughly 93% of the
time (within error of the expected value of 95%).

We then perform analyses using the standard model for PTA
GWB searches that includes an intrinsic red noise model for
each pulsar. Recall that these models introduce 2Npulsars

additional parameters (an amplitude, ARN, and spectral index,
γRN, for each pulsar). To the best of our knowledge most
Bayesian PTA ULs to date have used uniform priors on ARN

and AGWB. From the dashed orange curve shown in the left
panel of Figure 2, we see that the distribution of 95% ULs is
shifted to significantly lower values, with basically even odds,
i.e., 50%, that the calculated UL is above or below the injected
value.

It is worth pointing out that there is nothing wrong with the
ULs produced by this procedure, as long as one is explicit
about the model being used in the Bayesian analysis. However,
if the signal+noise model that we are using differs greatly from
what gave rise to the data, then statistical inferences can be
systematically (and significantly) inaccurate. The standard PTA
UL analysis is based on the “conservative” assumption that all
pulsars have substantial red noise. In our simulations this
assumption leads to individual pulsar red noise models that are
able to absorb a substantial amount of the common red process,
i.e., the GWB, and thus produce an overall smaller AGWB

95% . The
effects of the “conservative” assumption can be somewhat
mitigated by using instead a log-uniform prior on ARN. This
choice of prior decreases the bias, as one can see from the
dotted–dashed green distribution of AGWB

95% in the right panel of
Figure 2, which has 87.25% of its ULs above the injected
value. The log-uniform prior, however, is still part of a signal

+noise model that assumes that all pulsars have at least some
level of measurable red noise.
As we have already seen in Section 3.1, a better option is to

use a red noise pulsar model in conjunction with the dropout
method, which allows the data to decide whether a given pulsar
should be modeled to include intrinsic red noise. The dropout
analysis turns off the red noise models in almost all cases for
this simple simulation of GWB+WN-only, returning us to
results commensurate with the GWB-only search (see the
dotted red distribution in the right panel of Figure 2, which has
93.25% of its ULs above the injected value). The dropout
method does this by using the threshold value to effectively set
a prior on the presence (or absence) of intrinsic red noise in our
pulsars, allowing the data to inform the choice of noise model.
In Figure 3 we show the evolution of the UL as a function of

time for the various analyses. The injected AGWB is specifically
chosen so that the GWB begins to have power greater than the
WN at the lowest frequencies when there is 7 yr of data. Before
this time the ULs are all still well above the injected value, but

Figure 2. Comparison of the distributions of the 95% ULs for various signal+noise models and prior distributions, obtained from analyzing 400 realizations of the
GWB+WN simulations. The left panel shows results for both the simple GWB-only signal+noise model (blue solid) and the standard PTA UL analysis (orange
dashed), which additionally includes red noise models for each pulsar with a uniform prior on the amplitude ARN. The right panel also shows results for a signal+noise
model that uses log-uniform priors for ARN (green dotted–dashed), and a dropout model for uniform red noise priors (red dotted).

Figure 3. Comparison of the distributions of the 95% ULs for various signal
+noise models and prior distributions, obtained from analyzing 400
realizations of the GWB+WN simulations. The dashed black line shows the
theoretical evolution of the UL based on the frequentist optimal statistic;
seeEquation (A5). The violin plots show the distributions of Bayesian 95%
ULs for four different signal+noise models and priors at four different time
slices of the full data set. The vertical bar within a violin plot shows the central
90% credible interval. The horizontal dashed gray line shows the injected
amplitude of 1.4×10−15.
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as soon as one enters the intermediate signal regime,7 biases in
the standard GWB UL analysis (orange violin plots) are clearly
manifest.

In comparison, the distributions for the dropout analysis (red
violin plots) match those for the GWB-only search (blue violin
plots), which also match the expected 95% confidence-level
UL (black dashed line) predicted by the frequentist optimal
statistic (OS) developed in Ellis et al. (2013), Siemens et al.
(2013), Chamberlin et al. (2015), and Vigeland et al. (2018).
The scaling laws of Siemens et al. (2013) are used to construct
an analytic expression for AGWB

95% as a function of time using
Equation (A5). Thus, just as we saw in Section 3.1, the pulsar
red noise dropout analysis performs better than the standard
PTA analysis (uniform amplitude priors for both AGWB and
ARN) for 95% ULs as well.

4. Application to More Realistic Data Sets

As discussed earlier, the simple simulations studied in the
previous sections only included WN and a red GWB signal.
For these simulations, the dropout model successfully turns off
the red noise models in all pulsars, as can be seen in the top
panel of Figure 4. In this panel, the vertical height of the dots
shows the fraction of time the red noise dropout model is
turned on for a given realization at a given slice of the data set.
A data set that is completely ambivalent about the presence of
red noise would lie along the horizontal thin dashed line, i.e.,
the pulsars will have their red noise model turned on 1/11 of
the time, while the presence of most dots below the line shows
that red noise is disfavored. Note the realization dependence for
these parameters. A given white noise realization or GWB
realization may be modeled better by the red noise model and
result in a dropout parameter that is turned on a majority of the
time. In these cases these parameters have smaller spectral
indices, and hence are picking up whiter noise.

