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Infectious disease outbreaks are causing widespread declines of marine invertebrates
including corals, sea stars, shrimps, and molluscs. Dermo is a lethal infectious disease of
the eastern oyster Crassostrea virginica caused by the protist Perkinsus marinus. The
Pacific oyster Crassostrea gigas is resistant to Dermo due to differences in the host-
parasite interaction that is not well understood. We compared transcriptomic responses to
P. marinus challenge in the two oysters at early and late infection stages. Dynamic and
orchestrated regulation of large sets of innate immune response genes were observed in
both species with remarkably similar patterns for most orthologs, although responses inC.
virginica were stronger, suggesting strong or over-reacting immune response could be a
cause of host mortality. Between the two species, several key immune response gene
families differed in their expansion, sequence variation and/or transcriptional response to
P. marinus, reflecting evolutionary divergence in host-parasite interaction. Of note,
significant upregulation of inhibitors of apoptosis (IAPs) was observed in resistant C.
gigas but not in susceptible C. virginica, suggesting upregulation of IAPs is an active
defense mechanism, not a passive response orchestrated by P. marinus. Compared with
C. gigas, C. virginica exhibited greater expansion of toll-like receptors (TLRs) and positive
selection in P. marinus responsive TLRs. The C1q domain containing proteins (C1qDCs)
with the galactose-binding lectin domain that is involved in P. marinus recognition, were
only present and significantly upregulated in C. virginica. These results point to previously
undescribed differences in host defense genes between the two oyster species that may
account for the difference in susceptibility, providing an expanded portrait of the
evolutionary dynamics of host-parasite interaction in lophotrochozoans that lack
adaptive immunity. Our findings suggest that C. virginica and P. marinus have a history
of coevolution and the recent outbreaks may be due to increased virulence of the parasite.
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INTRODUCTION

Marine diseases can be caused by a variety of factors, such as
parasite infections, biological toxins and environmental stress
(Bossart, 2007; Burge et al., 2014; Wilson and Ho, 2015).
Environmental stress caused by climate change and other
human activities contributes to the development of marine
diseases. Global warming has caused range extension of some
parasites (Ford, 1996; Studer et al., 2010), and ocean acidification
may weaken the immune defense of calcifying hosts (Bibby et al.,
2008). Human activities have facilitated rapid transmission of
some marine infectious diseases (Harvell, 1999; Harvell et al.,
2004; Guo and Ford, 2016). Outbreaks of marine infectious
disease have become more frequent and severe in recent
decades (Groner et al., 2016; Sutherland et al., 2016).

Infectious diseases can cause mass mortalities of diverse marine
organisms, affecting their abundance, changing community
structure, and threatening the health of marine ecosystems
(Harvell et al., 2004; Tim, 2007). They may impact major fishery
and aquaculture species and cause immeasurable economic losses.
Molluscs are a major group of marine animals, many of which are
economically important as major fishery and aquaculture species
(Guo et al., 1999; Shumway, 2021). Molluscan populations, fisheries
and aquaculture are seriously affected by infectious disease
outbreaks that have become more frequent and severe due to
climate changes and human activities (Guo and Ford, 2016).

Dermo is a lethal disease of the eastern oyster Crassostrea
virginica caused by the protozoan parasite Perkinsus marinus.
The intracellular parasite is transmitted directly from oyster to
oyster through the water. The infection is characterized by
hemocyte infiltration followed by tissue fibrinolysis and
blockages of hemolymph vessels, leading to inhibition of gonadal
development and death of the oyster by emaciation (Faisal et al.,
1999). Dermo causes extensive mortalities of the eastern oyster
along the Atlantic coast of United States and threatens both
aquacultural and wild populations (Levine, 1978; Reece et al.,
2008). Mortality events associated with this disease cause
tremendous losses in the oyster industry, and often wipe out up
to 100% of harvestable naive stocks. Such mass mortalities
negatively impact water quality and the overall health of the
ecosystem (Newell, 1988). While P. marinus is a highly
successful parasite of C. virginica, the Pacific oyster Crassostrea
gigas, a sister species from Asia, is resistant to P. marinus infections
(Meyers et al., 1991). The parasite can infectC. gigas at low intensity
but does not cause serious pathologies or mortalities. How sister
species without adaptive immunity differ in their susceptibility to
the same pathogen is of fundamental interest. The difference in
Dermo resistance between two Crassostrea oysters provides a good
opportunity to study the evolution of host-parasite interactions in
organisms without adaptive immunity.

The complex interaction between the host and parasite is
fundamental to the infection process, the outcome of which often
determines life or death of the host or parasite. The evolutionary
race between a host and its parasites as best characterized by the
Red Queen hypothesis is intense and everlasting (Van Valen,
1973). The ability of a particular pathogen to cause disease is
determined by its virulence, and the total “cards of virulence”

possessed by a pathogen determine its relative capacity to induce
disease within a host (Winnicki, 2010; Kim et al., 2016). Host
organisms need to evolve sophisticated defense mechanisms
against parasites that constantly invent new ways to infect.
Host-pathogen interactions are often dynamic, and the disease
outcome is commonly dependent on multiple factors including
the state of the host, the pathogenic potential of the pathogen and
environmental conditions or stressors (Allam et al., 2013;
Debasish et al., 2021).

