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Abstract

This study is focused on monotonicity and convexity properties of a generalized form of the
Wallis’ cosine formula. Specifically, by using the integral form of the Nielsen’s β-function,
we prove that the generalized Wallis’ cosine formula is logarithmically completely monotonic,
logarithmically convex and decreasing. Furthermore, by using the classical Wendel’s, Hölder’s
and Young’s inequalities, among other analytical techniques, we establish some new inequalities
involving the generalized function.
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1 Introduction and Preliminaries

The Nielsen’s β-function, β(x) which was introduced in [1] may be defined by any of the following
equivalent forms.

β(x) =

∫ 1

0

tx−1

1 + t
dt, x > 0 (1)

=

∫ ∞

0

e−xt

1 + e−t
dt, x > 0 (2)

=
1

2

{
ψ

(
x+ 1

2

)
− ψ

(x
2

)}
, x > 0 (3)

where ψ(x) = d
dx

ln Γ(x) = Γ′(x)
Γ(x)

is the digamma function and Γ(x) is the Euler’s Gamma function.

It is known that function β(x) satisfies the following properties.

β(x+ 1) =
1

x
− β(x), (4)

β(x) + β(1− x) =
π

sinπx
.

Some particular values of this function are: β(1) = ln 2, β
(
1
2

)
= π

2
, β
(
3
2

)
= 2− π

2
and β(2) = 1−ln 2.

Also, some interesting properties and inequalities involving this special function can be found in
the recent work [2] .

By differentiating m times of (1), (2) and (3), one respectively obtains

β(m)(x) =

∫ 1

0

(ln t)mtx−1

1 + t
dt, x > 0 (5)

= (−1)m
∫ ∞

0

tme−xt

1 + e−t
dt, x > 0 (6)

=
1

2m+1

{
ψ(m)

(
x+ 1

2

)
− ψ(m)

(x
2

)}
, x > 0 (7)

for m ∈ N0. It is clear that β(0)(x) = β(x). In addition, by differentiating m times of (4), one
obtains

β(m)(x+ 1) =
(−1)mm!

xm+1
− β(m)(x).

Also, it is well known in the literature that

m!

xm+1
=

∫ ∞

0

tme−xt dt (8)

for x > 0 and m ∈ N.

Definition 1.1. A function f : I → R+ is said to be logarithmically convex or in short log-convex
if ln f is convex on I. That is if

ln f(ax+ by) ≤ a ln f(x) + b ln f(y)

or equivalently
f(ax+ by) ≤ (f(x))a(f(y))b

for each x, y ∈ I and a, b > 0 such that a+ b = 1. Additional information on this class of functions
can also be found in the article [3].
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Definition 1.2. A function f : I → R is said to be completely monotonic on I if f has derivatives
of all order on I and

(−1)kf (k)(x) ≥ 0

for x ∈ I and k ∈ N [4].

Definition 1.3. A function f : I → R+ is said to be logarithmically completely monotonic on I if
f has derivatives of all order on I and

(−1)k[ln f(x)](k) ≥ 0

for x ∈ I and k ∈ N [5].

It has been established in [5] that every logarithmically completely monotonic function is also
completely monotonic. However, the converse of this statement is not true.

The class of logarithmically completely monotonic functions has been a subject of intensive research
in recent years. See for instance [6], [7], [8] and the related references therein.

Definition 1.4. The Wallis’ cosine (sine) formula is given by

In =

∫ π
2

0

cosn t dt =

∫ π
2

0

sinn t dt =

√
π

n

Γ(n
2
+ 1

2
)

Γ(n
2
)

(9)

for n ∈ N [9]. It is also known in the literature as the Wallis’ integrals, and it may also be defined
as

In =
1

2

Ωn

Ωn−1
=
π

2
Wn

2
=

1

2
B

(
n+ 1

2
,
1

2

)
, n ∈ N

where Ωn = π
n
2

Γ(n
2
+1)

is the volume of the unit ball in Rn, Wn = (2n−1)!!
(2n)!!

