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ABSTRACT 
 
Aims: The aim of the study was to investigate the physiological mechanisms of Jatropha curcas 
seedlings exposed to drought and the possible influence of seedling age. 
Study Design:  A pot experiment was carried out using a completely randomized design with two 
seedling ages (2- and 3-month-old seedlings), two treatments per age (Watered: fully irrigated, and 
Unwatered: Not irrigated), six replicates (24 pots). 
Place and Duration of Study:  The experiment was performed in a greenhouse facility located at 
the Experimental Station “Mauro Deidda” (Department of Agriculture of University of Sassari) at 
Ottava (Sassari, Italy) between June and September 2011. 
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Methodology:  To investigate the responses of 2- and 3-month-old J. curcas seedlings exposed to 
drought stress on 4th, 8th, 12th, 19th, and 26th day from treatment’s beginning, leaf and soil water 
content, biometric, gas exchange, and chlorophyll a fluorescence measurements were performed; 
on 26th day from treatment’s beginning, biometric destructive measurements were carried out. 
Results:  Results support the hypothesis that J. curcas is appropriate to be cultivated in areas with 
limited water availability or prolonged periods of drought and highlight that mechanisms of drought 
response are highly influenced by seedling age. J. curcas seedlings maintained a good leaf water 
status by means of an effective stomatal closure, associated with a reduced aboveground growth 
and an increased root:shoot ratio. Under drought stress, 2-month seedlings showed a higher 
allocation of resources to roots compared to 3-month seedlings. Drought resulted in more 
detrimental effects on the photosynthetic response of 3-month seedlings, inducing the reduction of 
stomata conductance and the loss of photosystem II integrity. 2-month seedlings were instead able 
to activate mechanisms of drought tolerance through the activation of excess energy dissipation 
mechanisms. 
Conclusion:  In the early stage of crop establishment, the transplanting of J. curcas 2-month 
seedlings proved to be more effective in order to avoid water stress related consequences. 
 

 
Keywords: Chlorophyll a fluorescence; gas exchange; Physic nut; water relations; water stress. 
 
1. INTRODUCTION  
 
The biofuel production from Jatropha curcas L. 
plantation has been considered by industries, 
policy makers and researchers as a possible way 
to implement the development, particularly in arid 
and semi-arid regions of developing countries [1-
3]. J. curcas is a non-edible oil crop and its seeds 
contain about 25-35% of oil, which can be 
extracted and converted into biodiesel [4]. 
However, there are some concerns regarding the 
cultivation of J. curcas for biofuel production. The 
most critical issue is that the climatic conditions 
of J. curcas plantation spreading are often 
different from those of its natural distribution, and 
the major cultivation areas are characterized by 
high evaporative demand and low water 
availability. Consequently, J. curcas plants often 
face drought stress and plant yield is generally 
lower than expected [4,5].  
 
Despite the extraordinary increase of J. curcas 
cultivation areas in the last twenty years, the 
scientific community has begun only recently to 
investigate J. curcas responses to limited water 
availability conditions in terms of biomass 
production and partitioning, plant-water 
relationships, leaf gas exchange, and osmotic 
adjustment [6-18]. Drought resistance of             
J. curcas is associated with its ability to maintain 
water in leaf and root tissues, effectively 
combining osmotic adjustment with stomatal 
control mechanisms, in order to allow a 
continuous growth [10,16]. Stem water is 
reserved for the fresh leaf flushing as well as for 
keeping leaves active for several weeks after the 
beginning of the dry season [6,7]. Similarly to 

other stem succulent species with green fleshy 
stems, under drought conditions J. curcas 
exhibits both CAM and C4 photosynthesis in the 
succulent stem and CAM metabolism serves 
primarily to conserve carbon rather than water 
[19]. Drought stress probably triggers a 
coordinate down-regulation of photosynthesis 
(photochemistry and carboxylation phases), 
which could be modulated by accumulation of 
sugar and osmotically active solutes [16-18]. The 
energy excess at PSII level is dissipated by non-
photochemical mechanisms associated with 
enhancement in photorespiration, restricting 
photo-damages [10,16]. In a recent study 
Tominaga et al. [20] found that J. curcas is able 
to preserve the integrity of photosythem II (PSII), 
when stomata are closed under drought 
conditions, and to regulate thermal dissipation, 
adjusting PSII quantum efficiency to capacity of 
CO2 fixation. In parallel, the antioxidant 
enzymatic protection was beneficial for oxidative 
damage protection [8,16]. J. curcas root 
architecture facilitates the exploration of deeper 
soil horizons, allowing a better water access [21].  
 