While bivalve molluscs do not have the canonical adaptive
immune system, they have evolved effective host-defense
mechanisms to cope with biotic and abiotic stress (Guo et al.,
2015; Wang et al., 2018). The bivalve host-defense system
includes two major components, humoral and cellular
immune responses. On the molecular level, the humoral
immunity starts from recognizing conserved microbial-
associated molecular patterns (MAMPS) and pathogen-
associated molecular patterns (PAMP) (Aladaileh et al., 2007).
Upon recognition, the pathogen-associated pattern recognition
receptors (PRRs) activate immune signaling pathways and
antimicrobial effectors (Akira et al., 2006). The cellular
immune responses begin from phagocytosis and encapsulation
by hemocytes, and then trigger the release of enzymes and oxygen
metabolites (Wang et al., 2018). Oxidative bursts not only have a
cytotoxic effect on invading pathogens but also serve as signals
that activate further defense reactions (Anderson, 1999; Goedken
et al., 2005). Besides immune reactions, apoptosis (Zhang et al.,
2011; Qu et al., 2015; Li et al., 2017) and authophage (Moreau
et al., 2015) also play an important role in host defense of bivalves.

Despite the devastating impact of Dermo, the molecular
mechanisms of the host-parasite interplay between oysters and
P. marinus are still largely unknown (Anderson, 1996). Tanguy
et al. (2004) identified candidate genes from several pathways that
were upregulated in response to P. marinus infection in C.
virginica and C. gigas, including toll-like receptors, galectin, and
genes involved in energy metabolism and metal binding. A
galectin of C. virginica has been shown to function as a
hemocyte receptor that recognizes P. marinus and facilitates
phagocytosis (Tasumi and Vasta, 2007). Using a 12 K
oligonucleotide microarray, Wang et al. (2010) revealed that
genes involved in antimicrobial defense, pathogen recognition
and uptake, oxidative stress and apoptosis are differentially
expressed under P. marinus infection. Transcriptomic analyses
in C. virginica identified a large set of differentially expressed
genes and the upregulation of genes for proteolysis regulation and
oxidation-reduction processes in resistant families (Proestou and
Sullivan, 2020). Models have been developed to simulate and
predict P. marinus transmission in C. virginica populations
(Powell et al., 2011; Bidegain et al., 2017). It has been
suggested that C. gigas may be more effective in degrading P.
marinus than C. virginica (La Peyre et al., 1995), although the
molecular mechanisms that underpin its effective defense are not
understood.

In this study, we compared transcriptomic response to P.
marinus infection in the susceptible eastern oyster with that of the
resistant Pacific oyster, to better understand the evolutionary
dynamics of host-parasite interactions. Comparative analyses
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revealed specific dynamic and orchestrated expression of a large
set of innate immune genes in both species. Comparing infected
gene expression profiles against P. marinus infection between two
oysters identified previously undescribed differences in host
defense, which may underpin differences in susceptibility and
point to new mechanisms for the evolution of disease resistance.
These results contribute to our understanding of host-defense
and adaptation, as well as the development of disease-resistant
stocks for aquaculture.

MATERIALS AND METHODS

Experimental Oysters,P.marinusChallenge
and Sample Collection
The eastern and Pacific oysters used in this study were obtained
from oyster farms in Maine and Washington, respectively.
Oysters were brought to the lab and acclimated for 24 h in
1 μm filtered seawater at 23°C before the challenge experiment.
All oysters were notched at the ventral edge of the shell adjacent
to the gills in preparation for shell cavity inoculation after
previous studies using P. marinus harvested from infected
oysters (Chintala et al., 2002; Ford et al., 2002). For the
challenged group, the shell cavity of each oyster was
inoculated with 1.2 × 106 P. marinus cells in 100 μL of
seawater fortified with 100 U penicillin and 100 μg of
streptomycin mL−1 (pen/strep). The control oysters were
injected with 100 μL filtered seawater (FSW) similarly fortified
with pen/strep (Figure 1). At the time of injection, ten oysters
from each species were sampled, and a piece of gill was preserved

in RNAlater as Time 0 samples. After injection, a wide rubber
band was placed around each oyster to cover the notch and to
minimize ejection of the inoculum. Eight hours after the
injection, the oysters were returned to seawater and fed every
day with algal paste. Seawater was changed twice per week. The
infection by P. marinus was determined with Ray’s Fluid
Thioglycollate Medium (RFTM, Bushek et al., 1994). At 24 h
and 30 days post injection, ten oysters were sampled from
challenged and control groups of each species by fixing a piece
of gill in RNAlater. Samples were stored at −80°C before RNA
extraction.

RNA Isolation and Library Construction
Total RNA of each sample was extracted using the Trizol-
chloroform extraction method. The RNA quality and
concentration were checked by Qubit™ RNA BR Assay Kit
(Thermo Fisher Scientific) and Agilent Bioanalyzer 2100. All
extracted samples had an A260/280 ratio greater than 1.8.
RNA from the ten oysters was extracted separately and then
pooled with equal amounts into one sample for library
construction. RNA-sequencing libraries were constructed
using the NEBNext Ultra RNA Library Prep Kit, following
the manufacturer’s instructions. Briefly, 1 mg of total RNA
from each sample was used for the double stranded cDNA
synthesis. Then, size selection was performed using a 2%
agarose gel to remove self-ligated adaptors, generating
cDNA libraries with an average size of 200–250 bp. RNA
sequencing of prepared libraries was carried out on high-
throughput Illumina sequencing platforms. Libraries were
quantified, multiplexed, and sequenced as 49 bp single-end

FIGURE 1 | Schematic diagram of experimental design. FSW, filtered seawater.
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reads. A total of 159 M reads were generated in this study
(Supplemenatary Table S1).