= 1√
π

Γ(n+ 1
2
)

Γ(n+1)
is the Wallis

ratio [10], and B(x, y) = Γ(x)Γ(y)
Γ(x+y)

is the classical Euler’s beta function.

Then, in [11], a generalization of the Wallis’ cosine formula was given as

H(x) =

∫ π
2

0

cosx t dt =

√
π

x

Γ(x
2
+ 1

2
)

Γ(x
2
)

=

√
π

2

Γ(x
2
+ 1

2
)

Γ(x
2
+ 1)

, x ∈ R+ (10)

where H(n) = In for n ∈ N.

Lately, the Wallis’ cosine formula has been applied in [12], [13] and [14] to study some properties
of a sequence originating from geometric probability for pairs of hyperplanes intersecting with a
convex body. Motivated by these recent applications, this paper seeks to investigate the function
further. The objective is to prove that the generalized function H(x) is logarithmically completely
monotonic, logarithmically convex and decreasing. Additionally, some new inequalities which
involve H(x) are established. The results are presented in the following section.

2 Main Results

Theorem 2.1. The function H(x) is logarithmically completely monotonic.
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Proof. Note that lnH(x) = ln
√
π + lnΓ(x

2
+ 1

2
)− ln Γ(x

2
)− lnx. Then

[lnH(x)]′ =
1

2

Γ′(x
2
+ 1

2
)

Γ(x
2
+ 1

2
)
− 1

2

Γ′(x
2
)

Γ(x
2
)
− 1

x

=
1

2
ψ

(
x

2
+

1

2

)
− 1

2
ψ
(x
2

)
− 1

x

=
1

2

{
ψ

(
x+ 1

2

)
− ψ

(x
2

)}
− 1

x

= β(x)− 1

x
.

Furthermore, by differentiating n times of lnH(x), one obtains

[lnH(x)](n) = β(n−1)(x) +
(−1)n(n− 1)!

xn
(11)

which implies that

(−1)n [lnH(x)](n) = (−1)nβ(n−1)(x) +
(n− 1)!

xn
. (12)

Now let n = m+ 1 in the right hand side of (12). Then by (6) and (8), one obtains

(−1)n [lnH(x)](n) = (−1)m+1β(m)(x) +
m!

xm+1

= (−1)2m+1

∫ ∞

0

tme−xt

1 + e−t
dt+

∫ ∞

0

tme−xt dt

= −
∫ ∞

0

tme−xt

1 + e−t
dt+

∫ ∞

0

tme−xt dt

=

∫ ∞

0

(
1− 1

1 + e−t

)
tme−xt dt

≥ 0.

Therefore, H(x) is logarithmically completely monotonic.

Corollary 2.2. The function H(x) is logarithmically convex and decreasing.

Proof. By letting n = 2 in (11) and using (6) and (8), one obtains

[lnH(x)]′′ = β′(x) +
1

x2

= −
∫ ∞

0

te−xt

1 + e−t
dt+

∫ ∞

0

te−xt dt

=

∫ ∞

0

(
1− 1

1 + e−t

)
te−xt dt

≥ 0.

Thus, H(x) is logarithmically convex. Next, let u(x) = lnH(x). Then

u′(x) = [lnH(x)]′ = β(x)− 1

x

=

∫ ∞

0

e−xt

1 + e−t
dt−

∫ ∞

0

e−xt dt

=

∫ ∞

0

(
1

1 + e−t
− 1

)
e−xt dt

≤ 0.

Hence u(x) is decreasing and consequently, H(x) is also decreasing.
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Remark 2.3. Since every logarithmically convex function is convex, then H(x) is also convex.
This implies that for x, y > 0, it is the case that

H

(
αx+ βy

α+ β

)
≤ αH(x) + βH(y)

α+ β

where α, β ≥ 0 and α+ β > 0.