Since J. curcas seed germination percentage is 
very low after direct sowing, the best generative 
propagation technique is the transplanting of pre-
germinated seedlings [4]. In arid and semi-arid 
areas, the transplanting of seedlings is generally 
scheduled at the end of rainy seasons, making 
the seedling phase a critical moment to face 
drought stress. Therefore, it is clear that a 
deeper understanding of seedling responses to 
drought is essential to increase J. curcas survival 
and to adopt competitive strategies for J. curcas 
production [18,22]. Additionally, previous field 
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activities and the management of experimental 
plantations in arid or semi-arid areas of Ghana 
and Burkina Faso have allowed us to observe a 
possible relationship between seedling age at 
transplantation time and J. curcas ability to 
overcome drought periods. Consequently, 
experiments with young plants are relevant for 
assessing the plant performance at field planting 
age [5,23]. For these reasons, in this study we 
aimed to investigate both the mechanisms of J. 
curcas seedling resistance to drought and the 
possible influence of seedling age on it. The 
responses of 2- and 3-month-old J. curcas 
seedlings, in terms of growth, water relations, 
leaf gas exchange, and chlorophyll fluorescence 
exposed to drought stress have been 
investigated under semi-controlled conditions 
also with the aim to know the best age for 
transplant. In addition, studies on drought 
responses performed on other crops have 
emphasized how physiological responses to 
drought could change according to accession. 
Until now studies have been focused on             
J. curcas accessions of Brazil [9], Ethiopia, India, 
Thailand [5,7], Indonesia, and Capo Verde 
Islands [18]. In order to extend our knowledge on 
the impact of accession on J. curcas responses 
to drought, we have used an Indian cultivar, 
widely (and really) used in Sub-Saharan regions 
of Africa, both by industrial companies and rural 
development programs. Finally, detailed studies 
on the behavior of J. curcas physiological 
responses to drought stress are gaining        
more attention because one of the negative 
effects of the climate change is the          
expected water shortage in the coming          
years [24]. Many expectations in the world        
are focused on the possible role of this     
species as a tool for aridity adaptation of plant 
resources. 
 
2. MATERIALS AND METHODS  
 
2.1 Experimental Design  
 
The experiment was performed in the 
greenhouse facility located at the Experimental 
Station “Mauro Deidda” (Department of 
Agriculture of University of Sassari) at Ottava 
(Sassari, Italy) (40°46’47’’N; 8°28’34’’E, elevation 
221 m asl). Air temperature and humidity inside 
the greenhouse were automatically recorded with 
a thermo-hygrograph (Model Siap, Bologna, 
Italy) every 2 hours from June to October 2011. 
Air temperature and humidity data are shown in         
Fig. 1. 
 

 
 

Fig. 1. Daily mean relative humidity (R.H.) and 
daily mean air temperature (Air T.) in 2011 

during the experimental period in the 
greenhouse facility. Grey areas indicate daily 
minimum and maximum values of R.H. and 