Data Analysis, Identification and GO
Enrichment Analysis of Differentially
Expressed Genes
FastxToolkit pipeline (http://hannonlab.cshl.edu/fastx_toolkit/
index.html) was used to process the raw reads to evaluate
sequencing quality, remove low-quality reads (length threshold
<50 bp and quality threshold <20), adaptor sequences, poly-N
and known non-coding RNAs. The obtained clean reads were
then mapped to the genomes of C. virginica (v3.0; NCBI
Bioproject PRJNA379157) and C. gigas (v9; NCBI Bioproject
PRJNA70283) by Tophat2 software (v2.1.1, Trapnell et al., 2009).
Gene expression levels were measured by fragments per kilobase
of exon per million fragments mapped (FPKM) using HT-seq
(Anders et al., 2015). The differentially expressed genes (DEGs)
were identified with the edgeR tool of R programming language
with the threshold value |log2FC| ≥ 1 (multiple of Fold change,
FC: difference) and FDR ≤ 0.05. The gene ontology (GO)
enrichment analysis of DEGs was conducted with Blast2GO
software. The annotated results with corrected FDR ≤ 0.05
were selected as the enrichment functions. Fisher’s LSD was
used to test significant enrichment when the number of genes
in a GO term was less than 5, and χ2 test was used when the
number of genes ≥5.

Identification of Orthologous Genes
Between C. virginica and C. gigas
OrthoFinder (Emms and Kelly, 2015) was used to identify
orthologous genes between C. virginica and C. gigas with the
following steps: 1) all-vs-all search through BLAST for potential
orthologous genes with evalue ≤ 1e-3 as the threshold; 2)
standardize the score of BLAST bit based on gene length and
phylogenetic analysis; 3) use Reciprocal Best length-Normalised
Hit (RBNHs) to determine the threshold of sequence similarity of
homologous groups; and 4) Markov clustering (MCL) gene
clustering and orthologous grouping.

Identification of Immune-Related Genes
We used domain prediction and sequence homology search to
annotate genes that are potentially involved in immune response
in C. virginica and C. gigas. First, InterProScan (Quevillon et al.,
2005) and Pfam (Mistry et al., 2021) were used to annotate genes
and gene models with characteristic immune domains or
motifs. Second, BLASTP package (Mahram and Herbordt,
2015) was used to search against oyster gene datasets with
canonical immune genes from model organism as inquiries.
Third, TBLASTN package (Gertz et al., 2006) and Genewise
(http://www.ebi.ac.uk/Tools/Wise2/index.html) were used to
predict genes from genome sequences. Immune gene models
predicted from these three methods were integrated to the
primary immune geneset. Then, all the candidate gene models
annotated with immune function by blast against NCBI nr
database and predicted with immune domains by SMART

(http://smart.embl-heidelberg.de/) were manually checked,
resulting in the final immune geneset.

Phylogenetic Analysis
Multiple sequence alignments were performed using ClustalWwith
default parameters and the resulting alignments were refined with
trimAl (Capella-Gutierrez et al., 2009). Phylogenetic trees were
constructed with maximum likelihood (ML) analytical approaches.
MEGA and PHYML were used to construct the NJ and ML trees,
respectively. The robustness of the inferred trees was assessed using
bootstrapping 1,000 in the phylogenetic tree.

PAML (v4) was used for comparing the rate per site of dN (non-
synonymous) to the rate per site of dS (synonymous) mutations.
The recommended subset of four M-series models of M1a (nearly
neutral), M2a (positive selection), M7 (beta) and M8 (beta & ω)
coupled with Bayesian Empirical Bayes (BEB)methods (Yang et al.,
2005) were implemented. The Log-likelihood values (lnL) of M2a-
M1a and M8-M7 were from explicit tests for the presence of
positively selected sites. The p values were corrected by a multiple
testing correction method (Benjamini and Hochberg, 1995).
Furthermore, the probabilities of sites under positive selection
were assessed by their posterior probabilities calculated with the
BEB method. The amino acid site would be considered as a
positively selected site if the value of dN/dS > 1 appears in the
LRT and posterior probability exceeds 90% (Lan et al., 2018).
Finally, SWISS-MODEL (http://swissmodel.expasy.org/) was used
to locate and visualize the positively selected sites.

RESULTS

P. marinus Challenge Experiment in the
Oysters
No P. marinus was detected in C. virginica and C. gigas at Time 0,
and in unchallenged control of either species on Day 30 (n � 10
for all). In the challenged groups, P. marinus was detected in 90%
of C. virginica (n � 40) at an average infection intensity of 3.2
(∼160,938 P. marinus cells g−1 wet tissue, Choi et al., 1989), which
is heavy and indicates that the challenge is successful. Infection
was detected in all C. gigas (n � 15) but at a lower average
infection intensity of 1.4 (∼11,202 P. marinus cells g−1 wet tissue,
Choi et al., 1989), confirming a successful challenge and that C.
gigas is resistant or less susceptible.