Corollary 2.4. Let a matrix D be defined for x > 0 by

D =

(
H(x) H ′(x)
H ′(x) H ′′(x)

)
. (13)

Then detD ≥ 0. In other words, the function H(x) satisfies the Turan-type inequality

H ′′(x)H(x)−
[
H ′(x)

]2 ≥ 0. (14)

Proof. This is a direct consequence of the logarithmic convexity of H(x).

Corollary 2.5. The inequality

H2
(x+ y

2

)
≤ H(x)H(y) (15)

is valid for x, y > 0.

Proof. Since H(x) is logarithmically convex, then for x, y > 0, one obtains

H
(x
r
+
y

s

)
≤ (H(x))

1
r (H(y))

1
s

where r > 1, s > 1 and 1
r
+ 1

s
= 1. Then by letting r = s = 2, the result (15) is obtained.

Lemma 2.6. For t > 0, the inequality

e−t

2
+

1

1 + e−t
< 1 (16)

is satisfied.

Proof. Notice that e−t < 1 for all t > 0. Then it follows easily that

e−t − 1 < 0,

e−2t − e−t < 0,

e−2t − e−t + 2e−t < 0 + 2e−t,

e−2t + e−t < 2e−t,

e−2t + e−t + 2 < 2e−t + 2,

e−t(1 + e−t) + 2 < 2(1 + e−t).

Rearranging the last inequality gives the result (16).

Theorem 2.7. The double-inequality

√
π

2

(
x

2
+

1

2

)− 1
2

< H(x) <
π

2
√
2

(
x

2
+

1

2

)− 1
2

(17)

holds for x > 0.
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Proof. Wendel [15] established the inequality(
x

x+ s

)1−s

≤ Γ(x+ s)

xsΓ(x)
≤ 1, x > 0, s ∈ (0, 1) (18)

which can be rearranged as

1 ≤ (x+ s)1−s Γ(x+ s)

Γ(x+ 1)
≤
(
1 +

s

x

)1−s

.

Then by the Squeeze/Sandwich theorem,

lim
x→∞

(x+ s)1−s Γ(x+ s)

Γ(x+ 1)
= 1. (19)

Also, direct computation gives

lim
x→0+

(x+ s)1−s Γ(x+ s)

Γ(x+ 1)
= s1−sΓ(s). (20)

Then, by replacing x by x
2
and letting s = 1

2
in (19) and (20), one respectively obtains

lim
x→∞

(
x

2
+

1

2

) 1
2 Γ

(
x
2
+ 1

2

)
Γ
(
x
2
+ 1
) = 1 (21)

and

lim
x→0+

(
x

2
+

1

2

) 1
2 Γ

(
x
2
+ 1

2

)
Γ
(
x
2
+ 1
) =

√
π

2
. (22)

Now let G(x) =
(
x
2
+ 1

2

) 1
2

Γ( x
2
+ 1

2 )
x
2
Γ( x

2 )
and ϕ(x) = lnG(x). That is,

ϕ(x) =
1

2
ln

(
x

2
+

1

2

)
− ln

(x
2

)
+ lnΓ

(
x

2
+

1

2

)
− ln Γ

(x
2

)
. (23)

By differentiating (23) and using (2) and (8), one obtains

ϕ′(x) =
1

2(x+ 1)
− 1

x
+

1

2

{
ψ

(
x

2
+

1

2

)
− ψ

(x
2

)}
=

1

2(x+ 1)
− 1

x
+ β(x)

=
1

2

∫ ∞

0

e−(x+1)t dt−
∫ ∞

0

e−xt dt+

∫ ∞

0

e−xt

1 + e−t
dt

=

∫ ∞

0

(
e−t

2
+

1

1 + e−t
− 1

)
e−xt dt

≤ 0

which follows from (16). Hence ϕ(x) is decreasing. Consequently, G(x) is also decreasing. Then
for 0 < x <∞, one gets

G(∞) < G(x) < G(0)

which by (21) and (22) results to(
x

2
+

1

2

)− 1
2

<
Γ
(
x
2
+ 1

2

)
Γ
(
x
2
+ 1
) <√π

2

(
x

2
+

1

2

)− 1
2

. (24)

Then, the inequality (17) is obtained from this result.
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Remark 2.8. The limits (19) and (20) are already known in the literature. For instance, they
were obtained in Theorem 1.2 of [16] by using different procudures.