Air T 
 
The experiment was carried out on J. curcas 
seedlings of an Indian cultivar. Seeds were 
collected in November 2010 in Tamale (Ghana 
Yendi road Farm, Northern Region of Ghana), 
previously selected on the basis of seed size and 
weight, and stored at 18(±2) °C until the 
beginning of the experiment. J. curcas seeds 
were sown in an alveolar plastic board (5 cm 
diameter and 6 cm height), filled with peat 
amendment substrate. Sowing was carried out 
on 16th June (OL – older seedlings) and on 25th 
July (YO – younger seedlings). After 20 days 
from the germination, when the first leaf of 
seedlings completely expanded, a total of 24 
seedlings (12 OL seedlings and 12 YO 
seedlings) were transplanted in pots (40 cm 
diameter and 60 cm height), filled with 25 kg of 
soil (2/4 of sieved soil, 1/4 of potting compost 
and 1/4 of agriperlite). Sieved soil was a sandy-
clay-loam overlaid on limestone (Xerochrepts), 
with an average N content of 0.76‰, and a C/N 
ratio of 12. Until the beginning of the treatment, 
seedlings were regularly watered with 1000-1500 
ml of water every 2 days. On 12th September 
2011, after 2 (OL) and 1 month (YO) from 
transplanting respectively, seedlings were 
exposed to treatments: Watered (W, control 
treatment; 6 OL and 6 YO seedlings) or 
unwatered (D, drought treatment; 6 OL and 6 YO 
seedlings). In control treatment, seedlings have 
been irrigated with 1000-1500 ml of water per pot 
every 2 days. On the contrary, drought  treatment
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was imposed by withholding water. Pots were 
arranged in a completely randomized design. On 
4th, 8th, 12th, 19th, and 26th day from treatment’s 
beginning, leaf and soil water content, biometric, 
gas exchange, and fluorescence measurements 
were performed on 6 seedlings per treatment 
and per age. On 26th day from treatment’s 
beginning, biometric destructive measurements 
were carried out on 5 seedlings per treatment per 
age. 
 

2.2 Soil and Leaf Water Content  
 
At each measurement day, a cylinder of 238.5 
cm3 of soil was collected from each pot between 
11:00 and 12:00 a.m. The sampling was always 
performed between seedling and pot edge to 
avoid edge effect, and shifting the area of 
sampling. The soil was immediately replaced, 
adding in each pot an equal cylinder of 238.5 
cm3 of soil collected from a pot subjected to the 
same water treatment. Soil samples were 
weighted (soil fresh weight, sFW) and then, after 
oven drying at 100°C, when samples reached a 
constant weight (ca. 72 h), weighted again (soil 
dry weight, sDW). Soil water content (SWC) was 
calculated as: SWC=(sFW-sDW)/sDW*100. Soil 
water potential (Ψs) was calculated through an 
empirical relationship between soil water content 
(SWC) vs soil water potential (Ψs). The relation 
was determined by a water-content vs water-
potential curve, constructed by using a pressure 
plate device (Richard’s pressure plate 
apparatus). Water-content and water-potential 
measurements were performed on six randomly 
selected soil samples in a pressure range from 
0.02 to 1.5 MPa, founding the relation Ψs = 
81.607*e(-0.3118*SWC) (R2=0.88, for Ψs<1.5 MPa). 
 
Two leaf discs of 14.5 cm2 were collected from 
one mature leaf between 11:00 and 12:00 a.m. 
from each plant and at each measurement day. 
Discs were immediately weighted (fresh weight, 
FW), immersed in distilled water for 4 h at room 
temperature, blotted dry, and then weighted 
(water saturated weight, TW). After oven drying 
at 80°C, when samples reached a constant 
weight (ca. 48 h), discs were weighted again (dry 
weight, DW). Leaf RWC was calculated as: 
RWC=(FW – DW)/(TW – DW)*100. 
 

2.3 Biometric Measurements  
 
Seedling height (H), stem basal diameter at 1 cm 
from ground level (Ds), number of leaves (Nl), 
number of fallen leaves (Nfl), and number of 
secondary branches (Sb) were measured at 
each measurement day. Total above dry 

biomass (AB) was calculated through the 
allometric relationship, determined by Achten et 
al. [7], between AB and basal stem diameter 
(Ds): AB=0.029*Ds2.328. Collected data were 
used to evaluate the accuracy of allometric 
relationship by a linear regression analysis 
between estimated total above dry biomass and 
total above dry biomass measured by destructive 
method, as described below (R2 = 0.87; p<0.01; 
N = 20). 
 