Transcriptome Analyses of C. virginica
Response to P. marinus Challenge
After filtering and cleaning, 65,537,432 high-quality reads were
mapped to the reference genome for C. virginica, averaging 10 to
14million per sample (Supplementary Table S1). Themapping ratio
ranged from 80.8 to 84.2%. Of the 39,505 protein-coding genes in the
C. virginica genome, 28,918 genes showed expression levels of FPKM
≥ 1. Overall, 759 genes were differentially expressed in oysters
challenged with P. marinus (VD1 and VD2) compared with
unchallenged controls (V0, VC1, and VC2) (Supplemenatary
Table S2), including 583 DEGs from short-term challenge (24 h)
and 273 DEGs from long-term challenge (30 days) (Figure 2A). Of
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these, 248 and 154 DEGs were up-regulated while 335 and 119 genes
were down-regulated under short- and long-term P. marinus
challenge, respectively (Figure 2A).

Functional analysis showed that the 759 DEGs induced by P.
marinus challenge were mostly involved in transport, stress,
signaling, lipid metabolism, ubiquitination control, immune
response, regulation and structure (Figure 2B). The
“regulation” term was further classified into categories of
transcription factors, protein kinase/phosphatase, metal ion

binding, cell adhesion, protein inhibitor and transferase.
Similarly, the “stress” term included sub-categories of
hydrolase, oxidoreductase, HSP70, endocytosis and apoptosis.
The up-regulation of genes related to “regulation” and “stress”
terms indicated that genes related to stress response system and
metabolism were largely recruited under challenge.

A large number of genes encoding immune receptors (e.g.,
TLRs, C1qDCs, FBGDCs) and effectors were significantly
upregulated during pathogen infection (Figures 2A,C),

FIGURE 2 | Transcriptional changes induced by P. marinus in C. virginica. (A), Volcano plots of transcriptional change under short-term and long-term P. marinus
challenge. Blue points represent downregulated genes, red points represent upregulated genes, and black points represent non-differentially expressed genes. (B),
Functional annotation of differentially expressed genes under P. marinus challenge. (C), Immune-related genes significantly up-regulated after dermo challenge.
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revealing their important role in the response to P. marinus
challenge in C. virginica.

Comparative Transcriptomic Analyses of
Resistant C. virginica and Susceptible C.
gigas
To understand the differences in host defense between the two
species, we first annotated immune related genes in the two
genomes: 1,175 in C. gigas and 1,592 in C. virginica (Figure 3A).

Of these, 201 in C. gigas and 240 in C. virginica were differentially
expressed during P. marinus infection (Figure 3A). Most of these
genes were shared by the two oyster species (Figure 3B). These
shared DEGs mainly consisted of genes for immune recognition
receptors, effectors, lectins, and other proteins related to host-parasite
interaction that play important roles in preventing infection or
improving defense against pathogens. In addition, genes coding
for CD36, NOS, NF-κB, and FADD were differentially expressed
in C. gigas but not in C. virginica. Meanwhile genes coding for βGRP,
Bf, Big defensin, PRX, BPI, IRAK, and MIF were differentially

FIGURE 3 | Comparative transcriptome analysis between C. gigas and C. virginica under P. marinus challenge. (A), Number of immune-related genes identified
(Left) and number of immune-related genes differentially expressed (Right) in C. gigas (Cg) and C. virginica (Cv). (B), Venn diagrams of differentially expressed immune
genes under P. marinus challenge between the two oyster species. (C), Unique and differentially expressed immune genes induced by P. marinus in two oyster species.
(D), Transcriptional change of differentially expressed immune genes shared by two oyster species, including pattern recognition receptors (e.g., TLRs) and
immune effectors (e.g., TRAFs).
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expressed only in C. virginica (Figure 3C). The gene Cvgal, a galectin
consisted of four carbohydrate recognition domains (CRDs) and a
hemocyte receptor of P. marinus (Tasumi and Vasta, 2007), was only
significantly upregulated by P. marinus infection in C. virginica
(Supplementary Figure S1).

Although there was no significant difference in the numbers of
differentially expressed immune-related genes between the two oyster
species after P. marinus infection, the magnitude of up-/
downregulation of the shared immune-related DEGs were
different between the two oyster species. For instance, the
upregulation of PRRs such as TLRs, FBGDCs and C1qDCs were
much higher in C. virginica than that in C. gigas (Figure 3D).
Similarly, immune adaptors (e.g., TRAF) and effectors (e.g., SOD and

Big defensin) also showed stronger upregulation in C. virginica
(Figure 3D). In contrast, stronger upregulation of inhibitors of
apoptosis (IAPs) was observed in C. gigas than in C. virginica
under P. marinus infection (Figure 3D). Thirteen of the expressed
23 IAPs showed 2-fold or more upregulation in C. gigas compared
with only one of the 30 in C. virginica.