Theorem 2.9. Let p > 1, q > 1 and 1
p
+ 1

q
= 1. Then the inequality

H(x+ y) ≤ [H(px)]
1
p [H(qy)]

1
q (25)

holds for x, y > 0.

Proof. Let p > 1, q > 1 and 1
p
+ 1

q
= 1. Then by the Hölder’s inequality:

∫ b

a

f(t)g(t) dt ≤
(∫ b

a

fp(t) dt

) 1
p
(∫ b

a

gq(t) dt

) 1
q

,

one obtains

H(x+ y) =

∫ π
2

0

cosx+y t dt

=

∫ π
2

0

cosx cosy t dt

≤

(∫ π
2

0

cospx t dt

) 1
p
(∫ π

2

0

cosqy t dt

) 1
q

= [H(px)]
1
p [H(qy)]

1
q

which completes the proof.

Remark 2.10. Equality holds in (25), if x = y and p = q = 2.

Remark 2.11. By letting x = n, y = n + 1 where n ∈ N and p = q = 2 in Theorem 2.9, one
obtains the Turan-type inequality

I22n+1 ≤ I2n · I2n+2. (26)

Corollary 2.12. Let p > 1, q > 1 and 1
p
+ 1

q
= 1. Then the inequality

H(x+ y) ≤ H(px)

p
+
H(qy)

q
(27)

holds for x, y > 0.

Proof. Let p > 1, q > 1 and 1
p
+ 1

q
= 1. Then by (25) and the Young’s inequality:

x
1
p y

1
q ≤ x

p
+
y

q
, x, y ≥ 0,

it follows that

H(x+ y) ≤ [H(px)]
1
p [H(qy)]

1
q ≤ H(px)

p
+
H(qy)

q

which gives the desired result.
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Corollary 2.13. The function H(x) is subadditive. That is, the inequality

H(x+ y) ≤ H(x) +H(y) (28)

is holds for x, y > 0.

Proof. It follows from (27) that

H(x+ y) ≤ H(px)

p
+
H(qy)

q

≤ H(x)

p
+
H(y)

q
≤ H(x) +H(y)

which concludes the proof.

Theorem 2.14. The function H(x) satisfies the inequality

H(x)H(y) ≤ π

2
H(x+ y), (29)

for x, y > 0.

Proof. The log-convexity of H(x) implies that the function H′(x)
H(x)

is increasing. Define a function
A by

A(x, y) =
H(x)H(y)

H(x+ y)
, x, y > 0,

and let u(x, y) = lnA(x, y). Then for a fixed y,

u′(x, y) =
H ′(x)

H(x)
− H ′(x+ y)

H(x+ y)
≤ 0.

Hence, u(x, y) and consequently A(x, y) are decreasing. Then for x > 0, one obtains

H(x)H(y)

H(x+ y)
≤ H(0) =

π

2
,

which gives the result (29).

3 Conclusion

By employing the Nielsen’s β-function, it has been proved that the generalized Wallis’ cosine

formula: H(x) =
√

π
x

Γ( x
2
+ 1

2
)

Γ( x
2
)

for x ∈ R+ is logarithmically completely monotonic, logarithmically

convex and decreasing. Furthermore, by employing the classical Wendel’s, Hölder’s and Young’s
inequalities, among other analytical techniques, some new inequalities which involve the generalized
function have been established.
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