After 26 days from treatment’s beginning, 
seedlings were separated into leaves, stem, and 
(softly washed) roots, and the following 
destructive measurements were carried out: Leaf 
fresh weight (FWl), leaf dry weight (DWl), total 
leaf area (Al), stem fresh weight (FWs), stem dry 
weight (DWs), stem volume (Vs), root fresh 
weight (FWr), root dry weight (DWr), and root 
length (Lr). Dry weights were measured when 
samples at 80°C reached a constant weight ( ca. 
48 h). Total leaf area was measured by an Area 
Meter (LI-3100C Area meter, LI-Cor, Lincoln, NE, 
USA). Stem volume was measured by cutting the 
stem into small sections and by immerging it in a 
graduated cylinder (500 ml). The amount of 
displaced water was assumed equal to the 
volume of the stem section. 
 
Based on destructive measurements, several 
indexes of seedling growth were calculated: 
specific leaf area (SAl=Al/DWl) [mm2 mg-1], leaf 
dry matter content (DMCl=DWl/FWl) [mg g-1], 
stem specific density (SDs=DWs/Vs) [mg cm-3], 
stem dry matter content (DMCs=DWs/FWs)     
[mg g-1], specific root length (SLr=Lr/DWr) [mm 
mg-1], and root:shoot ratio (R:S= 
DWr/(DWl+DWs)). 
 

2.4 Gas Exchange Measurements 
 
Light-saturated net photosynthesis (Amax) and 
stomatal conductance to water vapour (Gw) were 
measured at three experimental times: in the 
morning (7:00-9:00), at midday (12:00-14:00), 
and in the afternoon (16:00-18:00). 
Measurements were performed with an infra-red 
gas-analyser (CIRAS-1 PP-Systems, Herts, UK), 
equipped with a 2.5-cm2 Parkinson leaf cuvette, 
which controlled leaf temperature (ambient ±1 
°C), leaf-to-air vapour pressure deficit (ambient ± 
0.2 kPa), saturating light (1500 ± 20 µmol photon 
m-2 s-1) and carbon dioxide (CO2) concentration 
(380 ± 10 µmol mol-1). Gas exchanges were 
measured on the central part of the 5th-7th leaf 
from the tip of all plants. Preliminary light curves 
(A⁄Q curves) showed that light at 1500 µmol 
photon m-2 s-1 was saturating.  
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2.5 Chlorophyll a Fluorescence Measure-
ments 

 
Chlorophyll a fluorescence transient was 
measured in vivo in the morning (7:00-9:00), at 
midday (12:00-14:00), and in the afternoon 
(16:00-19:00) with a direct fluorometer (Handy 
PEA, Hansatech Instr., Kings Lynn, UK). Before 
measurement, leaves were dark-adapted for 40 
min with leaf clips. The fluorescence rising 
transient was induced by saturating red-actinic 
light (1500 µmol m-2 s-1, peak at 650 nm, duration 
1 s). Data were recorded for 1 s, starting from 10 
µs after the onset of illumination. Chlorophyll a 
fluorescence was measured on the central part 
of the 5th-7th leaf from the tip of all plants. The 
values of Fo, ground fluorescence yield in the 
dark-adapted state (when all reaction centres of 
PSII are considered open) and Fm, maximal 
fluorescence yield in the dark (when all reaction 
centres of PSII are considered closed), were 
collected. Maximum quantum yield for primary 
photochemistry (Fv/Fm) was calculated as (Fm-
Fo)/Fm [25]. Additionally, biophysical and 
phenomenological expressions, which quantify 
the stepwise flow of energy through the 
photosystem two (PSII), have been calculated by 
the quantitative analysis of the polyphasic fast 
fluorescence rise transient, called JIP-test [26]: 
performance index per absorption flux (PIabx), 
electron transport probability (ψ0), quantum yield 
for electron transport (φE0), quantum yield for 
energy dissipation (φD0), effective antenna size 
of an active reaction centre (ABS/RC), maximal 
trapping rate of PSII (TR0/RC), electron transport 
in an active reaction centre (ET0/RC), and 
effective dissipation of an active reaction centre 
(DI0/RC) (see [27] for parameter definitions). 
Analysis of the transient was performed with 
Biolyzer 3.06 software (by Ronald Maldonado-
Rodriguez, Bioenergetics Laboratory, Geneva, 
Switzerland). 
 