Among DEGs induced by P. marinus, GO terms for
“interleukin-6-mediated signaling pathway,” “production of
siRNA involved in chromatin silencing by small RNA,” and
“serine-type endopeptidase inhibitor activity” were significantly
enriched in C. virginica (Figure 4A), while GO terms for “positive
regulation of protein serine/threonine kinase activity” were
significantly enriched in C. gigas (Figure 4B). Interestingly,

FIGURE 4 | GO enrichment analysis of the differentially expressed genes after Dermo challenge between C. virginica (A) and C. gigas (B). Red and blue columns
represent functional enrichments of up-regulated and down-regulated genes, respectively.
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TLRs were significantly enriched in both species, but for different
TLR pathways: “TLR1:TLR2” in C. virginica versus “TLR6:TLR2”
in C. gigas (Figure 4). This finding indicates that different types of
TLRs may play different roles in responding to P. marinus in the
two oyster species.

Positive Selection in P. marinus Responsive
TLRs in C. virginica
Given that the pattern recognition receptor genes (TLRs, C1qDCs,
and FBGDCs) showed significant differential expression in the
two oyster species under P. marinus challenge, we examined
molecular evolutionary history of these gene families in the
two species. The TLRs can be separated into five types based
on domain structures: V-, P-, sP-, sPP-, and Ls-type. The sP-
type was greatly expanded in oysters, and to a greater extent in
C. virginica (105) than in C. gigas (63) (Figures 5A,B). All P.
marinus responsive TLRs of C. virginica were different from
those of C. gigas (Figure 5A). These results indicated that
these P. marinus responsive TLRs were from different lineage-
specific expansions in the two oyster species and may have

different functions in their response to P. marinus. All
differentially expressed TLRs, 10 in C. virginica and 11 in
C. gigas, belonged to sP-type (Figures 5A,C).

Mapping of TLRs to reference genomes revealed that most of the
TLRs expansion in C. virginica and C. gigas was due to tandem
duplication. For instance, of the 130 TLRs of C. virginica, 89 (68.46%)
were found in tandemly duplicated clusters (Figure 6A). The largest
cluster in C. virginica was located on chromosome 7 (NC_035786.1)
and consisted of 11 TLRs (Figure 6B). In addition, a pseudogene
LOC111105057 was detected within this cluster, suggesting that these
expanded TLRs experienced rapid divergence including functional
loss. Furthermore, two TLRs (LOC111102920 and LOC111104238)
in this cluster that were significantly upregulated after the P. marinus
challenge (Figure 6B) were clustered together on the phylogenetic
tree (Figure 6C). Examination of synonymous (dS) and
nonsynonymous (dN) nucleotide substitutions among TLRs of the
cluster detected positive selection signals in these two upregulated
TLRs (Figure 6C). The positive selection sites Asp 27 (p < 0.05), Glu
62 (p < 0.05) and Asn 199 (p < 0.05) were located in the LRR and
LRRNT regions (Figure 6D) and likely involved in ligand/pathogen
recognition. Similar analysis was performed in P. marinus responsive

FIGURE 5 | Expansion of TLRs and divergent expression patterns under P.marinus challenge betweenC. gigas andC. virginica. (A), Phylogenetic tree constructed
with the maximum likelihood method showing lineage-specific expansion of TLRs in C. gigas (red font) and C. virginica (blue font). Red and blue asterisks represent the
differentially expressed TLRs in C. gigas and C. virginica, respectively. (B), Comparison of TLRs with different domain architectures in: human (Homo sapiens-Hs), sea
urchin (Strongylocentrotus purpuratus-SP), fruit fly (Drosophila melanogaster-Dm), Pacific oyster (Crassostrea gigas-Cg), Eastern oyster (Crassostrea virginica-Cv),
and staghorn coral (Acropora digitifera-Ad). LRRCT in red, LRRNT in blue and LRR in yellow. Toll/interleukin-1 receptor (TIR) domains are shown as gold triangles. (C),
Diverse expression pattern of the differentially expressed TLRs, marked with asterisks in (A), during P. marinus challenge in C. gigas (Top) and C. virginica (Bottom).
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TLRs of C. gigas, but no positive selection sites were detected
(Supplementary Figure S2). These results suggested that positive
selection observed in P. marinus responsive TLRsmay be important
for the evolution of host-parasite interaction betweenC. virginica and
P. marinus.

Upregulation of C1qDC With
Galactose-Binding Lectin Domain by P.
marinus
The globular C1q domain containing (C1qDC) proteins are a
family of versatile PRRs that has been shown to play a significant
role in a variety of processes including immune response, cell
adhesion, inflammation, and apoptosis (Wang et al., 2012;
Zong et al., 2019). We identified 477 and 333 C1qDCs in the
genomes of C. virginica and C. gigas, respectively, and most of
these C1qDCs belonged to the C1q/Multi-C1q type with two
or more C1q domains (Figure 7A). Of note, phylogenetic
analysis revealed a small cluster of 24 C1qDCs (3 C. gigas and
21 C. virginica) mostly with the “C1q + galactose-binding
lectin” domain that has been shown to play an important role

in immune response by binding to endogenous carbohydrates
especially from P. marinus (Figures 7A,B). Interestingly,
these “galactose-binding lectin” containing C1qDCs were
only found in the genome of C. virginica (16 of
21 CvC1qDC), not in the C. gigas genome (Figure 7A). In
addition, a C. virginica C1qDC with “galactose-binding lectin”
domain (LOC111120224) was significantly upregulated in C.
virginica after short-term induction of P. marinus challenge
(Figure 7C). We speculate that this gene plays a significant
role in P. marinus recognition during early infection stage in
C. virginica.