In order to assess the full abilities of the red noise dropout
model, another set of simulations were run where a handful of
pulsars were injected with red noise characteristic of that seen
in real PTA data sets. Various amplitudes and spectral indices
of red noise were injected and are detailed in the caption of
Figure 4. The middle panel shows the analogous results to the
top panel, but with the successful modeling of red noise in the
pulsars where it has been injected. Depending on the spectral
index and amplitude, it may take longer in the data set to
resolve the red noise in the pulsar, as shown by the dependence
of Equation (A2) on γ. However, for the full 15 yr of data,
those pulsars with injected red noise have red noise dropout
models turned on through most steps of the MCMC. The
bottom left panel of Figure 4 shows the distribution of medians
for AGWB from both dropout analyses. As one can see, the red
noise dropout model does just as well at estimating AGWB

whether there is red noise present in some of the pulsars or not.
The P–P plot in the bottom right panel of Figure 4 shows the
fraction of parameter recoveries for which the injected value
appeared at or below a given percentile, e.g., in both cases the
injected AGWB appeared at or below the 55th percentile in about
55% of the realizations. There is little bias in these analyses
across the 400 realizations examined.

5. Reassessing the NANOGrav 11 yr Analysis

Finally we turn to real PTA data and apply the red noise
dropout model to the NANOGrav 11 yr data set (Arzoumanian
et al. 2018b). In addition to adding a dropout parameter for
each of the pulsars, we also use the BAYESEPHEM (Vallisneri
et al. 2020) solar system ephemeris model so that our results
are directly comparable to those of Arzoumanian et al. (2018a).
This analysis includes the Hellings–Downs spatial correlations
for the GWB. Looking at the dropout parameters in the top
panel of Figure 5 we see that the analysis largely agrees with
the noise analysis used in Arzoumanian et al. (2018b). The only
pulsar deemed significant in Arzoumanian et al. (2018b), where
the red noise model is turned off a majority of the time during
the dropout analysis, is PSR J1909–3744. In a single pulsar
noise analysis the red noise parameters in this pulsar are
significant and similar to those expected for a GWB. In a
standard full PTA GWB analysis, where all pulsars have red
noise models, the red noise posteriors returned are very
uninformative, i.e., the red noise in the pulsar is modeled as the
common process. In this dropout analysis the results are
similar, except that rather than return uninformative priors, the
analysis now turns off the individual red noise model, in favor
of the red noise power going into the common process.
The posterior on AGWB is compared to the standard PTA

analysis of the Arzoumanian et al. (2018b) data set in Figure 5.
Any evidence for a detection using the dropout analysis,
though slightly better, is still marginal. However, as might be
expected from the analyses in Section 3.1, the maximum
aposteriori (MAP) value for AGWB using the dropout analysis
is AGWB=1.4×10−15, which is larger than that from the
standard analysis, AGWB=1.1×10−15, and more similar to
the 95% UL obtained in Arzoumanian et al. (2018a). We can
reweight the samples in either of the analyses (Gelman et al.
2013) shown in Figure 5 to obtain new 95% ULs. Reweighting
the samples from the standard PTA analysis is equivalent to the
log-uniform ARN analysis discussed in Section 3.2 and gives
AGWB

95% =2.1×10−15. If instead we reweight the samples from
the dropout analysis from Figure 5, we obtain results
comparable to the dropout analysis from Section 3.2, which
appears to be the most trustworthy model examined here for
obtaining ULs. This gives a UL for the NANOGrav 11 yr data
set of AGWB

95% =3.0×10−15, which is more than twice as large
as the UL quoted in Arzoumanian et al. (2018a). This result is
dependent on the threshold set for the dropout parameter, as
discussed in Section 2.1, and should not be taken as a concrete
astrophysical result, but rather an example of how the GWB
statistics can shift when using this new model. For the most up-
to-date GWB results see Arzoumanian et al. (2020).

6. Conclusions

Here we have shown explicitly how the choice of prior on
ARN, and indeed whether pulsars have red noise models at all,
can have unanticipated consequences on the statistics of AGWB.
In a simulated data set with WN and a GWB, the effect of a
standard GWB search with uniform priors for the pulsar
intrinsic red noise amplitudes on AGWB

95% is drastic, returning a
95% UL lower than the injected value in about half of all
realizations. As we have seen, putting a uniform prior on ARN

biases the noise model to steal power from the GWB model.
The biases of other estimators, such as the conditional median,
that occur for parameter estimation are smaller, but still show a

7 Defined in Siemens et al. (2013) as beginning when the power in the lowest
frequency bin of the GWB is greater than that of the WN.
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consistent shift in the same direction, i.e., to smaller values of
AGWB. We have implemented a simple solution to these
problems—the so-called dropout method—which is a flexible
red noise model for pulsars that allows the intrinsic red noise
model in each pulsar to be turned off during the course of the
Bayesian analysis if there is not sufficient evidence in the data
to warrant its presence.