2.6 Statistical Analyses 
 
Data were checked for normal distribution 
(Shapiro-Wilk W test) and homogeneity of 
variance (Levene’s Test). On data collected at 
treatment’s beginning (time 0), a t-student test 
was applied to compare the effect of seedling 
Age (OL vs YO). On data collected 26 days after 
treatment’s beginning, one-way ANOVA was 
performed considering four groups: OL-W, OL-D, 
YO-W, and YO-D. A Tukey HSD test was applied 
to discriminate the significance of mean 
differences between homogeneous groups. 

Tests of significance were made at a 95% 
confidence level. Percents were arcsine-square 
root transformed prior to analysis. The statistical 
unit was the seedling. Analyses were processed 
using STATISTICA 6.0 Package for Windows 
(Stat Soft 2001, Tulsa, OK, USA). 
 
3. RESULTS  
 
3.1 Soil and Leaf Water Content  
 
From June to October, daily mean air 
temperature inside the greenhouse facility was 
24.7 (±2.2) °C, with minimum value of 17.8 (±2.2) 
°C and maximum value of 33.1 (±3.2) °C, and 
daily mean relative humidity was 77.8 (±6.2)%, 
with minimum value of 42.0 (±9.0)% and 
maximum value of 99.1 (±0.6)% (Fig. 2).  
 

 
 

Fig. 2. Soil water content (SWC) and leaf 
relative water content (RWC) of 3-month-old 

J. curcas  seedlings (OL - Circles) or 2-month-
old J. curcas  seedlings (YO – Triangles), 

exposed to watered (W – White symbols) or 
Drought (D – Gray symbols) treatments. 
Values represent means ±S.E (N=6). The 

dashed line indicates the value of the soil 
permanent wilting point (PWP, Ψs = -1.5 

MPa). At treatment’s beginning (day zero), 
significant differences between OL and YO 

seedlings are marked by asterisks (Student’s 
t-test; P < .05). At 26 th day, the lowercase 

letters indicate significant differences among 
groups OL-W, OL-D, YO-W, and YO-D (Tukey 

HSD; P < .05) 
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Soil water content vs soil water potential curve 
(data not shown) pointed out the following 
findings: i) soil water potential of -0.015 MPa, 
corresponding to the conventional threshold 
value for field capacity, was observed at a soil 
water content of 25%; and ii) soil water potential 
of -1.5 MPa, considered as conventional 
permanent wilting point (PWP) for agricultural 
crop plants was observed at a soil water content 
of 13%. In the watered treatment soil water 
content was maintained near 20% (Fig. 2), while 
in drought treatment, after 8 days from 
treatment’s beginning, the soil water content was 
lower than 13%, corresponding to the 
conventional permanent wilting point, and then it 
decreased until the value of 5% (Fig. 2). Despite 
the drastic reduction of available water for the 
whole period of drought stress, leaf RWC of 
unwatered seedlings was comparable with leaf 
RWC of watered seedlings (P > .05, Fig. 2). 
Additionally, no differences were observed 
between leaf RWC of older seedlings (OL, 3-
month-old) and younger seedlings (YO, 2-month-
old) (P > .05, Fig. 2). 
 

3.2 Biometric Parameters 
 
At treatment’s beginning (day zero), all the 
biometric parameters (seedling height, stem 
basal diameter, number of leaves, number of 
fallen leaves, number of secondary branches, 
and total above dry biomass) were higher in OL 
seedlings than in YO seedlings (P < .001, Fig. 3). 

In the course of the experiment, both in YO and 
OL seedlings, stem diameter and total dry 
biomass grew steadily in watered seedlings, 
while in unwatered seedlings stem diameter and 
total dry biomass showed little and not significant 
growth (Fig. 3). After 26 days of drought stress 
seedling height, number of leaves, and number 
of lateral branches per plant were not 
significantly influenced by drought stress (Fig. 3). 
Additionally, drought stress did not influence the 
number of fallen leaves of YO seedlings, while 
unwatered OL seedlings lost more leaves than 
watered OL seedlings (Fig. 3). Drought stress 
reduced total leaf area and increased specific 
leaf area and root:shoot ratio, while stem specific 
density, root length, stem dry matter content, and 
specific root length were not significantly 
influenced (Fig. 4). Unwatered OL seedlings 
showed lower leaf dry matter content than 
watered OL seedlings (Fig. 4).  
 