P. marinus Responsive FBGDCs Are
Species Specific
FBGDCs (FBG-domain containing proteins) with one or more
fibrinogen-like (FBG) domains are important pattern recognition
receptors for pathogens recognition in vertebrates (Matsushita
et al., 1996), urochordates (Kenjo et al., 2001) and invertebrates
(Zhang et al., 2004; Zhang et al., 2009). We detected significant
expansion of FBGDCs in both C. virginica (158 genes) and C.

FIGURE 6 | Tandem duplication and positive selection of TLRs in C. virginica. (A), Tandem repeats as the major source of TLRs duplication in C. virginica. (B), The
largest tandem repeat cluster (Top) and divergent expression patterns (Bottom) of tandemly linked TLRs in NC_035786.1 under P. marinus challenge. The wide arrows
represent TLR genes, and genes with red background are differentially expressed under P. marinus challenge. A pseudogene LOC111105057 was detected in this
repeat cluster. (C), Evolutionary relationships of duplicated TLRs. The calculated dN/dS (ω) values (gold) and bootstrap values are shown for each branch. The
branches with ω values >1.0 are marked with red rectangle. The differential genes under P. marinus challenge that are positively selected are boxed with red dash lines.
(D), Structural modeling of TLR depicting sites (blue) under positive selection. Positive selection sites (Asp27, Glu62, Asn199) are represented by black arrows.
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gigas (169 genes) (Figure 8). Following P. marinus challenge,
differential expression was observed in 24 and 30 FBGDCs in C.
virginica and C. gigas, respectively (Figure 8). Phylogenetic
analysis of the FBG domain showed that most of the P.
marinus responsive FBGDCs were derived from species-
specific expansions in the two oyster species (Figure 8). Such
results suggested that species-specific expansion of FBGDCs may
enhance diversity and specificity in PAMP recognitions, and
therefore play an important role in the evolution of host-
parasite interaction.

DISCUSSION

The protist P. marinus is a lethal pathogen of the eastern oyster C.
virginica, while its sister species C. gigas is strongly resistant. The
mechanisms responsible for this remarkable difference in resistance
are not understood. In this study, we investigated transcriptomic
response to P. marinus in two sister species that has diverged for 83
million years (Ren et al., 2010). Our work shows how comparative
transcriptomics and genomics analyses contribute to our
understanding of evolutionary dynamics of host-parasite
interaction lophotrochozoans without adaptative immunity.

Although our discussion below focuses on differences in host
defense between the two oyster species, two general observations

are worth noting. First, results of this study are highly consistent
with a previous study in C. virginica (Wang et al., 2010) where
DEGs induced by P. marinus were determined with a 12 k
microarray (challenges were conducted by the same team). For
37.8% of DEGs (389/1,029) from the previous study that had a
one-to-one correspondence (BLAST, E-value < 1e-5 and identity
>95%) to DEGs of this study (389/759), 83% of theme (323/389)
showed the same trend of change in response to P. marinus in
both studies (Supplemenatary Table S3), indicating that these
results are robust. On the other hand, this study and a recent
transcriptomic study (Proestou and Sullivan, 2020) shared only
39 DEGs (Supplemenatary Table S4), which could be caused by
differences in challenge condition, genetic background or
physiological state of oysters used. Second, this study
identified 759 and 568 P. marinus induced DEGs in C.
virginica and C. gigas (Supplementary Figure S3),
respectively, with significant overlapping. The finding of many
shared DEGs support a growing body of literature suggesting that
there is a conversed set of gene families involved in host defense
inmolluscs (Gerdol and Venier, 2015; Figueras et al., 2019). In the
present study, many immune-related genes (e.g., immune
recognition receptors, effector genes, lectins, host-pathogen
interaction genes) responded to P. marinus exposure in both
species. For instance, TLRs are known to play a key role in PAMP
recognition, and its activation is the first step in activation of

FIGURE 7 | Expansion of C1qDCs and divergent expression patterns under P. marinus challenge between C. virginica and C. gigas. (A), Phylogenetic tree
constructed with the maximum likelihood method showing lineage-specific expansion of C1qDCs in C. virginica (red font) and C. gigas (gray font). Different color
backgrounds represent different types of C1qDC domain composition, and the red and gray asterisks represent differentially expressed C1qDCs under P. marinus
challenge in C. virginica and C. gigas, respectively. (B), Domain composition of the “galactose-binding lectin” containing C1qDC gene. (C), A C1qDC gene
(LOC111120224) with “galactose-binding lectin” domain was significantly upregulated in C. virginica after P. marinus challenge.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 79570610

Chan et al. Comparative Oyster Transcriptomic Response

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


mitogen activated protein kinase (MAPK) and tumor necrosis
factor (TNF) during infection of vertebrates, which is pivotal in
many cellular processes such as cell growth, differentiation, and
apoptosis (Royle et al., 2003). The differential expression of these
genes observed in this study is consistent with previous results
(Tanguy et al., 2004; Wang et al., 2010), and may reflect a general
response or cellular disorder caused by infections.