In light of the offsets in parameter estimation uncovered by
this work, it is worth revisiting constraints inferred on the
SMBBH population from PTA data sets. The impact of the
choice of prior on the intrinsic red noise amplitudes can be seen
directly by comparing the astrophysical interpretation done in
NANOGrav’s 9 yr GWB constraint paper (Arzoumanian et al.
2016), which used uniform priors on red noise amplitude, with
that done in its 11 yr GWB constraint paper (Arzoumanian
et al. 2018a), which used log-uniform priors. Even though the
11 yr constraint on AGWB is a smaller value, the astrophysical
inference is less constraining. This is partially due to the
differing models and analysis techniques. However, viewed
through the lens of this work, the weakening of constraints,
specifically on the M–Mbulge relationship, were certainly
impacted by the choice of prior used for the red noise

amplitudes. Beyond direct constraints using AGWB, previously
reported AGWB

95% upper limits have been used in concert with
electromagnetic observations to make statements about various
SMBBH population models (Holgado et al. 2018; Sesana et al.
2018). Moving forward, astrophysical statements derived from
past PTA constraints on AGWB will need to be more cautious in
assessing the strength of their inference.
The idea that credible intervals and parameter estimation are

dependent on the choice of model and priors is a common
refrain in Bayesian statistics. As a result, data analysts should
strive to produce models and priors that robustly represent and
quantify the underlying physical processes being investigated.

This work was supported by the NSF NANOGrav Physics
Frontier Center (NSF PHY-1430284). The authors thank Paul
Baker, Michael Lam, Timothy Pennucci, Stephen Taylor,
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and detailed comments on early drafts of this manuscript. Part
of this research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administra-
tion. J.S. acknowledges support from the JPL RTD program.

Figure 4. Summary of dropout analyses for simulated data set analyses. In the top two panels each dot represents the fraction of the samples from a particular
realization/analysis when the red noise model is turned on; dots below the dashed black line indicate that a particular pulsar’s red noise model is disfavored. The
topmost panel shows the fraction turned on for the analysis of the GWB+WN-only simulations. The middle panel is for a simulation where additional red noise is
injected into pulsars 0, 16, 24, and 28 (highlighted in gray) with ARN equal to (10−15, 3.4×10−13, 8×10−15, and 7×10−14) and spectral indices γRN equal to (7, 2,
5, and 3) respectively. The bottom left panel shows the distribution of the median values for AGWB for the dropout analysis applied to both the GWB+WN-only and
GWB+WN+RN simulations. The bottom right panel shows a probability–probability (P–P) plot showing the cumulative distribution of injection percentiles for both
dropout analyses.
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Appendix
Time Evolution of a Frequentist GWB Upper Limit

Here we derive an expression for the expected value of the
frequentist 95% confidence-level UL calculated from the
optimal statistic(Ellis et al. 2013; Siemens et al. 2013;
Chamberlin et al. 2015; Vigeland et al. 2018). Although this
is a frequentist UL, it provides a good analytic approximation
to the Bayesian 95% ULs calculated in this Letter.

The expected signal-to-noise ratio ρ derived from the
optimal statistic can be written in the frequency domain as
(Chamberlin et al. 2015)
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where the indices I and J label the individual pulsars, PI( f ) is
the total autocorrelated power spectral density for pulsar I,
Pg( f ) is the power spectral density for the GWB, T is the time
span of the data, and χIJ are the overlap reduction function
coefficients, here assumed to be the quadrupolar spatial
correlations induced by a GWB (Hellings & Downs 1983).

The expression for the signal-to-noise ratio can be simplified
considerably for the main set of simulations considered in this
work where all of the pulsars have the same level of white
noise, cadence, and observing time span, and there is no red
noise injected into the pulsars:
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Here σ is the TOA error value for all the pulsars, Δt is the
sampling period (the cadence), and b subsumes various
constants,8

p
º

g- +

b
A

f12

1
. A3GWB

2

2
yr

3

( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

One can relate the aforementioned scaling laws to a UL by
using the complementary error function (Allen &
Romano 1999; Hazboun et al. 2020)
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where μ is the confidence level (e.g., μ=0.95 for a 95%
confidence-level UL), and σ0 is the effective noise level defined
in terms of ρ, AGWB, and T. The expectation value of
Equation (A4) yields
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For the simple GWB+WN simulations studied in the majority
of this Letter, this UL is calculated analytically and plotted in
Figure 3 as the dashed black line.
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