3.3 Photosynthetic Activity 
 
Gas exchange parameters (Amax and Gw) 
measured at the beginning of the treatment were 
higher in YO seedlings than in OL seedlings (P < 
.05, Fig. 5), with the exception of midday Amax. In 
the course of the experiment, morning and 
midday Amax and Gw of YO seedlings, both 
watered and unwatered, decreased and reached 
the values of morning and midday Amax and Gw of 
watered OL seedlings (Fig. 5). These latter 
values, in fact, remained constant throughout the

 

 
 

Fig. 3. Biometric parameters of 3-month-old J. curcas  seedlings (OL - Circles) or 2-month-old 
J. curcas  seedlings (YO – Triangles), exposed to Watered (W – White symbols) or Drought (D – 
Gray symbols) treatments. Values represent means ±S .E (N=6). At treatment’s beginning (day 

zero), significant differences between OL and YO se edlings are marked by asterisks (Student’s 
t-test; P < .05). At 26 th day, the lowercase letters indicate significant di fferences among groups 

OL-W, OL-D, YO-W, and YO-D (Tukey HSD; P < .05) 
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Fig. 4. Growth indexes of 3-month-old J. curcas  seedlings (OL – no-line patterned columns) or 
2-month-old J. curcas  seedlings (YO – line patterned columns), exposed t o Watered (W – 
White columns) or Drought (D – Gray columns) treatm ents. Values represent means ±S.E. 

(N=5). The lowercase letters indicate significant d ifferences among groups OL-W, OL-D, YO-W, 
and YO-D (Tukey HSD; P < .05) 

 
whole experiment (ANOVA results for time factor 
of watered OL seedlings: P > .05, Fig. 5). 
Morning Amax and Gw of unwatered OL seedling 
were significantly reduced by drougth stress and 
Amax reached negative values after 2 weeks of 
treatment, indicating that the uptake of CO2 was 
lower than the output of CO2 (Fig. 5). In the 
afternoon, watered YO and watered OL 
seedlings showed similar Amax and Gw                    
values, while, both in OL and in YO, Amax and               
Gw were significantly reduced by the stress        
(Fig. 5). 

3.4 Photochemical Activity 
 
At the beginning of the treatment, midday  
Fv/Fm, morning PIabx, ψ0 and φE0 and     
afternoon ψ0 and ET0/RC were higher in            
OL seedlings than in YO seedlings (P < .05,    
Fig. 5 and Fig. 6), while morning              
ABS/RC, TR0/RC and DI0/RC and midday       
φD0, ABS/RC and DI0/RC were lower in             
OL seedlings than in YO seedlings (P < .05,    
Fig. 6).  
 



Fig. 5. Light- saturated net photosynthesis (A
(Gw), maximum quantum yield for primary photochemistry  (Fv/Fm), and performance index per 
absorption flux (PIabx) measured in the morning, at  midday, and in the afternoon, of 3

old J. curcas seedlings (OL - Circles) or 2
exposed to Watered (W – White symbols) or Drought (D 

represent means ±S.E. (N=6). At treatment’s beginni ng (day zero), significant differences 
between OL and YO seedlings are marked by asterisks  (Student’
the lowercase letters indicate significant differen ces among groups OL

 
After 26 days of drought stress, with the 
exception of ET0/RC, all the chlorophyll 
fluorescence parameters were significantly 
influenced by drought only in OL seedlings, while 
in YO seedlings there were no differences 
between control and treated seedlings (Fig

Contran et al.; JEAI, 16(3): 1-13, 2017; Article no.