Our comparative transcriptomics and genomics analyses
identified four previously undescribed molecular mechanisms
that may account for differences in P. marinus resistance in two
oyster species and illustrate possible evolutionary dynamics in
host-parasite interactions. First, the magnitude of upregulation
of the immune-related DEGs (e.g., TLRs, FBGDCs, C1qDCs SODs
and Defensins) were much higher in C. virginica than in C. gigas.
The stronger response of C. virginica is also reflected in the
upregulation of serine-type protease inhibitors, which have been
shown to inhibit proteases from invading P. marinus, limit
proliferation of P. marinus in vitro and confer resistance (He
et al., 2012; Gutiérrez-Rivera et al., 2015). In this study, the GO
term for “serine-type endopeptidase inhibitor activity” was

enriched in upregulated DEGs of C. virginica, not C. gigas. All
these findings suggest that the host response to P. marinus in C.
virginica is more dramatic. Clearly, C. virginica recognizes P.
marinus as a pathogen and is highly sensitive to its infection.
Strong immune response does not equate resistance. Over reactive
immune response, whether orchestrated by the host or parasite,
can lead to pathology and mortality of the host, as it has been
shown in Ostreid herpesvirus infections of the Pacific oyster (He
et al., 2012). The susceptibility of C. virginica does not mean P.
marinus is a new pathogen. The fact that P. marinus responsive
TLRs of C. virginica has been under positive selection and C1qDCs
with the P. marinus binding “galactose-binding lectin” domain is
found in C. virginica, not in C. gigas (see below), suggest that the C.
virginica and P. marinus have a long history of coevolution, and P.
marinus is not a new pathogen of C. virginica. If true, the
susceptibility and heavy mortality observed in C. virginica may
be caused by recently increased virulence of P. marinus during the
coevolutionary race between the host and parasite (Van Valen,
1973). It has been suggested that increased virulence possibly
associated with warm winters due to global warming played

FIGURE 8 | Expansion and phylogeny of FBGDC gene family inC. virginica (red font) andC. gigas (gray font). The phylogenetic tree is constructed with themaximum
likelihoodmethod showing lineage-specific expansion of FBGDC in C. virginica (red font) and C. gigas (gray font). Different color backgrounds represent different domain
composition types, and the red and gray asterisks represent differentially expressed FBGDCs under P. marinus challenge in C. virginica and C. gigas, respectively.
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major roles in outbreaks and northward range extension of P.
marinus (Ford, 1996; Carnegie et al., 2021).

In contrast to the stronger response of many immune response
genes in C. virginica, P. marinus induced stronger upregulation of
IAPs in C. gigas than in C. virginica. Inhibitors of apoptosis play
critical roles in immune and stress responses, and the expansion
of IAPs underpins the remarkable environmental resilience of
bivalves (Guo et al., 2015; Song et al., 2021). It has been suggested
that, as an intracellular parasite, P. marinus induces inhibition of
apoptosis in the host as a survival strategy (Hughes et al., 2010).
The observation of heightened upregulation of IAPs in the
resistant C. gigas in this study challenges the idea that
inhibition of apoptosis of host cells is orchestrated by the
parasite. Rather, it suggests that inhibition of apoptosis is
initiated by the host as an active defense mechanism and may
play a role in limiting parasite proliferation or release, making C.
gigas less susceptible.

A second mechanism is underscored by dramatic differences
in “galactose-binding lectin” domain containing genes between
two oyster species. In a previous study (Tasumi and Vasta, 2007),
a novel galectin with a unique carbohydrate recognition domain
structure had been shown to be associated with the recognition of
P. marinus in C. virginica hemocytes. Galectins is an
evolutionarily conserved family of β-galactoside-binding lectins
that play important roles in early development and immune
response of organisms by binding to endogenous carbohydrates
(Rabinovich et al., 2002; Ahmed et al., 2009). In addition,
galectins have also been shown to act as PRRs in innate
immunity by binding to exogenous glycans on the surface of
potentially pathogenic microbes, parasites, and fungi (Kim et al.,
2008; Wang et al., 2011; Bao et al., 2013). It is not surprising to
find significant upregulation of galectins in C. virginica but not in
C. gigas. Further, we annotated 16 “galactose-binding lectin”
containing C1qDCs in the genome of C. virginica, but none in
the genome of C. gigas. More importantly, a CvC1qDC that
composed of “galactose-binding lectin” domain was
significantly upregulated in C. virginica after P. marinus
challenge. Together, these findings suggest that the presence
and upregulation of genes with “galactose-binding lectin”
domain in C. virginica may be an important factor
contributing in its susceptibility to P. marinus. Again, these
results support the theory that C. virginica and P. marinus
have a long history of coevolution. The lack of galectin
upregulation and absence of ‘galactose-binding lectin’
containing C1qDCs in C. gigas may limit the ability of P.
marinus to bind and enter host hemocytes. A more complete
understanding of the evolution and functional integrations of
multigene families in a broad range of host responses and
defenses may emerge from further investigations of the innate
immune recognition systems found in invertebrate species.

A third notable mechanism rests on the duplication and
functional divergence of immune receptors that contributes to
differential recognition and response to P. marinus in the two
oyster species. As more genomes and transcriptomes across
diverse marine invertebrates are sequenced, it is becoming
clear that gene duplication and subsequent diversification of
expanded members of gene families driven by selection are a

recognized mechanism of genome innovation and adaptation
(Conant and Wolfe, 2008; Zhang et al., 2012; Zhang et al., 2014;
Guo et al., 2015; Zhang et al., 2015). In our study, multigene
families encoding innate immune receptors, such as TLRs,
C1qDCs, FBGDCs, have experienced large-scale expansion and
functional diversification in both C. virginica and C. gigas, which
may play an important role in the immune response to different
pathogens (Zhang et al., 2015). While the gene families are
conserved, distinct gene members of the expanded families are
involved in parasite defense in the two oyster species. For
example, TLRs showed greater expansion in C. virginica, and
the majority of TLRs upregulated by P. marinus are derived from
distinct species-specific expansions in the two species. Similarly,
species-specific expansion was also detected in gene families of
C1qDC and FBGDC, which is consistent with previous findings
for major histocompatibility complex (MHC) and immune
globlin (Ig) genes in vertebrates, TLRs in sea urchin, TNFs in
amphioxus and FREPs in freshwater snail (Nei et al., 1997; Rast
et al., 2006; Huang et al., 2008; Hanington and Zhang, 2010).
Moreover, the lineage-specific expansion of immune genes is
associated not only with differential responses to pathogens but
also with differential expression under environmental stress
conditions that emulate those of its natural habitat (Zhang
et al., 2015). These findings suggest that lineage-specific
expansions of multigene families encoding innate immune
receptors in present study may have led to divergence and
species-specific functions between C. gigas and C. virginica.

The fourth mechanism worth noting is that positive selection
might be an important driving force for immune recognition of P.
marinus. Classical evolutionary studies of protein-coding genes
have established that genes in the canonical immune system tend
to be the most rapidly evolving genes within and among species
(Sackton, 2018). Many immune-related molecules directly
interact with rapidly evolving pathogenic structures causing
strong parasite-mediated natural selection at particular binding
positions consistent with the Red Queen hypothesis (Woolhouse
et al., 2002). PRRs are evolutionary conserved proteins and
believed to be under strongly functional constraint. However,
recent studies have found evidence of positive selection in some
vertebrate groups, such as positive selection sites (PSSs) in TLRs
of birds, wild rodents, domestic pig and cetacean (Alcaide and
Edwards, 2011; Fornůsková et al., 2013; Darfour-Oduro et al.,
2015; Xu et al., 2018). Similarly, positive selection effects on PRRs
have also been found in molluscs, including PSSs detected at
peptidoglycan recognition proteins (PGRPs) in C. gigas (Zhang
and Yu, 2013), and fibrinogen-related proteins (FREPs) in the
fresh-water snail, Biomphalaria glabrata (Hanington and Zhang,
2010). All these studies suggested that positive selection has
played an important role in the evolution of metazoan PRRs,
which is consistent with co-evolution of host and pathogens
(Dodds and Thrall, 2009; Phillips et al., 2018). The TLRs of C.
virginica may have experienced greater selection pressure than
that of C. gigas based on the positive selection analysis, which
suggests that the TLRs of C. virginicamay be actively evolving for
recognition of P. marinus, while C. gigas may possess TLRs with
more effective defense capability against P. marinus infection.
This is consistent with the finding that large expansions of PRRs
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are due to lineage-specific selective pressure from pathogens, and
pathogen-mediated selection may play a role in the evolution of
these genes across a variety of taxa (Hanington and Zhang, 2010;
Grueber et al., 2014). As expected, all positive selection sites
identified in P. marinus responsive TLRs of C. virginica were
located in the extracellular LRR domain that has been shown to be
important for pathogen recognition in the host (Khan et al.,
2019), consistent with the phenomenon found in Areal’s study
(Areal et al., 2011). The evolved TLRsmay play an important role
in the specific recognition of P. marinus by C. virginica, adding
support for coevolution, but further experimental verification is
needed.

In summary, comparative analyses in this study revealed
previously undescribed molecular mechanisms underlying
remarkably differences in P. marinus resistance between two
sister oyster species. Immune responses to P. marinus are more
dramatic in C. virginica, and the over-reacting immune
responses may contribute to increased stress and mortality of
the host. In addition, the findings of C1qDCs with “galactose-
binding lectin” domain that are implicated in P. marinus
recognition and positive selection in P. marinus responsive
TLRs in C. virginica indicate that C. virginica and P. marinus
have a history of coevolution. These observations indicate that
P. marinus is not a new pathogen of C. virginica, and the recent
outbreaks may be due to increased virulence of P. marinus.
Inhibitors of apoptosis showed stronger upregulation in
resistant C. gigas suggesting it is an active defense of the
host, rather than a passive response orchestrated by the
parasite as previously suggested. Our results also suggest that
gene duplication, functional divergence, and positive selection
are important in shaping immune response and host-parasite
interaction in the two oyster species. Understanding the
molecular basis of host-parasite interaction and coevolution
is one of the key goals of immunology, and this study provides
an example for using non-model species in comparative
analyses.
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