 
8 
 

 
saturated net photosynthesis (A max) and  stomatal conductance to water vapour 

), maximum quantum yield for primary photochemistry  (Fv/Fm), and performance index per 
absorption flux (PIabx) measured in the morning, at  midday, and in the afternoon, of 3

Circles) or 2 -month-old J. curcas  seedlings (YO –
White symbols) or Drought (D – Black symbols) treatments. Values 

represent means ±S.E. (N=6). At treatment’s beginni ng (day zero), significant differences 
between OL and YO seedlings are marked by asterisks  (Student’ s t- test; P < .05). At 26
the lowercase letters indicate significant differen ces among groups OL -W, OL-D, YO

YO-D (Tukey HSD; P < .05) 

After 26 days of drought stress, with the 
/RC, all the chlorophyll a 

fluorescence parameters were significantly 
influenced by drought only in OL seedlings, while 
in YO seedlings there were no differences 
between control and treated seedlings (Figs. 5 

and 6). At all hours of the day, Fv/Fm, PI
and φE0 were lower in unwatered OL seedlings 
than in watered OL seedlings, while 
ABS/RC, TR0/RC and DI0/RC were higher in 
unwatered OL seedlings than in watered OL 
seedlings (P < .05, Figs. 5 and 6). 

 
 
 
 

; Article no.JEAI.33639 
 
 

 

) and  stomatal conductance to water vapour 
), maximum quantum yield for primary photochemistry  (Fv/Fm), and performance index per 

absorption flux (PIabx) measured in the morning, at  midday, and in the afternoon, of 3 -month-
 Triangles), 

Black symbols) treatments. Values 
represent means ±S.E. (N=6). At treatment’s beginni ng (day zero), significant differences 

test; P < .05). At 26 th day, 
D, YO-W, and 

and 6). At all hours of the day, Fv/Fm, PIabx, ψ0, 

unwatered OL seedlings 
than in watered OL seedlings, while φD0, 

/RC were higher in 
unwatered OL seedlings than in watered OL 

 



Fig. 6. Chlorophyll a fluorescence parameters (see section 2.5 for acrony ms) measured in the 
morning, at midday, and in the afternoon, of 3
2-month- old J. curcas seedlings (YO 
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4. DISCUSSION 
 
Drought affects agricultural productivity around 
the world, influencing plant growth and yield, 
especially in arid and semi-arid regions, where 
plants are often subjected to long periods of 
water stress [28]. Moreover, worse conditions are 
expected in the next years as a consequence of 
climatic changes [24]. Morphological and 
physiological responses to drought stress may 
vary considerably among plant species, and the 
mechanisms, which allow a species to tolerate 
prolonged periods of water deficit, can involve 
numerous attributes. Wood plants may employ 
two different water use strategies: strategies of 
drought avoidance or drought tolerance [29]. 
Both strategies involve diverse physiological and 
biochemical mechanisms that enable a plant to 
grow and survive even under drought conditions. 
Nevertheless, these strategies are not mutually 
exclusive and, in practise, plants may combine a 
range of response type [30]. There is no clear 
agreement on the physiological mechanisms 
specifically involved in the responses of J. curcas 
to drought. Maes et al. [6], Achten et al. [7], and 
Sapeta et al. [18] found that J. curcas is a 
species with a clear drought avoidance strategy 
in its leaves and also that this crop has several 
plant-water relations in common with deciduous 
stem succulent trees. Generally, drought 
avoidance is obtained by maintenance of high 
tissue water potential despite a soil water deficit. 
On the contrary, the mechanisms triggered in 
response to drought, as described by Silva et al. 
[10,16], Pompelli et al. [8], and dos Santos et al. 
[17], suggest that J. curcas tree activates drought 
tolerance strategy. Generally, drought tolerance 
is the ability to withstand water deficit with low 
tissue water potential. 
 

Our results show that the seedlings of an Indian 
cultivar of J. curcas, widely cultivated in Africa, 
survived prolonged periods of drought stress, 
characterized by soil water potential constantly 
lower than permanent wilting point. Despite the 
stress, leaf relative water content of unwatered J. 
curcas seedlings was maintained at level of 
watered seedlings, even under extended drought 
conditions. Possibly, leaves have maintained a 
good leaf water status by means of an effective 
stomatal closure, associated with a reduced 
aboveground growth and an increased root: 
Shoot ratio. However, as described below, the 
mechanisms of drought response depend on 
seedling age.  
 
The growth of unwatered seedlings was 
prevented by drought, with no difference 

between OL and YO seedlings. Under drought 
conditions, seedlings reduced the total area of 
the leaves, with important consequences for the 
leaf energy and water balance. According to 
Cornelissen et al. [31], the increase of specific 
leaf area of unwatered seedlings, caused by a 
reduction in leaf dry weight, suggests that          
J. curcas seedlings under drought reduced their 
investment in leaf structures. Both in YO and OL 
seedlings, drought stress increased the ratio 
between root and shoot. In OL seedlings the 
increase of root:shoot ratio was due more to a 
reduction of leaf dry matter content and to a 
higher leaf abscission than to a greater allocation 
of resources in the roots. On the contrary, in YO 
seedlings, the increase of root: Shoot ratio was 
due both to a decrease in leaf dry weight and to 
a higher root dry weight. The highest specific root 
length of unwatered J. curcas seedlings suggests 
that YO seedlings were able to build more roots 
for a given dry mass investment, and this was 
achieved by constructing roots of thin diameter or 
low tissue density [31]. This strategy allows a 
faster root elongation rate, which results in higher 
nutrient and water uptake and a higher rate of 
initial survival [31], but, in the course of time, the 
production of thinner root could reduce the 
penetration force on soil and influence the ability 
of the plant to absorb water from the deeper 
layers of the soil [32]. 
 
Drought induced an afternoon down-regulation of 
photosynthesis by an increase in diffusive 
resistances to CO2 at stomatal level in both YO 
and OL J. curcas seedlings. YO and OL 
seedlings differed in the photosynthetic response 
to drought, as prolonged drought stress resulted 
more detrimental in OL seedlings. Probably this 
difference depends on the initial condition of 
photosynthetic activity. In watered condition, the 
photosynthetic apparatus of OL seedlings is 
more efficient than that one of YO seedlings, 
even though OL seedlings had lower net 
photosynthesis (with the exception of midday), 
due to a higher stomatal closure. OL seedlings 
were able to better balance water loss and 
photosynthetic activity by reducing stomata 
conductance and maximizing the yield for 
primary photochemistry, especially in the early 
hours of the day. This is due to a more efficient 
electron transport (high ψ0, φE0), which leads to 
a reduced need to dissipate excess of energy 
(low φD0, TR0/RC and DI0/RC) [30]. In order to 
promote their development, YO seedlings 
probably tried to maximize net photosynthesis, 
keeping the stomata open, at the expense          
of a less efficient photochemistry system,        
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and favouring problems related to the dissipation 
of excess energy and production of ROS [33]. In 
this situation, OL seedlings, with already 
balanced values of gas exchange and probably 
more acclimated to excess energy, did not 
present an efficient mechanism for protection 
against drought-induced oxidative stress, as 
suggested by the reduction of photosystem II 
integrity [26]. On the contrary, YO seedlings 
implemented mechanisms of tolerance, through 
the fast activation of excess energy dissipation 
mechanisms (high φD0, TR0/RC and DI0/RC). In 
OL seedlings, the further reduction of stomatal 
conductance caused by drought, even in the 
early hours of the day, and the consequently 
considerable reduction of net photosynthesis, led 
to a down-regulated photosynthetic electron 
transport through the down-regulation of 
photosystem II activity. Furthermore, the down-
regulation of photosystem II activity also led to a 
reduction of the maximum quantum yield for 
primary photochemistry at all hours of the day 
[34,35]. 
 
5. CONCLUSION 
 
The present work supports the hypothesis that J. 
curcas could survive and grow in areas with 
limited water availability or prolonged periods of 
drought and results suggest that seedling 
transplanting should be performed in the earlier 
phase of the seedling growth. Anyway, before 
promoting J. curcas cultivation in arid and semi-
arid regions, a deeper understanding of the 
response mechanisms of J. curcas to drought 
should be investigated in combination with other 
co-occurring constraints, such as heat stress and 
salinity. 
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